
Learning to Optimize under Non-Stationarity

A Proof of Theorem 1

First, let’s review the lower bound of the linear bandit setting. The linear bandit setting is almost identical to
ours except that the ✓t’s do not vary across rounds, and are equal to the same (unknown) ✓, i.e., 8t 2 [T ] ✓t = ✓.

Lemma 4 ([20]). For any T0 �
p
d/2 and let D =

�
x 2 <d : kxk  1

 
, then there exists a ✓ 2

n
±
p
d/4T0

od

,

such that the worst case regret of any algorithm for linear bandits with unknown parameter ✓ is ⌦(d
p
T0).

Going back to the non-stationary environment, suppose nature divides the whole time horizon into dT/He blocks
of equal length H rounds (the last block can possibly have less than H rounds), and each block is a decoupled
linear bandit instance so that the knowledge of previous blocks cannot help the decision within the current block.

Following Lemma 4, we restrict the sequence of ✓t’s are drawn from the set
n
±
p

d/4H
od

. Moreover, ✓t’s remain

fixed within a block, and can vary across di↵erent blocks, i.e.,

8i 2
⇠

T

H

⇡�
8t1, t2 2 [(i� 1)H + 1, i ·H ^ T ] ✓t1 = ✓t2 . (27)

We argue that even if the learner knows this additional information, it still incur a regret ⌦(d2/3B1/3
T

T 2/3). Note
that di↵erent blocks are completely decoupled, and information is thus not passed across blocks. Therefore, the

regret of each block is ⌦
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⌘
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Intuitively, if H, the number of length of each block, is smaller, the worst case regret lower bound becomes larger.
But too small a block length can result in a violation of the variation budget. So we work on the total variation of
✓t’s to see how small can H be. The total variation of the ✓t’s can be seen as the total variation across consecutive

blocks as ✓t remains unchanged within a single block. Observe that for any pair of ✓, ✓0 2
n
±
p
d/4H

od

, the `2

di↵erence between ✓ and ✓0 is upper bounded as
vuut
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and there are at most bT/Hc changes across the whole time horizon, the total variation is at most
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T

H
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H
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By definition, we require that B  BT , and this indicates that
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m
, the worst case regret is
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B Proof of Lemma 1

In the proof, we denote B(1) as the unit Euclidean ball, and �max(M) as the maximum eigenvalue of a square
matrix M . By folklore, we know that �max(M) = maxz2B(1) z

>Mz. In addition, recall the definition that
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Equality (33) is by the observation that both sides of the equation is summing over the terms XsX>
s
(✓p � ✓p+1)

with indexes (s, p) ranging over {(s, p) : 1_ (t�w)  s  p  t�1}. Inequality (34) is by the triangle inequality.

To proceed with the remaining steps, we argue that, for any index subset S ✓ {1_ (t�w), . . . , t� 1}, the matrix
V �1
t�1

�P
s2S

XsX>
s

�
is positive semi-definite (PSD). Now, let’s denote A =

P
s2S

XsX>
s
. Evidently, matrix A

is PSD, while matrix V �1
t�1 is positive definite, and both matrices A, V �1

t�1 are symmetric. Matrices V �1
t�1A and

V �1/2
t�1 AV �1/2

t�1 have the same sets of eigenvalues, since these matrices have the same characteristics polynomial
(with the variable denoted as ⌘ below):

det(⌘I � V �1
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Evidently, V �1/2
t�1 AV �1/2

t�1 is PSD, since for any y 2 Rd we clearly have y>V �1/2
t�1 AV �1/2

t�1 y = kA1/2V �1/2
t�1 yk2 � 0

(Matrices A1/2, V �1/2
t�1 are symmetric). Altogether, we have shown that V �1

t�1
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s=1_(t�w) XsX>
s

⌘
is PSD.

Inequality (35) is by the fact that, for any matrix M 2 Rd⇥d with �max(M) � 0 and any vector y 2 Rd, we have
kMyk  �max(M) kyk. Without loss of generality, assume y 6= 0. Now, it is evident that

kMyk =

����M
y
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���� · kyk 
���� max
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Applying the above claim with M = V �1
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⌘
, which is PSD, and y = ✓p � ✓p+1 demonstrates

inequality (35).
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where inequality (37) is by the property that both matrices V �1
t�1

⇣P
t�1
s=p+1 XsX>

s

⌘
, V �1

t�1 are PSD, as we establish

previously. Altogether, the Lemma is proved.
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C Proof of Theorem 2

Fixed any � 2 [0, 1], we have that for any t 2 [T ] and any x 2 Dt,
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where inequality (38) uses triangular inequality, inequality (39) follows from Cauchy-Schwarz inequality, and
inequality (40) are consequences of Lemmas 1, 2.

D Proof of Theorem 3

In the proof, we choose � so that � � 1, for example by choosing � � 1/S2. By virtue of UCB, the regret in any
round t 2 [T ] is

hx⇤
t
�Xt, ✓ti  L

t�1X

s=1_(t�w)
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. (42)

Inequality (41) is by an application of our SW-UCB algorithm established in equation (10). Inequality (42) is by
an application of inequality (40), which bounds the di↵erence |hXt, ✓̂t�✓ti| from above. By the evident fact that
hXt, ✓̂t � ✓ti  2, we have
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t
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⌘
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Summing equation (43) over 1  t  T , the regret of the SW-UCB algorithm is upper bounded as
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T
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What’s left is to upper bound the quantity 2�
P

t2[T ]

⇣
1 ^ kXtkV �1

t�1

⌘
. Following the trick introduced by the

authors of [1], we apply Cauchy-Schwarz inequality to the term
P
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⇣
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⌘
.
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By dividing the whole time horizon into consecutive pieces of length w, we have

sX

t2[T ]

1 ^ kXtk2V �1
t�1



vuut
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i=0

(i+1)wX
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While a similar quantity has been analyzed by Lemma 11 of [1], we note that due to the fact that Vt’s are
accumulated according to the sliding window principle, the key eq. (6) in Lemma 11’s proof breaks, and thus
the analysis of [1] cannot be applied here. To this end, we state a technical lemma based on a novel use of the
Sherman-Morrison formula.

Lemma 5. For any i  dT/we � 1,

(i+1)wX

t=i·w+1

1 ^ kXtk2V �1
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,
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Proof. Proof of Lemma 5. For a fixed i  dT/we � 1,
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Note that i · w + 1 � 1 and i · w + 1 � t� w 8t  (i+ 1)w, we have

i · w + 1 � 1 _ (t� w). (49)

Consider any d-by-d positive definite matrix A and d-dimensional vector y, then by the Sherman-Morrison
formula, the matrix
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is positive semi-definite. Therefore, for a given t, we can iteratively apply this fact to obtain
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�X>
t

 
t�1X

s=i·w
XsX

>
s
+ �I

!�1

Xt

...

�X>
t

0

@
t�1X

s=1_(t�w)

XsX
>
s
+ �I

1

A
�1

Xt. (51)

Plugging inequality (51) to (48), we have
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which concludes the proof.

From Lemma 5 and eq. (46), we know that

2�
X

t2[T ]

⇣
1 ^ kXtkV �1

t�1

⌘
2�

p
T ·

vuut
dT/we�1X

i=0

(i+1)wX

t=i·w+1

1 ^ kXtk2
V

�1
t�1

2�
p
T ·

vuut
dT/we�1X

i=0

2d ln

✓
d�+ wL2

d�

◆
(53)

2�T

s
2d

w
ln

✓
d�+ wL2

d�

◆
.

Here, eq. (53) follows from Lemma 11 of [1].

Now putting these two parts to eq. (44), we have
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Now if BT is known, we can take w = O
⇣
(dT )2/3B�2/3

t

⌘
and � = 1/T, we have
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while if BT is not unknown taking w = O
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E [Regret
T
(SW-UCB algorithm)] = eO

⇣
d

2
3 (BT + 1)T

2
3

⌘
.

E Proof of Lemma 3

For any block i, the absolute sum of rewards can be written as
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where we have iteratively applied the triangular inequality as well as the fact that |hXt, ✓ti|  1 for all t.

Now by property of the R-sub-Gaussian [22], we have the absolute value of the noise term ⌘t exceeds 2R
p
lnT

for a fixed t with probability at most 1/T 2 i.e.,
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Applying a simple union bound, we have
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Therefore, we have
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The statement then follows.


