Learning to Optimize under Non-Stationarity

A Proof of Theorem 1

First, let’s review the lower bound of the linear bandit setting. The linear bandit setting is almost identical to
ours except that the 6;’s do not vary across rounds, and are equal to the same (unknown) 6, i.e., Vt € [T] 6; = 6.
d
Lemma 4 ([20]). For any Ty > v/d/2 and let D = {z € R : ||z|| < 1}, then there exists a 0 € {:I:\/d/4T0} )
such that the worst case regret of any algorithm for linear bandits with unknown parameter 0 is Q(dv/Tp).
Going back to the non-stationary environment, suppose nature divides the whole time horizon into [T/ H| blocks

of equal length H rounds (the last block can possibly have less than H rounds), and each block is a decoupled
linear bandit instance so that the knowledge of previous blocks cannot help the decision within the current block.

d
Following Lemma 4, we restrict the sequence of 8;’s are drawn from the set {i d/AH } . Moreover, #,’s remain

fixed within a block, and can vary across different blocks, i.e.,
T
Vi € HVH‘H Vi1, ta € [(Z — 1)H+ 1,7 H/\T] th = 9,52. (27)

We argue that even if the learner knows this additional information, it still incur a regret Q(d?/ 33;/ 12/ 3). Note
that different blocks are completely decoupled, and information is thus not passed across blocks. Therefore, the

regret of each block is €2 (d\/ﬁ ) , and the total regret is at least

dﬂ _ 1) 0 (d\/ﬁ) -0 (dTH—%) . (28)

Intuitively, if H, the number of length of each block, is smaller, the worst case regret lower bound becomes larger.
But too small a block length can result in a violation of the variation budget. So we work on the total variation of
0,’s to see how small can H be. The total variation of the 6;’s can be seen as the total variation across consecutive

d
blocks as 6; remains unchanged within a single block. Observe that for any pair of 6,6 € {:l: d/4AH } , the /5

difference between 6 and 0’ is upper bounded as

“4d d
Zlﬁzﬁ (29)

and there are at most |T/H | changes across the whole time horizon, the total variation is at most
T d 3
B=— -—=dI'H z. 30
TN 30

By definition, we require that B < Brp, and this indicates that

1=

H> (dT)3B; ", (31)

2
Taking H = [(dT)%BT 3-‘ , the worst case regret is

Wi

T

N el

Q<dT ((dT)gBT§>_;> :Q(d%B ) (32)

B Proof of Lemma 1

In the proof, we denote B(1) as the unit Euclidean ball, and Ayax(M) as the maximum eigenvalue of a square
matrix M. By folklore, we know that Amax(M) = max.cpn) 2" Mz. In addition, recall the definition that

Vo1 =M+ Zz;llv(t_w) XX, We prove the Lemma as follows:

t—1

t—1 t—1
Y x| -l Y x|S0 -]

s=1V(t—w) s=1V(t—w) p=s
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t—1 P

=i 3 S XX (0 — i) (33)

p=1V(t—w) s=1V(t—w)

t—1 P
< |/ Z X X[ | (0p = Op11) (34)
p=1V(t—w) s=1V(t—w)

t—1
< DT e | Vih Z XX ) |16y = Opall - (35)
p=1V(t—w) s=1V(t—w)

t—1

< 3 00,0l (36)

p=1V(t—w)

Equality (33) is by the observation that both sides of the equation is summing over the terms XX, (6, — 0,+1)
with indexes (s, p) ranging over {(s,p) : 1V (t —w) < s < p < t—1}. Inequality (34) is by the triangle inequality.
To proceed with the remaining steps, we argue that, for any index subset S C {1V (t —w),...,t — 1}, the matrix
Vol (C,es XsX[) is positive semi-definite (PSD). Now, let’s denote A = 3 ¢ X, X,|. Evidently, matrix A
is PSD, while matrix V;~} is positive definite, and both matrices A, V,~} are symmetric. Matrices V,"} A and

‘/;:11/ 2AV;11/ ? have the same sets of eigenvalues, since these matrices have the same characteristics polynomial
(with the variable denoted as 1 below):

det(nl — V,7}A) = det(V,"y/*) det(yV, "/} — V,"Y/?4)
= det(nV;/} = V,ZY2A) det(V;_}?) = det(n] — V;_y* AV, 2.

Evidently, V, 1/2AV;_1/2 is PSD, since for any y € R? we clearly have yTVtill/QAV;:ll/Qy = ||Al/2‘/'t:11/2y||2 >0

(Matrices Al/27 Vt_1/ are symmetric). Altogether, we have shown that V,~} ( §=1v(t—w) XSXST) is PSD.
Inequality (35) is by the fact that, for any matrix M € R4*? with A\yay(M) > 0 and any vector y € R?, we have
[My| < Amax(M) ||ly]|- Without loss of generality, assume y # 0. Now, it is evident that

Myl = Amax (M) - [yl = Amax (M) [lyl| -

y
My| = [|M—| - |ly|| < M
= o] 1 < g e

Applying the above claim with M = Vt 1 (Ze 1V (t—w) X :), which is PSD, and y = 0, — 0,41 demonstrates
inequality (35).

Finally, inequality (36) is by the inequality Amax (Vt:ll (Zizlv(tfw) XSXST)) < 1. Indeed,

Amax Vt:ll Z X, XT —ZrenBaé)z Vt 1 Z X, XT z
s=1V(t—w) s=1V(t—w)
P t—1
< mg(x) 2TVt Z XX | z+2"V} ( Z XSXST> PR AR A (37)
zeB(1
s=1V(t—w) s=p+1

= max z Vt 1V} 1z=1,
z€B(1)

t—1

where inequality (37) is by the property that both matrices V,~} (ZS:p 1

XSXST> ,V,=% are PSD, as we establish
previously. Altogether, the Lemma is proved.
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C Proof of Theorem 2

Fixed any ¢ € [0,1], we have that for any ¢ € [T] and any = € Dy,

t—1 t—1
‘xT(ét —9t)‘ =" (VoL YD X X[ (0.-0) | +2TV] > — A0y
s=1V(t—w) s:lv(tfw)
t—1 t—1
<l (vl Y x X0 -0 ||+l Y
s=1V(t—w) s:l\/(tfw)
t—1 t—1
< ||£L'|| : Vvtill Z XsXsT (95 - et) + ||x||\/;11 Z nsXs - )\et (39)
s=1V(t—w) s=1V(t—w) vl
t
1 L2/
LS 0=l + ol R\/dln (FE5E2) 4 vas) (10)
s=1V(t—w)

where inequality (38) uses triangular inequality, inequality (39) follows from Cauchy-Schwarz inequality, and
inequality (40) are consequences of Lemmas 1, 2.

D Proof of Theorem 3

In the proof, we choose A so that 3 > 1, for example by choosing A > 1/52. By virtue of UCB, the regret in any
round ¢ € [T is

(a7 — X¢,0:) < L Z 105 — Oagr || + (X4, 60:) + 3 [ Xelly -1 — (X, 00) (41)
=1V(t—w)
<9I Z 165 = Oaall + 2811 X2 [l - (42)
s=1V(t—w)

Inequality (41) is by an application of our SW-UCB algorithm established in equation (10). Inequality (42) is by
an application of inequality (40), which bounds the difference |(X3, 6; — 0;)| from above. By the evident fact that
<Xt70t — 0t> S 2, we have

t—1
(27 = X 0) <20 S 05— Ousall +28 (I Xellyoy A1) (43)
s=1V(t—w)

Summing equation (43) over 1 <t < T, the regret of the SW-UCB algorithm is upper bounded as

E [Regret, (SW-UCB algorithm)] = Z (xy — X4, 0p)

te[T)
T t—1 T
<L (3 S 10— Ol +28 (IXllyy A1)
| t=1 s=1V(t—w) t=1
[T (s+w)AT T
=L |3 3 16— Oeill| +28 3 (I Xl A1)
s=1 t=s+1 t=1

T
<2LwB, +28Y (\|Xt||vt:11 A 1) . (44)

t=1
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What’s left is to upper bound the quantity 203 Zte[T] (1 A ||Xt||x4:11). Following the trick introduced by the

authors of [1], we apply Cauchy-Schwarz inequality to the term Zte[T] (1 A ||XtHVt—_11) .

> (1A Il ) < VT[S 1A (45)

te[T) te(T)

By dividing the whole time horizon into consecutive pieces of length w, we have

[T/w]—1 (i+1)w

2 2
SAKE <y S Y 1alxlE. (46)

te[T) i=0 t=i-w+1

While a similar quantity has been analyzed by Lemma 11 of [1], we note that due to the fact that V;’s are
accumulated according to the sliding window principle, the key eq. (6) in Lemma 11’s proof breaks, and thus
the analysis of [1] cannot be applied here. To this end, we state a technical lemma based on a novel use of the
Sherman-Morrison formula.

Lemma 5. For any i < [T/w] — 1,

(i+1)w (i+1)w
IR TY bt A= S WY bt Iy
t=1-w+1 t=i-w+1
where
t—1
Vi = Z X X+ (47)
s=i-w—+1

Proof. Proof of Lemma 5. For a fixed i < [T/w] — 1,

(i+1)w (i+1)w
> 1/\||Xt||%,t:11: > 1AXVIX,
t=i-w+1 t=i-w+1
(i+1)w t—1 -t
= > 1nx/ Yoo XX +A| X (48)
t=i-w+1 s=1V(t—w)

Note that i-w+1>Tandi-w+1>t—w Vt < (i + 1)w, we have
irw+1>1V(E—w). (49)

Consider any d-by-d positive definite matrix A and d-dimensional vector y, then by the Sherman-Morrison
formula, the matrix

AflnyAfl _ AflnyAfl

B=A'—(A+y ) =414 _
( Ty ) * 1+yTA 1y 1+yTA 1y

(50)

is positive semi-definite. Therefore, for a given ¢, we can iteratively apply this fact to obtain

t—1 -1
X < Z X.xJ +>\I> X,

s=i-w+1

t—1 -1 t—1 -1 t—1 —1
:XtT(Z XSXJ+M> X+ X[ < 3> XSX§+M> . (Z XSXST—F)J) X,

s=1i-w s=t-w-+1 s=i-w

t—1 -1 t—1 -1 t—1 -1
:XJ(Z XSXST—i—AI) X, +Xx/] < Z XSXJ+M> — (Xi.leTw—i— Z XSXST—i-/\I) X,

S=i-w s=i-w-+1 s=i-w+1
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t—1 -1
S ( S xxT +/\I> X,

s=1i-w

-1
t—1

>X | Y XX +A| X, (51)

s=1V(t—w)

Plugging inequality (51) to (48), we have

(i+1)w (i+1)w t—1 -1
dooIAIXya < Y 1/\XtT< > XSXJ+M> X,

t=i-w+1 t=i-w+1 s=i-w+1
(i+1)w
2
< z_
< 3 xR (52)
t=1-w+1
which concludes the proof. O

From Lemma 5 and eq. (46), we know that

[T/w]—-1 (i+1)w

26 3 (1A IXly— ) <28VT | Y S 1alXE

te[T] =0 t=i-w+l
[T/w]—1
d)\ + wL?
<2B8VT - 2dIn (| ———— 53
= 5\/> \ Z dln ( N ) (53)
=0
2d d\ + wL?
BTy —In| ———— ).
<26 \/w . ( X )
Here, eq. (53) follows from Lemma 11 of [1].
Now putting these two parts to eq. (44), we have
2d d L2
E [Regret, (SW-UCB algorithm)] <2LwBr + 2BT\/ In <—;/\w> + 2745
w
2T 1+wL?/\ dA + wlL?
=2LwB — In| —— 2dIn | ——— 2T9.
wT—i-\/;U(R\/dn( 5 )—l—\r)\S)\/dn( N +

(54)
Now if By is known, we can take w = O ((dT)2/3B;2/3) and § = 1/T, we have
E [Regret, (SW-UCB algorithm)] = O (d%BéTg) ;
while if Br is not unknown taking w = O ((dT)2/3) and § = 1/T, we have

E [Regret, (SW-UCB algorithm)] = O <d§ (Br+1) T%) .

E Proof of Lemma 3

For any block i, the absolute sum of rewards can be written as

- HAT - HAT - HAT - HAT

Z (X, 0) +me| < Z [(Xe, 0¢)| + Z m| < H+ Z Ml

t=(i—1)H+1 t=(i—1)H+1 t=(i—1)H+1 t=(i—1)H+1
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where we have iteratively applied the triangular inequality as well as the fact that |(X, 6;)| < 1 for all ¢.

Now by property of the R-sub-Gaussian [22], we have the absolute value of the noise term 7; exceeds 2RvInT
for a fixed t with probability at most 1/7? i.e.,

- HANT
/ T 2H
Pr > om|=2R[Hn— | < . (55)
t=(i—1)H+1 VH T

Applying a simple union bound, we have

T P HAT T [T/H] - HAT T 9
Pr(3ie [w > m|Z2R/Hm— | < Y Pr > om|=2R[Hln— | < . (56)

H t=(i—1)H+1 vVH i=1 t=(i—1)H+1 vVH T

Therefore, we have
- HAT
T T T 2

Pr >H+2R{/Hln— | <Pr|die|—=]|: >2R({/Hln— | < —. 57
(02 vamma 75 RIS R B

The statement then follows.



