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1/2-approximation Algorithm for
Balanced Matching

We give a simple 1/2-approximation algorithm for the
balanced matching problem. This algorithm only works
for the maximum matching case (as opposed to any
intersection of two matroids), and achieves a worse
approximation ratio in the worst case. However, even
this limited version is enough to demonstrate the main
empirical claim, namely that there are nearly optimal
balanced solutions for the problems we consider.

For a color c ∈ {red,blue} and for a subset E′ of
edges, let #c(E

′) denote the number of edges in E′ col-
ored c. We call E′ to be fair if #red(E

′) = #blue(E
′).

To simplify the exposition, we begin with a simple
observation. A path P = x0, . . . , xk is called a ze-
bra path if the colors on the edges alternate, i.e.,
χ(xi, xi+1) 6= χ(xi+1, xi+2) for each 0 ≤ i < k − 1;
by definition, |#red(P )−#blue(P )| ≤ 1. Similarly, a
cycle C = x0, . . . , xk, x0 is a zebra cycle if the colors
on its edges alternate; by definition, C is fair and k is
even.

Lemma 1.1. For a zebra path with k edges, k > 2,
we can find a fair matching of size bk/2c. For a zebra
cycle with k edges, k > 2, we can find a fair matching
of size k/2− 2.

Proof. For a zebra path x0, . . . , xk, without loss of
generality, assume χ(x0, x1) = red. We construct a
fair matching by picking all the red edges from the
subpath x0, . . . , xbk/2c and all the blue edges from the
remaining subpath xdk/2e, . . . , xk. It is easy to see this
is indeed a matching (i.e., no picked edges are adjacent
to each other), is fair, and is of size bk/2c. For a
zebra cycle x0, . . . , xk, x0, we first find a fair matching
of size bk/2c = k/2 in the path x0, . . . , xk and then
discard the edges (xk, x0) and (x0, x1) from this. The
resulting subset of edges is a fair matching and is of
size k/2− 2.

Two easy consequence of this are the following.

Corollary 1.2. For a set P of zebra paths, we can
find a fair matching of size min(#red(P),#blue(P)).

Proof. Without loss of generality, let #red(P) ≤
#blue(P). We construct a new set Q of zebra paths
using P. Since each P ∈ P is a zebra path, there is a
subset P ′ ⊆ P, |P ′| = #blue(P)−#red(P), such that
each zebra path in P ′ has one more blue edge than a
red edge. (It is also easy to see that the first and the
last edge in every such path is blue.) We construct
Q′ from P ′ by discarding the blue edge at an arbitrary
end for every P ∈ P ′. Now we let Q = Q′ ∪ (P \ P ′).
By construction, Q is fair and the number of edges in
Q is 2#red(P).

Our next goal is to construct a single virtual zebra
path out of all the zebra paths in Q. For a color c, let
Qc,c ⊆ Q be the set of zebra paths in Q where both
the first and last edges have color c. Once again by con-
struction, it is easy to see that |Qred,red| = |Qblue,blue|
and hence we can define an arbitrary bijection between
these subsets. Let Qred,blue = Q\Qred,red\Qblue,blue.
We now how to create a virtual zebra path P̃ by tak-
ing paths one from each of the three partitions of Q.
Let x0, . . . , xi ∈ Qred,red, let y0, . . . , yj ∈ Qblue,blue
be given by the above bijection, and let z0, . . . , zk ∈
Qred,blue. By assumption χ(x0, x1) = χ(xi−1, xi) =
red, χ(y0, y1) = χ(yj−1, yj) = blue and without loss
of generality χ(z0, z1) = red, χ(zk−1, zk) = blue. Fur-
thermore, i, j are odd and k is even. Define P̃ =
x0, . . . , xi, y1, . . . , yj , z1, . . . , zk where χ(xi, y1) = blue
and χ(yj , z1) = red. The number of edges in P̃ is
i + j + k and is even. Furthermore, it is easy to see
that a fair matching in P̃ corresponds to a fair match-
ing in the three original zebra paths. We can iterate
this construction for all the paths in Q, based on the
partition, to obtain a fair matching of size #red(Q).
This concludes the proof.

Corollary 1.3. For a set C of zebra cycles, we can
find a fair matching of size #red(C)− 2.
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Proof. For two zebra cycles x0, . . . , xk, x0 and
y0, . . . , y`, y0 in C, we construct a virtual zebra cycle
C̃ in the following manner. Without loss of generality,
let χ(x0, x1) 6= χ(y0, y1). Then, C̃ is given by C̃ =
x0, . . . , xk, y0, . . . , y`, x0, where χ(xk, y0) = χ(xk, x0)
and χ(y`, x0) = χ(y`, y0). Note that the number of
edges in C̃ is k + ` and #red(C̃) = (k + `)/2. Hence,
by Lemma 1.1 we can find a fair matching in C̃ of size
#red(C̃) − 2. It is easy to see that a fair matching
in C̃ corresponds to a fair matching in the original
zebra cycles. We can iterate this construction for all
the zebra cycles in C to conclude the proof.

It is easy to see that both these bounds are tight. Using
these bounds we obtain our main result in this section.

Theorem 1.4. There is an algorithm to find fair
matching of size opt/2 − 2 on edge-colored graphs,
where opt is the size of the optimal solution.

Proof. For a color c, let Mc be a maximum matching
on c-colored edges in G. Let M =Mred ∪Mblue. By
the property of matchings, M is a union of zebra paths
P and zebra cycles C. The algorithm outputs a fair
matching that is the union of Corollary 1.2’s output
when applied to P and Corollary 1.3’s output when
applied to C.

For the analysis, first observe that

opt ≤ 2min(|Mred|, |Mblue|)
= 2min(#red(P),#blue(P)) + 2#red(C),

where we used #red(C) = #blue(C).

Next, by Corollary 1.2 and Corollary 1.3, the size of
the fair matching output by the algorithm is at least

min(#red(P),#blue(P))+(#red(C)−2) ≥ opt/2−2.


