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Abstract

The need for fairness in machine learning algo-
rithms is increasingly critical. A recent focus has
been on developing fair versions of classical al-
gorithms, such as those for bandit learning, re-
gression, and clustering. We extend this line of
work to include algorithms for optimization sub-
ject to one or multiple matroid constraints. We
map out this problem space, showing optimal so-
lutions, approximation algorithms, or hardness
results depending on the specific problem fla-
vor. Our algorithms are efficient and empirical
experiments demonstrate that fairness is achiev-
able without a large compromise to the overall
objective.

1 Introduction

The desire to use machine learning to assist in human deci-
sion making has spawned a large area of research in under-
standing the impact of such systems not only on the society
as a whole, but also the specific impact on different sub-
populations [Pleiss et al., 2017}, | Zafar et al., 2017, |Corbett-
Davies et al., |2017]. Fairness is a critical requirement of
such systems. Recent research has shown that while there
are several natural ways to quantify the fairness of a par-
ticular system, no one of them is universal, and except for
trivial cases, satisfying one means violating another [[Pleiss
et al., 2017} |Corbett-Davies et al., [2017, |[Kleinberg et al.,
2017]).

In parallel to understanding the interplay between different
definitions of fairness, researchers have looked to develop
algorithms for finding fair solutions to specific classes of
problems. For example, there is recent work on fair re-
gression [Joseph et all 2016], fair ranking [Celis et al.,
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2018c], fair clustering [Chierichetti et al.,|2017, ROosner and
Schmidt, |2018]], fair bandit algorithms [Liu et al., 2017],
and many others.

In this work we tackle another large class of problems that
form a useful primitive in machine learning and optimiza-
tion, that of optimizing a set function subject to a set of
matroid constraints. A matroid is a combinatorial object
that generalizes linear independence between vectors and is
general enough to encode cardinality constraints (e.g., se-
lecting at most & elements), connectivity constraints (e.g.,
selecting a spanning tree of a graph), or matching con-
straints (ensuring a subgraph has a perfect matching).

What makes matroid constraints popular is that they are
general enough to encode many different types of problems
yet relatively easy to optimize over. For instance, a simple
greedy algorithm optimizes a modular function subject to a
single matroid constraint, and the celebrated algorithm by
Edmonds| [1970] shows how to optimize a function sub-
ject to two matroid constraints simultaneously. While the
problem becomes NP-hard when there are three ore more
matroids involved, there is an algorithm that finds a 1/(k—1)-
approximation to finding the largest set that satisfies k ma-
troid constraints (see Section 2] for more details).

Thanks to the expressive power of matroids, by design-
ing new algorithms for matroids and intersection of ma-
troids optimization under balance constraints, we automat-
ically obtain many new algorithms for practical problems
under matching, cardinality, or connectivity constraints. A
nice example that has many practical applications is fair
matching: matching students to schools, ad slots to adver-
tisers, search results to ranked positions, etc. In all of these
settings we have natural matching constraints (school ca-
pacity, advertiser budget, single result per position), edge
weights representing the quality of the match (student’s ap-
titude for a specific school, relevance of ad to user, likeli-
hood of result click), and properties of edges that require
system-wide balance (making sure not too many students
need bussing, ads from all political parties are represented,
diversity in results).

Our contributions. Since optimization with matroid con-
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straints is an important primitive, we ask if the optimization
can be done in a fair manner. As there is no universal metric
of fairness, we adopt the definition used in previous work
by|Celis et al.|[2018alblc|], Chierichetti et al.|[2017]], ROsner:
and Schmidt|[2018]] and ask for a balanced solution.

As an example, consider an e-commerce site that presents
item reviews to customers. Since any popular item will
have hundreds of reviews we may want to ensure that the
reviews shown to a particular user are balanced. This bal-
ance may be epitomized in that the reviews include both
recent purchasers and long-time users, or that they include
both positive and negative opinions, or that they include
reviews from different countries around the world. Gener-
ally, balance means that in each relevant dimension there
are limits on how frequently each feature value is present.
We make the setting precise in Section 2}

If we only insist on upper bounds, i.e., ensuring no single
feature value dominates, then we show how to encode the
balance constraint as an additional matroid constraint, and
use known algorithms to achieve an approximately optimal
solution (Lemma [2).

If, on the other hand, we insist that all values are repre-
sented (i.e., both lower and upper bounds on the appear-
ance of each feature value), the situation is harder. When
the number of distinct values is a constant, ¢, we show how
to find optimal balanced sets subject to a single matroid
constraint (Lemma [3). In the special case when ¢ = 2,
we further show a 2/3-approximate solution when there are
two matroid constraints that must be satisfied simultane-
ously (Corollary [9). Finally, we give some evidence of the
hardness of selecting a balanced set subject to two matroid
constraints by drawing on connections to the Exact Match-
ing problem, which is not known to be in P, and to the
1-in-3SAT problem, which is known to be hard under the
Exponential Time Hypothesis (ETH). More precisely, we
show in Theorem I0] that for unboundedly many colors the
problem is NP-hard and, under the ETH, it requires time
exponential in the number of colors.

Finally we give some empirical evidence that simply ignor-
ing balance when looking for an optimal solution can lead
to highly unbalanced results. While this is not surprising,
we also show that taking balance into account does not dra-
matically degrade the value of the solution, even when only
approximately optimal solutions can be found (Section [5).

Related work. In recent years there has been a lot of atten-
tion to fairness in machine learning, along two directions.

The first is trying to understand what it means for an al-
gorithm to be fair. Examples of this line of work are the
results on statistical parity [Luong et al.,|201 1} [Kamishima
et al., 2011], disparate impact [Feldman et al., |2015], and
individual fairness [Dwork et al.,[2012]]. More recent works
by [Corbett-Davies et al.| [2017] and Kleinberg et al.|[2017]

show that some of the desired properties of fairness may be
incompatible with each other; see the recent work of [Selbst!
et al.| [2019] for a different perspective.

A second line of work focuses on algorithm design to
achieve fair outcomes. Here the bulk of the work has been
on supervised [Luong et al., 2011} [Hardt et al.l [2016] and
online learning [Joseph et al.,[2016]. A similar direction to
the one studied in our work is that of learning intermediate
representations that are fair by design, see for example the
work by [Zemel et al.|[2013]] and [Kamishima et al.| [2011]].
However, unlike their work, here we focus on designing
algorithms with provable guarantees for a wide range of
problems under balance constraints.

In this paper we adopt the notion of fairness known as dis-
parate impact introduced by [Feldman et al.| [2015]]. This
notion is close to the notion of p%-rule as a measure for
fairness. That is a generalization of the 80%-rule advocated
by US Equal Employment Opportunity Commission [Bid-
dlel 2006]. We note here that the vast majority of previ-
ous definitions, such as statistical parity and equality of
opportunity, are in the traditional learning setting. There
one want to prove the classifier is going to be “fair” over
items drawn from an example distribution, hence the guar-
antees are probabilistic over that distribution. However,
there are many natural settings, especially in combinato-
rial optimization, where there is no distribution per se and
we want to ensure a fair allocation on every instance. For
example, the questions of candidate selection in fair rank-
ings [Celis et al., 2018c], fair clustering [Chierichetti et al.,
2017, IR6sner and Schmidt, [2018]], fair voting [Celis et al.}
2018al, are of this type. All of the works above employ the
same notion of balance that we explore in this paper.

The works closer to ours are the ones on fair ranking and
fair voting. |Celis et al.| [2018c|| study the problem of fair
ranking and to do so they focus their attention to a spe-
cial case of the fair matching problem. In particular the
problem they solve in their paper is a special case of our
setting, for two reasons: (i) they address weighted bipar-
tite matching, which is a special case of the our problem
of optimizing a function subject to multiple matroid con-
straints and (ii) they make additional assumptions about
structure of the weights (related to their goal of fairness
in ranking), making their result even more specialized. In
fact, they do not have an algorithm for general weights,
even in the limited setting of unweighted bipartite match-
ings, whereas we give a constant-factor approximation for
the same proble Celis et al.|[2018a] study fair multi-
winner voting scheme and they approach the problem as a
submodular optimization problem under a single matroid
constraint. The results in their paper do not apply to in-
tersection of matroids and so their result cannot be used to
obtain algorithms in our setting.

"Nevertheless it is important to note that in their setting they
can prove the existence of a polynomial time algorithm.
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Finally fair optimization is loosely related to diversity op-
timization, although the connection is largely superficial.
There are several algorithms for diversity maximization un-
der matroids constraints but they do not imply results in
our setting, e.g., [Lin and Bilmes| [2011] consider adding
knapsack or covering constraints to submodular functions
to use them for document summarization. These types of
constraints are incomparable to balance constraints, as they
cannot capture the notion of fairness that we address. Sim-
ilarly /Ahmed et al.| [2017] add diversity to weighted bipar-
tite matchings, using a quadratic program and a greedy ap-
proach. Unfortunately also in this case, the diversity notion
cannot capture the balance constraints we wish to enforce.

2 Preliminaries

In this work we consider the question of maximizing a set
function subject to matroid and balance constraints.

A matroid is a generalization of the notion of linear inde-
pendence in vector spaces with many applications in ge-
ometry, topology, economics, combinatorial optimization,
network theory, and coding theory. There are many equiv-
alent definitions of matroids; we choose the following one.

A finite matroid M is a pair (E,Z), where F is a finite set
(called the ground set) and 7 is a family of subsets of F,
called the independent sets, with the following properties:

e ) eI;

e (hereditary property) if A € Z and A’ C A then A’ €
Z; and

e (exchange property) if A, B € 7 and | B| < |A|, then
Jz € A\ Bsuchthat BU {z} € 7.

The intersection of two or more matroids is the family of
sets that are simultaneously independent in all the matroids.

Computationally speaking, the problem of finding the max-
imum independent set in one matroid or in the intersec-
tion of two matroids can be solved in polynomial time. To
solve the former, simply greedily add elements that sat-
isfy the constraint; solving the latter problem is far from
obvious and follows from a beautiful result by [Edmonds
[1970]. The problem is NP-complete for three or more ma-
troids; however, there is a k—ll +-approximation algorithm
for finding the (weighted) maximum independent set in the
intersection of k matroids [Lee et al., 2010].

In this work we add fairness constraints to the general prob-
lem of matroid optimization. Following previous work
by |Celis et al.| [2018alblic|], |(Chierichetti et al.| [2017]], and
Rosner and Schmidt| [2018]], we encode fairness by posing
additional balance constraints on the solution. We assume
that every element e € E has a color. We denote by C' the
set of colors, and by ¢ : E — (' the assignment of colors
to the elements. For every subset S C F of elements, we
define S, as the subset of elements with color ¢ € C, i.e.,

Se={e€S|cle)=c}.

We first define a notion that captures the amount of color
imbalance in an independent set.

Definition 1 ((«, §)-balance). For 0 < o < 8 < 1, an
independent set S is («, 3)-balanced if for every color ¢ €
C, it holds that

_ s

<B.
—\S|—B

(67

Thus a set is («, §)-balanced if every color occurs in at least
an « fraction of the elements and in at most a 3 fraction.
Our goal is to find a maximum size independent set sub-
ject to both matroid and balance constraints. Formally, a
~y-approximation algorithm will output an («, 5)-balanced
independent set of size at least v - OPT, where OPT is the
value of the optimum solution. Two cases of («, 3)-balance
are particularly interesting: « = 8 = 1/|C], i.e., all col-
ors occur equally often in .S; in this case, we say that S is
perfectly balanced. Also, the case where (ii) o« = 0, i.e.,
where no color occurs more than §|S| times: here, we say
that S is S-limited.

3  Warmup: Single matroid

In this section we consider the balanced matroid optimiza-
tion problem subject to a single matroid constraint with an
arbitrary number of colors, |C/|. Recall that without the ad-
ditional balance consideration, the simple greedy algorithm
is guaranteed to yield the optimum solution. Here we first
show that the S-limiting constraint can be encoded as an
additional matroid constraint, and then use this observation
to give a polynomial time algorithm to find the optimum
(«, B)-balanced solution.

Recall the notion of a partition matroid. Let S = {S.}.cc
be a collection of disjoint sets that partition E and let d, be
integers such that 0 < d. < |S,| for all c¢. Then the family
T of independent sets for a partition matroid is such that if
I € TthenVe, |INS,| < d.. To encode the S-limiting con-
straints, we create a partition matroid and set d. = | 3].S.|]
for every color c. The following lemma follows immedi-
ately from the results of [Edmonds| [1970]] and [Lee et al.
[2010].

Lemma 2. For k > 2, there exists a polynomial time al-
gorithm to find a '/k+e-approximation to maximum size [3-
limited independent set subject to k matroid constraints.
For k < 2 there exists an optimal polynomial time algo-
rithm for this problem.

We now extend this observation to arbitrary («, f)-
balanced sets with a single matroid constraint.

Lemma 3. For any o < [ and constant number of col-
ors, there is a polynomial time algorithm to find an («, 3)-
balanced maximum independent set subject to a single ma-
troid constraint.



Matroids, Matchings, and Fairness

Proof. Since |C|, the number of colors, is constant, we can
enumerate all of the possible partition matroids on |C/| col-
ors, and use the algorithm in Lemma [2| to find the opti-
mal solution for each of them. We then pick the optimal
solution among all of those satisfying the («, 3)-balance
constraints. Observe that the optimal solution to the initial
problem is tight for one of the partition matroids that would
have been considered. Since there are at most O(n!€!) pos-
sible partition matroids, the result follows. O

Since finding a maximum weighted independent set subject
to the intersection of two matroids is still in P we get the
following corollary.

Corollary 4. For any o < [3 and constant number of col-
ors, there is a polynomial time algorithm to find an («, §)-
balanced maximum weighted independent set subject to a
single matroid constraint.

Unfortunately, this simple approach cannot be extended to
find balanced maximum independent sets subject to inter-
section of two or more matroids. In this case the direct
algorithm only yields an approximately optimal solution,
and thus we have no guarantees that the result would re-
main balanced. In the next section we show a much more
nuanced approach for finding fair maximum independent
sets subject to intersection of matroids.

4 Intersection of two matroids

In this section we show a 2/3-approximation algorithm for
finding («, 8)-balanced maximum independent sets, when
|C| = 2. This directly implies approximation algorithms
for the balanced bipartite matching, b-matching, and many
other problems. We will then discuss the hardness of find-
ing the exact solution in Section 4.1}

For simplicity of exposition, we let the color set be C' =
{RED, BLUE}. Before describing our positive result we re-
call some basic notions from |[Edmonds| [1970]. We start
with the concept of an exchange graph.

Definition 5 (Exchange graph). Ler My = (E,Z;) and
My = (E,Zs) be two matroids on the same ground set and
let T € Iy N Iy. Then the exchange graph Dy, ar, (T') is
the directed bipartite graph with bipartition T and E\ T
suchthat (y,x) isan arcif T —y+x € Iy and (z,y) is an
arcif T —y+x € Io.

Let X; ={x ¢ T | T+ x € I,} be the set of sources
and Xo = {x ¢ T | T + = € Iy} be the set of sinks. Ed-
monds proved that if there is no augmenting patiﬂ between
elements in X7 and X5, then 7' is a set of maximum size in

% An augmenting path between a source s and sink ¢ is a path
P in the exchange graph starting and finishing in F \ T. Note
that that T'A (P \ {s, t}) is independent in both matroids M and
M3 here, A denotes the symmetric difference.

T) NZ,. Otherwise, it is possible to increase the size of T’
by finding a simple augmenting path from X; to Xs.

The main idea in our algorithm is to extend this approach
for intersection of two matroids to incorporate the balance
condition. (For simplicity of exposition we first present
the algorithm that finds a perfectly balanced set, and then
show how to adapt it to work for any («, 3)-balance re-
quirement.) We begin by finding a maximum independent
set T" using Edmonds algorithm. If 7" is balanced, then we
are done. Otherwise, we rebalance it in such a way that
its size does not decrease too much. We now explain the
details of the rebalancing step.

Without of loss generality, let us assume that there are more
BLUE elements than RED elements in 7. We compute a
maximum independent set, 7", in the intersection of the
two matroids on the ground set reduced to its RED ele-
ments: M = (Frep,Z1) and ME* = (Eggp, Zo) where
FErep is the set of RED elements in F.

We now use T” to iteratively change 7. Every iteration
will make 7" more balanced, at the cost of potentially re-
ducing its size. We will then show that the algorithm ter-
minates (i.e., T becomes balanced) while the set 1" is still
large compared to the optimal solution.

First, define two auxiliary matroids M| = (7" U T,7;)
and M} = (T' UT,Z,) with the same independent sets but
different ground set. Then construct the exchange graph
Dy (T) and define the augmented source set as X =
{t ¢T | T+x € horT+x—y € Iy for some
BLUE y € T} and the augmented sink set as X;© = {z ¢
T | T+ax € ThorT + 2 —y € Iy for some BLUE
y € T}. Observe that X; is composed of two types of
nodes, those classified as sources by the standard Edmonds
algorithm (i.e., {x ¢ T | T + = € Z;}), and those that
exchange a BLUE node in T for a RED node not in T": {z ¢
T,y € T,c(y) = BLUE | T+ x —y € Z;}. We call
the second set BLUE sources and call the node y € T such
that T+ z — y € I the balancer of x. Similarly, for
sinks, we can partition them into those classified as sinks by
the standard Edmonds algorithm, and those that exchange
a BLUE node in 7" for a RED node not in 7". Again, we call
the corresponding BLUE node a balancer.

We then find the shortest augmenting path between a source
elementin X" and a sink element in X. Let P be such an
augmenting path. We replace T" with T /A P. If the source
or the sink node had a BLUE balancer, we remove them
from T'. Observe that in this way 7" remains an independent
set for both M; and M,. Moreover, with every augmenta-
tion the number of RED elements increases by one, and the
number of BLUE elements decreases by at most two.

We iterate this process until one of the following three con-
ditions is met: (i) the set T' is perfectly balanced, (ii) the
number of BLUE elements in 7" exceeds the number of RED
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elements in 7' by at most two: |Tp ue| < |Tren| + 2, or (iii)
there are no more augmenting paths. In the first case we
return 7', in the second and third case we remove arbitrary
BLUE elements from 7’ until it is balanced. (Note by the
hereditary property, this maintains the feasibility of 7'.)

Let Edmonds(E, Z1,Z,) denote the output of Edmonds al-
gorithm to compute the maximum independent set in the
intersection Z; N7y using the ground set E. We present the
formal pseudocode in Algorithm|[I]

Algorithm 1 Approximation algorithm for intersection of
two matroids in 2-colors balanced setting
Input: Two matroids M = (E,Z;) and My = (E, I»)
Output: An approximate balanced maximum independent
set for Z; N Zo

1: T + Edmonds(FE,Z;,T,)

2: (Assume w.l.o.g. that |Tiep| < |Tiuel; the other case

is symmetric)

3: T" + Edmonds(Frep, Z, Z2)

4: (Start the rebalancing phase)

5: while T still changes do
6: if T'is («, 5)-balanced then
7.
8
9

Return T’
if |Tsrve| — |Trep| < 2 then
: break
10: Let M{ = (T"UT,Z;), M) = (T' UT, I,).
11: Let X ={z¢T|T+rxec}u{zgTyc
T,c(y) =BLUE | T+z—y e}
122 LetX) ={a¢T|T+azechU{xgT,yc
T,c(y) =BLUE | T+ a2 —y €Iy}
13: Construct the exchange graph Dy a7, (7') and find
the shortest augmenting path P between X~ and X"
14: if P # () then
15: T+«TAP
16: Remove from 7' the balancers associated the
sources and sinks in P.
17: while T is not («, 3)-balanced do
18: Remove one BLUE element from 7'
19: Return T’

We next prove guarantees on the approximation achieved
by this algorithm. Our proof follows the same outline
as|Nomikos et al.|[2007]. In a sense, we generalize that ap-
proach to handle the case of fair maximum balanced inde-
pendent sets in intersection of matroids. We start by prov-
ing some some useful statements.

Lemma 6. Steps 15 and 16 of Algorithm [I| increase the
number of RED elements in T' by exactly one and decrease
the number of BLUE elements in T at most by two. Fur-
thermore after Step 16, T € T; N ZT,.

Proof. First note that the shortest augmenting path P con-
tains only RED elements and the number of elements in
[(T"\T)NP| =|T'NP|+1s0oT A P contains one more

RED element than 7. Furthermore in Step 16 we delete at
most two BLUE elements: the balancers associated with the
source and the sink.

Finally, note that for every element in € P \ T added to
T we remove from 7" some element forming a cycle with it
in Z; and Z, therefore the new set is feasible. O

Lemma 7. Ifthere is no augmenting path between X 1+ and
X; , then T has the same number of RED elements as the
optimal solution.

Proof. Consider two auxiliary matroids with the same
ground set but with different independent sets, M| =
(T U Txep, Z1) and MY = (T" U Tyep, Z2), where Tigp is
the set of RED elements in 7". First, note that the maximum
independent set in the intersection of the two matroids is of
size |T"| by definition of 7" as the maximum set among all
RED elements.

Second, consider the exchange graph Dy py (T), the
source set (i.e., X1 = {2 & Trep | Trepo + = € I1}),
and the sink set (i.e., Xo = {& € Trep | Treo + 2 € Io})
in Edmonds algorithm. Note that in Dy ary (T') there is
no augmenting path between X; and X, otherwise there
will be an augmenting path between X~ and X" So Tyep

is a maximum independent set, thus |Tygp| = |7”7|. So the
final solution contains the maximum possible number of
RED elements in an independent set. O

Using these, we show the approximation guarantee of the
algorithm. Let ALG be the size of perfectly balanced solu-
tion returned by the algorithm and let OPT be the size of the
perfectly balanced optimal solution.

Theorem 8. ALG > (2/3) - OPT — 2.

Proof. Let r and b denote the number of RED and BLUE
elements in the solution 7" after step 2 (before the rebalanc-
ing phase); we have assumed without loss of generality that
b > r. Since we first looked for the maximum independent
set without considering the balance constraint, OPT < r+-b.

First, note that during the execution of the algorithm the
number of BLUE elements is always higher or equal to the
number of RED elements.

Lett = Lb%’j be the number of iterations. Since the num-
ber of BLUE elements decreases by at most two every iter-
ation, the number of BLUE elements remaining is at least

b—r b+ 2r
b—2t=b—-2 > .
3 J_ 3

The number of RED elements increases by one every itera-
tion, hence the number of RED elements remaining is
b—r < b+ 2r.
3 - 3
Since the number of BLUE elements decreases monotoni-
cally, the only way the algorithm has terminated prior to

iteration ¢ is if no augmenting path P was found. In this

r+t=r+
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case, by Lemmathe number of RED elements is the same
as in the optimal solution, and the algorithm returns an op-
timal solution after further pruning some BLUE elements,
if necessary, in lines 17 and 18.

Otherwise, consider what happens if rebalancing stops af-
ter t iterations. Then the total size of the balanced solution
would be at least

2
2(r+t)22<b_; !

Since the algorithm will run for ¢’ > ¢ iterations, the solu-
tion at the end will be of size

2
ALG =2(r +t') > 2(r+1t) > §OPT—2. O

We note that Algorithm [I] leads to the same approxima-
tion ratio for any («, 8)-balanced constraint. Notably, we
stop rebalancing when both the colors are present in at least
an « fraction of the elements. We then remove individual
elements to satisfy the upper bound constraints.

Corollary 9. The modified algorithm returns a solution
ALG with ALG > 2/3-OPT — 3 fo the («, B)-balanced max-
imum independent set in T; N Z,.

Proof. Let w be the number of elements of the dominant
color in any optimal solution. Let s = |T”|, b (resp., r)
be the number of BLUE (resp., RED) elements in the max-
imum independent set computed in step 1, OPT the value
of the optimum solution and ALG the value of our solution.
Define z = min{s, w, b+ r — w}; note that OPT < w + z.

First, during the execution of the algorithm the number of
BLUE elements is always higher than the number of RED
elements. Furthermore if we exit the loop because there are
no more augmenting paths we return an optimal solution
because the number of RED elements is optimal.

So for the rest of the proof we can assume that we exit
the loop only because T is («, 3)-balanced or because
|TBLUE| - |TRED| < 2.

During the rebalancing phase if the number of BLUE el-
ements is at least w + 2, then we have that the number
of elements in 7" is larger than w + 2 4+ r + b_w% >
w+7+ 252 + 1. Therefore, if T’ becomes («, 3)-balanced
while the number of BLUE elements is bigger or equal than
w2, then we have ALG > w—l—bﬂTﬂU—F%—H > w+5+1.
Since OPT < w + z, we get OPT < ALG+ 5 and by 2 < w
we get ALG > %z Thus in this case we get OPT < %ALG.

Furthermore, if we have |Tge| — [Tren| < 2 and the num-
ber of BLUE elements is bigger or equal than w + 2, then
we can just remove one or two BLUE elements and return
an («a, #)-balanced solution with 2w elements. So in this
case ALG > OPT.

We now focus on the case where the number of BLUE ele-
ments is smaller than w + 2 when we exit the loop. Note
that until the number of BLUE elements is bigger or equal

2 2
—1]>=(b — 2> —OPT — 2.
)—3(”) =3

than w+2, we have |T| > w+ % +1. So the first time when
the number of BLUE elements is smaller than w2, we can-
not have that |T'| > w + 5 and furthermore |Trgp| > 5 — 1
and |Tsue| < w + 1. So we cannot decrease the size of
T by more than [%1 during the execution of the
main loop. This is true because in every iteration in which
we decrease the size of T we substitute two BLUE elements
with one RED element and hence after [%1 such
iterations we have |7 ye| — |Trep| < 2. Thus at the end of
the loop we have ALG > 2w+ 2z — 1. Since OPT < w+z,
we get ZOPT — 1 < ALG.

Finally note that if the main loop terminates because

|Teve| — |Tken| < 2, one can just remove one or two
BLUE elements and became (c, 3)-balanced so we get
ALG > 20PT — 3. O

To prove a bound on the computational complexity of the
algorithm, we assume to have access to an oracle with run-
ning time O(Q) to check whether a set is independent in a
given matroid (for many families of matroids such a check
can be implemented in constant timeﬂ Then, the running
time of the algorithm is O(Qn?), where n = |E| is the size
of the ground set. To construct an exchange graph we need
to check at most n? possible edges. Furthermore, for any
exchange graph we can find the shortest augmenting path
in time O(n?). Since, we construct at most n exchange
graphs, and that we search for one augmenting path in each
of them, we obtain the bound on the running time.

4.1 Hardness of balanced optimization

In the previous section we gave an approximation algo-
rithm when considering intersection of two matroids. Here,
we discuss the the computational hardness of an instantia-
tion of that scenario, namely the maximum matching prob-
lem, and show that while it is easy for two colors, it is likely
to be hard when the number of colors is allowed to grow.
(Recall that the problem is NP-hard for the intersection of
three or more matroids [Lee et al.,[2010].)

The («, B)-balanced bipartite matching problem with a
generic number |C| of colors can be solved exactly in (ran-
domized) time |V|U€D. To obtain such a result, one could
use a recent algorithm of (Czabarka et al.| [2018]. This
randomized algorithm solves the m1, ..., m,. exact edge-
matching problem: given a graph G(V, E), with E parti-
tioned into c color classes F1, ..., E., and given integers
ma, ..., M, does there exist a matching M C E in G such
that |M N E;| = m, for each i € [¢]? The algorithm runs in

3The worst-case time to check whether a set is independent
depends on the matroid and how it is represented. For exam-
ple, for trees, it involves checking if a set of edges contains a
cycle, which can be done in linear time. For bipartite matching,
it involves checking if each node is incident to at most one edge,
which again takes linear time. For cardinality and partition ma-
troids, the checks are trivial and can be done in constant time.
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time |V|9(¢) and it is therefore a randomized polynomial
time algorithm so long as the number of colors is constant.

It is easy to see that the algorithm of (Czabarka et al.| [2018]
can be used to solve the («, 3)-balanced bipartite matching
problem with c colors in randomized polynomial time: one
can just iterate across all the possible color counts (there
are less than |V'|¢ of them) that satisfy the given (o, 3)-
balance property, and check whether that color count can
be realized by a matching. The total running time is then
|V|©(©), and the algorithm needs to be randomized

We also show that as the number of colors grows, the run-
ning time has to degenerate into an exponential form, under
the Exponential Time Hypothesis (ETH)E]

Theorem 10. Under the ETH, the time needed to solve the
balanced bipartite matching problem is 221D where C'is
the set of colors.

Proof. |Plaisted and Zaks| [1980] give a reduction that,
starting from a 1-in-3SAT instance on n variables and m
clauses, produces a bipartite graph with O(n+m) vertices,
O(n+m) edges with O(n+m) colors: the formula admits
a satisfying assignment iff one can find a perfect match-
ing in the bipartite graph containing at most one edge per
color. The reduction in, e.g., Schaefer|[1978] starting from
a 3SAT instance on n variables and m clauses, produces a
1-in-3SAT instance on O(n + m) variables and O(n + m)
clauses. Therefore, there exists a reduction from 3SAT
on n variables and m clauses to the (0, %)—balanced bi-
partite matching problem on the graph G(V, E) (i.e., does
there exist a (0, %)—balanced bipartite matching of value
> |V|/2)? Each such matching must contain each color at
most once, with |[V| = O(n +m), |[E| = O(n + m).

Under the ETH, 3SAT on n variables and m = O(n)
clauses requires time 2%(") to be solved. It follows that,
under the ETH, the balanced bipartite matching problem
requires time 22(1€1, O

S Experiments

In this section we give a brief view into the performance of
our algorithms on real-world data. Since these are the first
algorithms that allow for optimization subject to a balance

“The randomization requirement follows from the connec-
tion with the m,..., m. exact edge-matching problem: it is
still unknown whether this problem can be solved in determin-
istic polynomial time. A deterministic polynomial time algo-
rithm is not known to exist even in the case where ¢ = 2 and
mi+mz = |V]/2,1i.e., in the perfect matching case: this problem
was introduced by |Papadimitriou and Yannakakis| [[1982] under
the name of “Exact Matching” and a randomized polynomial time
algorithm for it was shown to exist by Mulmuley et al.|[[1987].

5 Le., under the assumption that the minimum running time
required for solving a generic SAT instance on n variables is
22" [Impagliazzo and Paturi, 2001].

constraint, our goal is to look at the difference between the
optimum solution for the unbalanced and balanced cases.
While the optimum balanced solution will necessarily be
no larger than the optimum unbalanced one, we would like
to study the loss in the objective if one seeks a balanced
solution. For simplicity we focus on the perfectly balanced
bipartite matching problem.

Datasets. We consider three datasets: two from the
SNAP repository (snap.stanford.edu)) and one from
MovielLens (grouplens.org/datasets/).

Amazon reviews. This dataset (AMAZON) is obtained
by processing review information about 548,552 different
products on Amazon. From this dataset we generate a bi-
partite graph between users and products where edges rep-
resent reviews. We label negative (one or two star) reviews
as RED and all remaining reviews as BLUE. In this way we
obtain 860,650 RED edges and 5,498,535 BLUE edges for a
total of 6,359,185 edges.

Wikipedia election data. This dataset (WIKI) repre-
sents vote history for administrator elections, coming from
nearly 2,800 elections. We construct a bipartite graph be-
tween voters and nominees where every edge either rep-
resents a positive, negative, or neutral vote. In our experi-
ments we label positive votes RED, and neutral and negative
votes BLUE. In this way we obtain 30,091 RED edges and
83,949 BLUE edges for a total of 114,040 edges.

MovieLens ratings. This dataset (MOVIELENS) represents
20,000,263 movie ratings by 138,493 users on a 5-star scale
with half-star increments. The bipartite graph is between
the users and 26,744 movies where each edge represents
a rating. To convert this graph into two colors, we mark
the edges with ratings below 3.5 as RED and the others
as BLUE. This way we obtain 9,995,410 RED edges and
10,004,853 BLUE edges.

Algorithms. We look for the maximum matching in these
bipartite graphs. Note that a matching can be encoded as
an intersection of two matroids (one making sure that the
degree of nodes on the left bipartition is at most one, the
other making sure that the degree of nodes on the right bi-
partition is at most one).

We compute the optimal matching using the Hungarian
method, which does not take edge color into account. We
then implement a slightly simpler version of the balanced
matroid partition algorithm. This algorithm works by (i)
finding the respective maximum matching on RED and
BLUE edges, (ii) considering the union of these two match-
ings, which will be a set of paths and cycles, and (iii) op-
timally solving the fair matching problem on the paths and
cycles, which turns out to be easy. This simple algorithm
is guaranteed to give a 1/2-approximation (details in the
Supplementary Material). To contrast our work, we also
consider the following greedy baseline: construct a maxi-
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mal matching greedily, alternately adding BLUE and RED
edges. We use the term coverage to denote the ratio of the
perfectly balanced matching computed by our algorithm to
the (possibly unbalanced) maximal matching. For consis-
tency we always take the fraction of the RED edges in the
maximal matching to be a measure of the imbalance.

Main resuls: Imbalance and coverage. For the AMA-
ZON dataset, the maximum matching (size 360,636) is
very unbalanced with only 11% being RED. On the other
hand, when insisting on a balanced matching, we can se-
lect 108,570 edges, yielding over 30.1% coverage. For
the WIKI dataset, in the maximum matching (size 2,389)
over 60% of edges are RED. On the other hand we can
find a balanced matching of size 1,928, representing over
80.7% coverage. For the MOVIELENS dataset, the max-
imum matching (size 19,010) has 44% RED edges. On
the other hand, we can find a balanced matching of size
16,814, representing over 88.4% coverage. We also find
that the greedy baseline achieves ~94% of our solution on
the WIKI and MOVIELENS datasets.

The empirical findings conform to our intuition: with-
out controlling for balance the optimum solution can be
very unbalanced, adding the additional balance constraint
is easy and recovers a non-trivial fraction of the optimum.
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Figure 1: Imbalance of the maximal matching and the cov-
erage of our algorithm for AMAZON and MOVIELENS.

Stability. To see how stable the results are with respect to
a given dataset, we sample subgraphs of different sizes in a

dataset and consider the imbalance in the maximal match-
ing and the coverage of our algorithm. Figure |l| shows
the results for AMAZON and MOVIELENS. It is clear that
while the coverage of our algorithm and the imbalance of
the maximal matching are at odds with each other, the ab-
solute numbers are largely stable as a function of the sub-
graph size. This suggests that these properties are inherent
to the underlying dataset, which makes the balance require-
ments all the more interesting and important.
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Figure 2: Imbalance and coverage as a function of rating
threshold for MOVIELENS.

Role of imbalance. Our final experiment concerns the in-
terplay between imbalance and coverage, when the under-
lying bipartite graph structure is fixed. In other words, the
edges remain the same, but the colors can change. To this
end, we consider the MOVIELENS dataset and modify the
threshold of when an edge is labeled RED; thus the color
of an edge changes from RED to BLUE as the threshold in-
creases. Figure [2| shows the results. The imbalance falls
monotonically as one would expect (since the threshold
value increases, fewer edges will be colored RED) but inter-
estingly, the coverage exhibits a unimodal behavior, maxi-
mized when the threshold value is around 3.5; this is the
value for which the MOVIELENS graph has roughly the
same number of BLUE and RED edges. Investigating this
phenomenon in detail in a more formal setting is an inter-
esting avenue for research.

6 Conclusions

In this paper we build upon the work of fair machine learn-
ing algorithms, and extend the notion of balanced solution
sets to the question of optimization subject to matroid con-
straints. While the problem is computationally harder than
its unbalanced variant, we give efficient approximation al-
gorithms, and empirically demonstrate in some cases per-
fectly balanced solutions can be nearly optimal, as long as
we optimize with balance in mind.
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