
I (Eli) Chien, Huozhi Zhou, Pan Li

6 SUPPLEMENTARY MATERIAL

6.1 Proof of Theorem 3.5

We need Lemma 1 of [1] which characterizes a bound
for the query complexity of the random sampling
phase. We first define a witness set of the cut set
C as the node set that contains at least one node for
each Vi, i ∈ [T].

Lemma 6.1 (Lemma 1 in [1]). Consider a β-
balancedness graph G = (V,E). For all α > 0, a
subset W chosen uniformly at random is a witness of
the cut-set C with probability at least 1−α as long as

|W |≥
log (1

βα)

log (1/(1− β))

Moreover, we will need the following lemma. Basi-
cally it ensures that once HS2-point discovers a cut
hyperedge from a cut component, then HS2-point will
discover all remaining cut hyperedges in this cut com-
ponent and the shortest pathes that include these hy-
peredges are at most with length κ.

Lemma 6.2. Suppose a hypergraph G with a cut set
C is κ-clustered. Moreover, suppose Crs is a cut com-
ponent. If e ∈ Crs is discovered, which means a pair of
nodes u ∈ Ωr(e), v ∈ Ωs(e) are labeled, then at least
one remaining cut hyperedge in Crs lies in a path of
length at most κ from a pair of nodes with labels r
and s respectively.

Proof. By definition 3.4, we know that the hyper-
edges in Crs will form a strongly connected compo-
nent in Hκ. This means for any e ∈ Crs, there is
at least one e′ ∈ Crs such that the arc ee′ exists in
Hκ. Recall there exists arc ee′ in Hκ if and only if
∆(e, e′) ≤ κ. By definition 3.3 this means for any
node pair u ∈ Ωr(e), v ∈ Ωs(e), the length of the short-
est path including e′ but excluding e will be less then
κ. Note that in the definition of ∆(e, e′), we use the
supremum taking over the node set Ωr(e),Ωs(e). This
is because it ensures that no matter which node pair
u, v ∈ e we have, ∆(e, e′) can always upper bound the
length of the shortest path including e′ but excluding
e with endpoints u, v. In contrast, we use the infimum
taking over the node set Ωr(e

′),Ωs(e
′). This is because

it only needs to search for the shortest path. Hence
once we find a cut hyperedge e in Crs, we are guaran-
tee to find at least one cut hyperedge e′ ∈ Crs through
a path of length lS ≤ κ after we remove e.

Now let us prove Theorem 3.5. The proof uses a simi-
lar outline as the proof given in [1]. However, we need
to take care of the hypergraph structures that are de-
scribed by the definition 3.1 to 3.4. We will also derive

a tighter bound for the number of runs R, which finally
yields a lower query complexity than that in [1].

We can divide the query complexity in two parts which
are associated with the random sampling phase and
the aggressive search phase respectively. The goal of
the random sampling phase is to find a witness set.
By applying Lemma 6.1, we can bound from above
the number of random queries needed.

For the aggressive search phase, let lS(G,L, f) be the
length of the shortest path among all paths connect-
ing nodes with different labels after we collects the
labels of nodes in L. After each step of the aggressive
search, the lS(G,L, f) will roughly get halved. Thus
it will take no more than dlog2 lS(G,L, f)e+1 steps to
find a cut hyperedge. In order to bound the required
number of active queries, let us split up the aggressive
search phase into “runs”, where each run ends when
a new boundary node has been discovered. Let R be
the number of runs, and it’s obvious that R ≤ |∂C|
since we will at most discovere all the boundary nodes,
which is |∂C|. Moreover, we also have R ≤ |C|. This is
because we will discover a new boundary node if and
only if we discover at least a cut hyperedge. Hence
together we have R ≤ min(|C|, |∂C|). The observa-
tion of R ≤ |C| is missed by [1]. However, this part
is extremely important for the hypergraph setting ac-
cording to the later discussion in Remark 6.1.

For each i ∈ [R], let G(i) and L(i) be the graph and
label set up to run i. Then the total number of active
queries can be upper bounded by∑R
i=1(dlog2(lS(G(i), L(i), f))e+ 1). By observation, in

each run it is trivial lS(G(i), L(i), f) ≤ n. From Lemma
6.2, once we discover a cut hyperedge from Crs, we’re
able to find at least one undiscovered cut hyperedge
from Crs through a path of length at most κ according
to Lemma 6.2. After running |Crs|−1 times, we may
fully discover Crs. In all these |Crs|−1 runs in R,
lS ≤ κ. In all, the runs that we first discover each
cut components are long runs, whose lS can be upper
bounded naively by n, and the number of long runs
is not greater than m. Once we discover the first cut
hyperedge in Crs, the rest |Crs|−1 runs are short runs
whose lS can be upper bounded by κ. Therefore, we
have

R∑
i=1

(dlog2(lS(G(i), L(i), f))e+ 1)

≤ (R+mdlog2 ne+ (R−m)dlog2 κe)
≤ m(dlog2 ne − dlog2 κe) + min(|C|, |∂C|)(dlog2 κe+ 1)

Hence we complete the proof.

Remark 6.1. Note that in [1] they only use the bound
R ≤ |∂C| and miss the bound R ≤ |C|. As they fo-
cused on standard graphs, |C| can be lower bounded

HS2: Active learning over hypergraphs

by |∂C|
2 . Therefore, in standard graphs, the bound

R ≤ |∂C| will at most loose by a constant factor of
2. However, in hypergraphs, it’s possible that |C| is
substantially smaller than |∂C|, when the sizes of hy-
peredges are large. So R ≤ |C| is crucial for the tight
analysis in the hypergraph scenario.

6.2 Proof of Proposition 3.6

6.2.1 checking the equal parameters

We check the parameters one by one.

We start from proving that if C is κ-clustered, then
C(ce) is also κ-clustered. We note that performing CE
does not change the length of the shortest path of ar-
bitrary node pair v1, v2 ∈ V . This is because CE will
replace a hyperedge by a clique, which makes all nodes
in the hyperedge become fully connected. Hence the
C(ce) is still κ-clustered.

Now, we prove that if G has m non-empty cut compo-
nents, then G(ce) will also have m non-empty cut com-
ponents. We note that for any non-empty cut compo-
nent Ci,j in G, there is at least one hyperedge e ∈ Ci,j .
By definition, we know that e∩Vi 6= ∅ and e∩Vj 6= ∅.
So after CE, in the clique corresponding to this hyper-
edge e, there must be at least one edge such that one
of its endpoint is from Vi and the other one is from
Vj , which makes Ci,j still non-empty in G(ce). On the
other hand, for arbitrary i, j, the cut component Ci,j
is empty in G if and only if there is no hyperedge be-
tween Vi, Vj . Hence Ci,j will still be empty in G(ce).
Together we show that if there are m non-empty cut
components in G, there are exactly m non-empty cut
components in G(ce).

It is easy to see G(ce) keep β-balanced as f does not
change in CE.

Now, we prove that |∂C|= |∂C(ce)|. For any e ∈
C, let’s denote e = {v1, ..., vd}. By definition we
know that v1, ..., vd ∈ ∂C. Suppose e ∈ C and the
nodes v1, ..., vd can be partitioned into t non-empty
set S1, ..., St according to their labels. Without loss of
generality, let v1 ∈ S1. Then after CE of e we know
that the edges (v1, v), v ∈ Sj , j ∈ {2, 3, ..., t} will be in
the set C(ce). By definition of C(ce), we know that all
v ∈ Sj , j ∈ {2, 3, ..., t} will be in the cut set ∂C(ce).
We can repeat the same argument for all nodes in S1

and know that S1 ⊂ ∂C(ce). In the end, we can show
that ∀v ∈ e, v ∈ ∂C(ce). By definition we also have
∀v ∈ e, v ∈ ∂C. Therefore, we claim that ∂C = ∂C(ce)

which furthermore |∂C|= |∂C(ce)|.

6.2.2 proof for the inequality

Now, we prove that min(|C|, |∂C|) ≤
min(|C(ce), |∂C(ce)|). As above, we have proved
|∂C|= |∂C(ce)|. The case when |∂C(ce)|≤ |C(ce)| is an
easy case. So, we only need to prove for the case when
|∂C(ce)|> |C(ce)|. We claim that if |∂C(ce)|> |C(ce)|,
then |C|≤ |C(ce)|, which is proved as follows.

Let us first introduce an auxiliary graph G′ that can be
useful in the proof. G′ = (∂C(ce), C(ce)) is a subgraph
of G(ce) with the node set ∂C(ce) and the edge set
C(ce).

In the following, we show that when |∂C(ce)|> |C(ce)|,
then it’s impossible for G′ to have any cliques of size
greater or equal to 3. Note that by the definition of
C(ce) and ∂C(ce), the auxiliary graph G′ is connected.
Moreover, as for the condition |∂C(ce)|> |C(ce)|, we
know that the average degree of G′ is strictly less then
2. This is because

2 >
2|C(ce)|
|∂C(ce)|

=

∑
v∈∂C(ce) dv

|∂C(ce)|

where dv is the degree of node v in G′. Hence it’s
impossible to have any cliques of sizes that are greater
than or equal to 3 in G′.

By using the above observation and the definition of
clique expansion, we know that when |∂C(ce)|> |C(ce)|,
all hyperedges in C are actually edges. Equivalently,
we have C = C(ce), which implies |C|= |C(ce)|<
|∂C(ce)|. This concludes the proof.

By the end of this subsection, we would like to
show that it’s possible to have min(|C|, |∂C|) <
min(|C(ce)|, |∂C(ce)|) for some hypergraphs. Let C
contain only one hyperedge e such that |e|= 4. Then
it’s obvious to see that 1 = |C|< |C(ce)|= 6 and
|∂C(ce)|= |∂C|= 4. Hence in this special example we
have min(|C|, |∂C|) < min(|C(ce)|, |∂C(ce)|).

6.3 Proof of Theorem 4.2

Before we start our proof, we need to prepare prelim-
inary results. The first one is Theorem 3 in [10] that
characterizes the theoretical performance of Algorithm
2 in [10].

Theorem 6.3 (Theorem 3 in [10]). Given a set of
M points which can be partition into k clusters. The
Algorithm 2 in [10] will return all clusters of size at
least 64k logM

(1−2p)4 with probability at least 1 − 2
M . The

corresponding query complexity is O(Mk2 logM
(1−2p)4).

Basically we use this theorem to analyze Phase 1 of Al-
gorithm 4. The next one is a lemma that characterizes
a lower bound of the KL divergence of two Bernoulli
distributions.

I (Eli) Chien, Huozhi Zhou, Pan Li

Lemma 6.4 ([33]). Let us denote D(x||y) be the KL
divergence of two Bernoulli distributions with param-
eters x, y ∈ [0, 1] respectively. We have

D(x||y) ≥ (y − x)2

2 min{x, y}
(7)

Remark 6.2. Note that the bound is tighter than di-
rectly using Pinsker’s inequality [34] when y ≤ 1/8.

Now we start to prove Theorem 4.2. First we will show
that Phase 1 of Algorithm 4 will return the correct par-
tition S1, ..., Sk with high probability. From Theorem
6.3 we know that we have to ensure our sampled M
points contain all underlying true clusters with size at

least O(Mk2 logM
(1−2p)4). Since we sample these M points

uniformly at random, thus (S1, ..., Sk) is the multi-
variate hypergeometric random vector with parame-

ters (n, np1, ..., npk,M) and ∀i, pi = |{v∈V |f(v)=i}|
n .

It’s well known ([35],[36]) that when M ≤ n/2, the
tail bound for the multivariate hypergeometric distri-
bution is

P(Si ≤M(pi −
pi
2

)) ≤ exp(−MD(
pi
2
||pi))

≤ exp(
−Mpi

8
)

⇒ P(Si ≤
Mβ

2
) ≤ exp(

−Mβ

8
),

(8)

where we use Lemma 6.4 for the second inequality. For
the case M ≥ n/2, we could apply trick of symmetry
and have ([35],[36],[37])

P(Si ≤M(pi −
pi
2

))

≤ exp(−(n−M)D(pi +
piM

2(n−M)
||pi))

≤ exp(−(n−M)
(piM

2(n−M))2

pi(2 + M
n−M)

)

= exp(− piM
2

4(2n−M)
)

≤ exp(−Mpi
12

),

where the second inequality is via Lemma 6.4 and the
last inequality uses the assumption M ≥ n/2. Hence,
for all M ≤ n, we have

P(Si ≤
Mβ

2
) ≤ exp(

−Mβ

12
) (9)

Since we need (9) holds for all i, we apply the union
bound over all k events which gives

P(

k⋂
i=1

{Si ≥
Mβ

2
}) ≥ 1− k exp(

−Mβ

12
) (10)

Now, we need M is large enough such that Mβ
2 meets

the requirement of Theorem 6.3. Moreover, we also
need M to be large enough such that this event holds
with probability at least 1 − δ

4 . For the first require-
ment, we have

Mβ

2
≥ 64k logM

(2p− 1)4
⇒ M

logM
≥ 128k

β(2p− 1)4

This is exactly our first requirement on M in (4). For
the high probability requirement, we have

k exp(
−Mβ

12
) ≤ δ

4
⇒M ≥ 12

β
log

4k

δ

This is exactly the second requirement on M in (4).
Moreover, we also need Algorithm 2 of [10] successfully
recover all the true clusters with probability at least
1− δ

4 , and thus we have

2

M
≤ δ

4
⇒M ≥ 8

δ

This is exactly the third requirement on M in (4).
Now assume that Algorithm 2 of [10] indeed returns
all true clusters. We will analyze Phase 2. Start from
assuming all Si’s are correctly clustered. Then for
any new node v, from the algorithm we designed we
will query for comparing v with all the M nodes that
have been clustered. Before we continue, let us intro-
duce some error events which is useful for the follow-
ing analysis. Let Er(i) be the event that a node with
label i is incorrectly clustered by the normalized ma-

jority voting. Let Er
(i)
j = {Mj

|Sj | >
Mi

|Si|}, for j 6= i,

where Mj is the number of nodes in Sj that respond
positively to the pairwise comparisons with node v.
Note that we have Mj ∼ Bin(p, |Sj |) for j 6= i and
Mi ∼ Bin(1 − p, |Si|). All these Ml’s are mutually
independent.
We start from analyzing the normalized majority vot-
ing for the unlabeled node v. Then we have

Op(v, u) ∼ Ber(1− p) ∀u ∈ Si;
Op(v, u) ∼ Ber(p) ∀u /∈ Si

where we recall that Op(x, y) is the query answer for
the point pair (x, y) from the noisy oracle Op. So the
error probability P(Er(i)) that we misclassify the point
v can be upper bounded by

P(Er(i)) ≤ (k − 1) max
j 6=i

P(Erj)

where we used the union bound. Moreover, we can

upper bound P(Er
(i)
j) as following (recall that p <

1/2)

P(Er
(i)
j) = P(

Mj

|Sj |
>
Mi

|Si|
)

≤ P(
Mj

|Sj |
≥ 1

2
) + P(

1

2
>
Mj

|Sj |
)

HS2: Active learning over hypergraphs

Let’s denote λ = 1
2 − p > 0. So we have 1

2 = λ + p =
p̄−λ where p̄ = 1− p. Hence by Chernoff’s bound the
first term can be upper bounded by

P(
Mj

|Sj |
≥ 1

2
) ≤ exp(−|Sj |·D(p+ λ||p))

and similarly the second term can be upper bounded
by

P(
1

2
>
Mi

|Si|
) ≤ exp(−|Si|·D(p̄− λ||p̄))

Hence we have

P(Er(i)) ≤ (k − 1)[max
j 6=i

exp(−|Sj |·D(p+ λ||p))

+ exp(−|Si|·D(p̄− λ||p̄))]

Recall that from (10), we have mini∈[k]|Si|≥ Mβ
2 with

probability at least 1 − δ
4 . Moreover, we observe that

D(0.5||p) = min{D(p + λ||p), D(p̄ − λ||p̄)} by the
symmetry of KL-divergence for Bernoulli distribution.
Thus, the error probability for any new point can be
upper bounded as

P(Er) ≤ max
i

P(Er(i)) ≤ 2(k−1) exp(
−MβD(0.5||p)

2
)

Note that from Theorem 3.5 we will need to query
Q∗(δ4) nodes in the aggressive search Phase if we want

the exact result holds for probability at least 1 − δ
4

in noiseless case. Hence by using the union bound,
the error probability for exact recovery of these Q∗(δ4)
points is upper bounded by

2Q∗(δ
4

)(k − 1) exp(
−MβD(0.5||p)

2
)

Requiring this to be smaller than δ
4 , then we have

M ≥ 2

βD(0.5||p)
log(

8(k − 1)Q∗(δ4)

δ
)

This is exactly the forth requirement on M in (4).
Further, via the union bound, the overall algorithm
will succeed with probability at least 1− δ. Note that
if we have exact recovery on these Q∗(δ4) nodes, then
we can indeed find the cut set C by Theorem 3.5, which
concludes the proof.

