
Appendix: Large-Margin Classification in Hyperbolic Space

A Overview of Other Hyperbolic Space Models

Projecting each point of Ln onto the hyperplane x0 = 0 using the rays emanating from (�1, 0, . . . , 0) gives the
Poincaré ball model

B
n = {x = (x1, . . . , xn) 2 R

n : kxk2 < 1}

where the correspondence to the hyperboloid model is given by
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Here, hyperbolic lines are either straight lines that go through the center of the ball or an inner arc of a Euclidean
circle that intersects the boundary of the ball at right angles. The Poincaré model is conformal: angles between
geodesics in the Poncaré disk are true hyperbolic angles.

If we instead project onto the hyperplane x0 = 1 using rays emanating from the origin, we obtain the Klein ball

model. The correspondence with the hyperboloid model is given by
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Geodesics in the Klein model are Euclidean straight lines intersecting the unit disk.

Another useful model of hyperbolic space is the Poincaré half-space model

H
n = {x = (x1, . . . , xn) 2 R

n : x1 > 0}

which is obtained by taking the inversion of Bn with respect to a circle that has a radius twice that of Bn and is
centered at a boundary point of Bn. If we center the inversion circle at (�1, 0, . . . , 0), the resulting correspondence
between B

n and H
n is given by

(x1, . . . , xn) 2 B
n ,

1

1 + 2x1 + kxk2
�
1� kxk2, 2x2, . . . , 2xn

�
2 H

n
.

In this model, hyperbolic lines are straight lines that are perpendicular to the boundary of Hn or Euclidean
half-circles that are centered on the boundary of Hn.

B Proof of Lemma 4.1

B.1 Proof Based on Hyperbolic Reflection

We thank Reviewer 1 of this paper for providing the idea of the following simplified proof. Our original proof
based on Euclidean geometry is included in the subsequent section.

Let M 2 R
(n+1)⇥(n+1) denote the Minkowski product matrix, with M11 = 1, Mii = �1 for i > 1, and Mij = 0

for i 6= j. Let w
0 = wp

�w⇤w , and let H = I + 2w0(w0)TM . We claim that H corresponds to the hyperbolic

reflection through the hyperplane determined by w ⇤ x = 0. To see this, it su�ces to show that H preserves
both the Minkowski quadratic form, and the hyperplane {w ⇤ x = 0}.



Note that

H
T
MH = (I + 2w0(w0)TM)TM(I + 2w0(w0)TM)

= M + 4MT
w

0(w0)TM + 4MT
w

0(w0)TMw
0(w0)TM

= M + 4MT
w

0(w0)TM � 4MT
w

0(w0)TM

= M

where in the penultimate equality we use the fact that (w0)TMw
0 = w

0 ⇤ w
0 = �1. Thus, H preserves the

Minkowski quadratic form.

Suppose that w ⇤ x = w
T
Mx = 0, which implies (w0)TMx = 0. Then,

Hx = (I + 2w0(w0)TM)x = x+ 2w0((w0)TMx) = x

so H preserves the hyperplane.

Now, the hyperbolic distance of x 2 L
n (i.e., x⇤x = 1) to the decision hyperplane defined by w⇤x = 0 is just half

the hyperbolic distance to the reflection of x through the hyperplane. To see this, note that the shortest path
from x to its reflection intersects the hyperplane at the closest point on the hyperplane to x. So, the geometric
margin can be derived as:

1

2
d
H(x, Hx) =

1

2
cosh�1(x ⇤ (Hx))

=
1

2
cosh�1(xT

M(x+ 2w0(w0)TMx))

=
1

2
cosh�1(xT

Mx+ 2xT
Mw

0(w0)TMx)

=
1

2
cosh�1(1 + 2(w0 ⇤ x)2)

= sinh�1(w0 ⇤ x)

= sinh�1(
w ⇤ xp
�w ⇤w

)

where we have used the hyperbolic distance formula d
H(x,y) = cosh�1(x ⇤ y) and trigonometric identity

2 sinh�1(x) = cosh�1(1 + 2x2). This completes the proof.

B.2 Proof Based on Euclidean Geometry

We aim to derive a closed-form expression for the geometric margin of a given data point x 2 L
n to a decision

hyperplane {z 2 L
n : w ⇤ z = 0} parameterized by w 2 R

n+1.

First, we perform an isometric transformation to simplify calculations. Let A be an orthogonal matrix in R
n.

Then, the matrix

B =


1 0
0 A

�

represents an isometric, orthogonal transformation of the Minkowski space, since it preserves the associated inner
product as follows

(Bu) ⇤ (Bv) = u0v0 � u
T

1:nA
T
Av1:n = u0v0 � u

T

1:nv1:n = u ⇤ v

for any u and v. If we set the first column of A to w1:n/kw1:nk where k · k denotes the Euclidean norm, then
due to the preservation of geodesics under isometry, the margin of interest becomes equivalent to the margin of
a transformed point x̃ = Bx to the decision hyperplane parameterized by

w̃ = Bw = (w0, kw1:nk, 0, . . . , 0).

The first two coordinates of x̃ are given in terms of the original coordinates as

x̃0 = x0 and x̃1 =
w

T

1:nx1:n

kw1:nk
.



Given such a transformation exists for any point in L
n, it is su�cient to derive the margin of an arbitrary point

x̃ 2 L
n with respect to a decision hyperplane represented by a weight vector w̃, where

w̃2 = · · · = w̃n = 0.

We use � to denote the ratio between the first two coordinates of w̃ as

� :=
w̃0

w̃1
.

Importantly, the condition that w̃⇤w̃ < 0 in order for w̃ to represent a non-trivial decision function is equivalent
to the condition that |�| < 1, which we will assume in our derivation.

The following lemma characterizes the decision hyperplane defined by such w̃:

Lemma B.1. The decision hyperplane Dw̃ = {x : w̃⇤x = 0,x 2 L
n} corresponding to a weight vector w̃ 2 R

n+1

where w̃2 = · · · = w̃n = 0 is equivalently represented in the Poincaré half-space model as a Euclidean hypersphere

centered at the origin with radius
p
(1� �)/(1 + �), where � = w̃0/w̃1.

Proof. It su�ces to show for any x 2 L
n,

x 2 Dw̃ () kg(x)k2 =
1� �

1 + �
,

where g : Ln 7! H
n maps points in the hyperboloid model to the corresponding points in the half-space model

and k · k denotes the Euclidean norm.

Let h 2 H
n, b 2 B

n, and x 2 L
n be the points in the half-space model, the ball model, and the hyperboloid

model, respectively, that represent the same point in the hyperbolic space. Since

h =
1

1 + 2b1 + kbk2 (1� kbk2, 2b2, . . . , 2bn),

we have

khk2 =
1

(1 + 2b1 + kbk2)2

"
(1� kbk2)2 +

nX

i=2

4b2
i

#
.

Note that

(1� kbk2)2 +
nX

i=2

4b2
i
= (1� kbk2)2 + 4kbk2 � 4b21

= (1 + kbk2)2 � 4b21

= (1 + 2b1 + kbk2)(1� 2b1 + kbk2),

which gives us

khk2 =
1� 2b1 + kbk2

1 + 2b1 + kbk2 .

Next, recall

b =
1

x0 + 1
(x1, . . . , xn),

which leads to

kbk2 =
x
2
1 + · · ·+ x

2
n

(x0 + 1)2
=

x
2
0 � 1

(x0 + 1)2
=

x0 � 1

x0 + 1
,

where we used the fact that x ⇤ x = 1 since x 2 L
n.

We can now express khk2 in terms of x as

khk2 =
1� 2x1

x0+1 + x0�1
x0+1

1 + 2x1
x0+1 + x0�1

x0+1

=
1� x1

x0

1 + x1
x0

.



Because the function f(z) = (1� z)/(1 + z) is bijective,

khk2 =
1� �

1 + �
() x1

x0
= � =

w̃0

w̃1
.

Finally, note that

x1

x0
=

w̃0

w̃1
() w̃0x0 � w̃1x1 = 0

() w̃ ⇤ x = 0

() x 2 Dw̃,

where we used the fact that w̃2 = · · · = w̃n = 0.

It is a known fact that, in a two-dimensional hyperbolic space, the set of points that are equidistant to a hyperbolic
line on the same side of the line forms what is called a hypercycle, which takes the shape of a Euclidean circle in
the Poincaré half-plane model that goes through the same two ideal points as the reference line. Note that the
ideal points refer to the two end points of a hyperbolic line in the half-plane model (a circular arc representing
a geodesic curve) where the hyperbolic line meets the boundary of the half-plane.

In a high-dimensional setting, an analogous property is that the set of points equidistant to a hyperbolic hyper-
plane takes the shape of a Euclidean hypersphere that intersects the boundary of the Poincaré half-space at the
same ideal points as the hyperplane.

Because our decision hyperplane as characterized in Lemma B.1 has its center at the origin of the half-space
model, any hypersphere that intersect the boundary of the half-space at the ideal points of the decision hyperplane
must have a center (c, 0, . . . , 0) for some c 2 R. In other words, any hypersphere representing a hypercycle with
respect to our given decision boundary is centered on the first coordinate axis (which is perpendicular to the
boundary of the half-space).

Let h̃ 2 H
n be the point in the half-space model that corresponds to the transformed data point x̃ we described

earlier. One way to reason about the margin of x̃ with respect to the decision hyperplane defined by w̃ is to find
which hypercycle h belongs to. We can do so using the fact that, in addition to h̃, an ideal point of the decision
hyperplane (0, rw̃, 0, . . . , 0) lies on the hypercycle, where

rw̃ :=

r
1� �

1 + �

from Lemma B.1. More precisely, we can solve for the center of the hypercycle parameterized by c using the
equation

(h̃1 � c)2 +
nX

i=2

h̃
2

i
= c

2 + r
2
w̃,

which states that h̃ and (0, rw̃, 0, . . . , 0) are equidistant from the center of the hypercycle (c, 0, . . . , 0). This gives
us

c =
kh̃k2 � r

2
w̃

2h̃1

.

Now, using the relations

kh̃k2 =
x̃0 � x̃1

x̃0 + x̃1
and h̃1 =

1

x̃0 + x̃1
,

which can be derived based on the mapping between the hyperboloid and the half-space models, we obtain that

c =
(1� r

2
w̃)x̃0 � (1 + r

2
w̃)x̃1

2
.

Next, we find a point (�, 0, . . . , 0) 2 H
n that lies on the first coordinate axis and has the same margin with

respect to the decision hyperplane as the given data point h̃.



Since we know that the radius of this hypercycle is given by
p
c2 + r

2
w̃ (i.e., the distance from (c, 0, . . . , 0) to

(0, rw̃, 0, . . . , 0)), we get

� = c+
q
c2 + r

2
w̃.

Finally, using the hyperbolic distance formula in the half-space model, we obtain that the hyperbolic distance
between (�, 0, . . . , 0) and (rw̃, 0, . . . , 0), which is equal to the unsigned geometric margin of our data point, is
given by the log-ratio

log
�
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= log

0

@ c

rw̃
+

s✓
c

rw̃

◆2

+ 1

1

A = arsinh

✓
c
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◆
.

Using the expression for c we previously obtained, note that

c
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=

1
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1
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r
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=
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2
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,

and similarly,
1

rw̃
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2p
1� �2

=
2w̃1p
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2
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2
0

,

we can alternatively express the margin as

arsinh

 
w̃0x̃0 � w̃1x̃1p

w̃
2
1 � w̃

2
0

!
= arsinh

✓
w̃ ⇤ x̃p
�w̃ ⇤ w̃

◆
,

using the fact that w̃2 = · · · = w̃n = 0.

Finally, since we have shown earlier that our initial transformation ofw and x to w̃ and x̃ preserves the Minkowski
inner product, we obtain the geometric margin in terms of the original variables as

arsinh

✓
w ⇤ xp
�w ⇤w

◆
.

C Proof of Theorem 4.1

Note that if we make the rescaling w ! w, the distance of any point to the decision hyperplane is unchanged.
Indeed, using Lemma 4.1, and properties of inner products,

sinh�1

✓
w ⇤ xp
�w ⇤ w

◆
= sinh�1

✓
(w ⇤ x)

p
�w ⇤w

◆
= sinh�1

✓
(w ⇤ x)p
�w ⇤w

◆
.

Using this freedom, we can assume that y0(w ⇤ x0) = 1, where x
0 is the point with the smallest distance to the

decision hyperplane specified by w, and y
0 2 {�1, 1} is the corresponding decision. This is the analogue of the

“canonical representation” of decision hyperplanes familiar from Euclidean SVMs. When a feasible solution w

is thus scaled, we have
y
(j)(w ⇤ x(j)) � 1

for all j 2 [m].

Therefore, the optimization problem now simply maximizes

sinh�1

✓
1p

�w ⇤w

◆

which is equivalent to minimizing � 1
2w ⇤w subject to the above constraint. We add the factor of 1

2 to simplify
gradient calculations. The additional constraint w ⇤w < 0 ensures that the decision function specified by w is
nontrivial.



D Derivation of Hyperbolic Kernel SVM

D.1 Modified Soft-Margin SVM

When working with hyperbolic kernel SVM, our penalty terms are given by

⇠i = max(0, 1� y
i(xi ⇤w)). (1)

This is conceptually similar to the usual Euclidean penalty, with the Minkowski product in place of the usual
Euclidean product. It is heuristically the same in that points on the boundary receive a penalty of 1, points
between the margin and the boundary but on the correct side receive a penalty < 1, and points on the wrong
side of the boundary receive a penalty > 1. However, unlike in the Euclidean case, the penalty assigned to a
point does not scale linearly with its distance from the margin. Indeed, using Theorem 4.1, we see that penalties
scale as kwk sinh(dH), where d

H denotes hyperbolic distance. This is quite similar to linear scaling for points
near the margin, and as we will see, it allows hyperbolic SVM with arbitrary kernels.

We now seek to minimize the objective

� 1

2
w ⇤w + C

mX

i=1

⇠i (2)

subject to the constraints
y
i(w ⇤ xi) � 1� ⇠i (3)

⇠i � 0 (4)

w ⇤w < 0 (5)

To parse the first two constraints, we construct a dual formulation. We introduce Lagrange multipliers ↵i and
µi, producing the Lagrangian

L(w,↵, µ) = �1

2
w ⇤w + C

mX

i=1

⇠i �
mX

i=1

↵i(w ⇤ xi � 1 + ⇠i)�
mX

i=1

µi⇠i. (6)

We now compute the stationary values. We see that

@L

@w1
= �w1 �

mX

i=1

↵i(x
i)1y

i
. (7)

@L

@wj

= wj +
mX

i=1

↵i(x
i)jy

i (j > 1) (8)

Setting these to zero yields

w = �
mX

i=1

↵iyixi. (9)

Likewise, setting the derivatives with respect to ⇠i to zero yields

↵i = C � µi. (10)

Substituting, and clearing variables using the KKT conditions,we obtain

L(↵) = �1

2

mX

i,j=1

↵i↵jyiyj(x
i ⇤ xj) +

mX

i=1

↵i. (11)

Because µi,↵i � 0 and ↵i = C � µi, we must have 0  ↵i  C. This is the new constraint under which L is
minimized. Plugging in the value from equation (9), the negativity constraint w ⇤w < 0 becomes

X

i

X

j

↵i↵jy
(i)
y
(j)(x(i) ⇤ x(j)) > 0

as stated in the main text.



D.2 Polynomial Kernels

The advantage of (11) is that xi ⇤ xj can be replaced with �(xi) ⇤ �(xj), where � is a feature mapping into the
hyperboloid representation of an arbitrarily high-dimensional hyperbolic embedding. Given this, we asked how
to construct analogues of the popular polynomial kernel in Euclidean kernel SVM. We cannot simply raise the
Minkowski product to a power, as unlike in the Euclidean case, (x ⇤ y)d is not readily expressed as a product of
the monomials of x and y.

Instead, we endeavored to make the resulting boundary curves analogous. Because hyperbolic space has no
natural coordinatization, we rely on the ambient coordinates of the hyperboloid model. A hyperbolic polynomial

curve in the hyperboloid model with ambient coordinates x0, x1, ..., xn is defined as the intersection of the
vanishing set of a homogeneous polynomial P (x0, ..., xn) with the forward sheet of the hyperboloid defined by
x ⇤ x = 1.

This definition makes intuitive sense on many levels. For example, a hyperbolic conic is obtained as the intersec-
tion of an elliptic double cone with vertex at the origin with the hyperboloid. In the same way, a standard conic
can be defined as the intersection of such a double-cone with a plane.

In the ambient space, the vanishing sets of higher-dimensional homogeneous polynomials are also “cone-like” in
the sense that they are closed under scaling of all coordinates: if P (x0, ..., xn) = 0, then P (�x0, ...,�xn) = 0
for any � 2 R. In particular, these vanishing sets are closed under the gnomonic projection that takes the
hyperboloid model to the Klein disk K

m centered at (1, 0, 0...., 0). Therefore, boundary curves produced by
polynomial kernels in the hyperboloid model correspond to polynomial planar curves in the Klein model. For
example, in the two-dimensional Klein model, hyperbolic conics are intersections of standard ellipses, parabolas,
and hyperbolas with the Klein disk.

Thus, the feature mapping corresponding to the polynomial kernel is obtained by first mapping to the Klein
disk, then computing the Euclidean polynomial feature mapping in the Klein coordinates, and finally mapping
back to the hyperboloid model. Let  n : Rn+1 ! R

n denote the projection that takes the ambient coordinates
of the hyperboloid model to the ambient Euclidean coordinates of the Klein model, viewed as the unit disk. One
computes that

 n(x0, x1, ..., xn) =

✓
x1

x0
,
x2

x0
, ...,

xn

x0

◆
. (12)

with inverse given by

 
�1
n

(y1, ..., yn) =
1q

1� kyk2
(1, y1, .y2, ..., yn) (13)

Let �n,d
k

: Kn ! K
(n+d

n ) be the polynomial feature mapping on the n-dimensional Klein disk, mapping a point
(x1, ..., xn) to all monomials involving x1, ..., xn of degree at most d. Then the feature mapping in hyperbolic
space is given by

�h = ( (n+d
n ))

�1 � �n,d
k

�  n (14)

The corresponding kernel is:

Kh(x,y) =
Kk(x,y)� 1p

(1�Kk(x,x))(1�Kk(y,y))
(15)

where Kk(x, y) = (1 +  n(x) ·  n(y))d is the polynomial kernel in Klein coordinates.

D.3 Proof of Theorem 5.1

The backward direction of the theorem requires the following Lemma:

Lemma D.1. Let x and y be two points on the hyperbola H defined by {z : z ⇤ z = 1} in R
n
. If x and y lie on

the same sheet of H, then x ⇤ y � 1. Otherwise, x ⇤ y  �1.

Proof. Suppose first that x and y lie on the same sheet of H. Then x0 and y0 have the same sign. By the
Cauchy-Schwarz inequality, we have



x ⇤ y =
q

(1 + kx1:nk2)(1 + ky1:nk
2)� x1:n · y1:n �

q
(1 + kx1:nk2)(1 + ky1:nk

2)� kx1:nk ky1:nk

� 1 + kx1:nk ky1:nk � kx1:nk ky1:nk = 1.

For the last inequality note that, by the inequality of arithmetic and geometric means,

(1 + kx1:nk2)(1 + ky1:nk
2) = 1 + kx1:nk2 ky1:nk

2 + kx1:nk2 + ky1:nk
2

� 1 + kx1:nk2 ky1:nk
2 + 2 kx1:nk ky1:nk = (1 + kx1:nk ky1:nk)2.

If x and y lie on di↵erent sheets of the hyperbola, then x0 and y0 have di↵erent signs, so the first term of the
Minkowski product is negative. By Cauchy-Schwarz and the above argument, we have:

x ⇤ y = �
q

(1 + kx1:nk2)(1 + ky1:nk
2)� x1:n · y1:n

 �
�q

(1 + kx1:nk2)(1 + ky1:nk
2) + kx1:nk ky1:nk

�
 �1

as desired.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Forward direction: Let x1, . . . ,xm 2 L
n and M 2 R

m⇥m such that Mij = �xi ⇤ xj .
Define

zi =
⇥
x1i · · · xmi

⇤T

for i = 0, . . . , n and
Z =

⇥
z1 · · · zn

⇤
.

Then we can represent M as
M = ZZ

T � z0z
T

0 .

To show M has exactly one negative eigenvalue, it is su�cient to prove the following two statements: (i) M

has at most one negative eigenvalue, and (ii) M is not positive semidefinite (PSD). Note that (ii) rules out the
possibility of M having zero negative eigenvalues.

For (i), we first note that ZZT can be eigendecomposed to Q⇤Q
T with an orthogonal matrix Q and a diagonal

matrix ⇤ of non-negative eigenvalues 0  �1  · · ·  �m, where the non-negativity follows from the fact ZZT is
PSD. Now, consider the matrix

M
0 := Q

T
MQ = ⇤� (QT

z0)(Q
T
z0)

T
.

Because M
0 is obtained by orthogonal transformations of M, the two matrices M and M

0 share the same set of
eigenvalues. Note M

0 is obtained by updating a diagonal matrix with a rank-one matrix. The impact of such a
rank-one update on eigenvalues of a matrix has been studied by Golub (1973). In particular, if we denote the
eigenvalues of M0 with �01  · · ·  �

0
m
, it is known that

�
0
1  �1  �

0
2  · · ·  �

0
m

 �m.

Since �1 � 0, we conclude that M has at most one negative eigenvalue.

Next we prove (ii) by contradiction. Assume M is PSD, which implies u
T
Mu � 0 for all u 2 R

m. For any
u 2 null(ZT ), we observe that

0  u
T
Mu = u

T
ZZ

T
u� u

T
z0z

T

0 u = �(uT
z0)

2  0,

which gives u
T
z0 = 0. Since this implies z0 ? null(ZT ), we conclude z0 2 range(Z), and thus there exists

w 2 R
n such that Zw = z0.

Since w
0 := w + v for any v 2 null(Z) also satisfies Zw0 = z0, we can assume w 2 range(ZT ) without loss of

generality. That is, there exists s 2 R
m such that wT = s

T
Z.



Recall that Z and z0 represent the coordinates of data points in the hyperboloid model. Given any data point
xi = [xi0, . . . , xin]T and letting xi1:n denote the last n coordinates, the above linear dependence of xi0 on xi1:n

(from Zw = z0) implies
kxi1:nk2 + 1 = x

2
i0 = (wT

xi1:n)
2  kwk2 · kxi1:nk2,

where the first equation follows from xi 2 L
n, and the last inequality is given by Cauchy-Schwarz. Thus,

kwk > 1.

Finally, we invoke the definition of PSD for M with the previously defined vector s (which satisfies wT = s
T
Z)

to obtain
0  s

T
Ms = s

T (ZZT � z0z
T

0 )s = s
T
Z(I�ww

T )ZT
s = kwk2 � kwk4,

which is a contradiction given kwk > 1. This completes the proof for (ii).

Backward direction: Because M is symmetric, it has an eigendecomposition PDP
T , where the columns of P

form an orthonormal eigenbasis of Rn with respect to M , and D is diagonal with eigenvalue entries �0, ...,�n.
Assume without loss of generality that �0 is the negative eigenvalue.

Re-write M as M = QQ
T , where Q = PD

1
2 . The diagonal entries of D

1
2 are

p
�0, ...,

p
�n, and because �0 is

negative,
p
�0 = i

p
��0. Thus, the first column of Q inherits a factor of i. Let x̃1, ..., x̃n denote the rows of Q,

so that each x̃i has an imaginary first coordinate. Obtain �(xi) from x̃i by removing the factor of i from the
first coordinate. Note that

Mij = x̃i · x̃j = �(�(xi) ⇤ �(xj))

as desired.

All that remains is to ensure that �(xi) and �(xj) lie on the same sheet of the hyperboloid defined by x ⇤x = 1.
Because the diagonals of M are all �1, we have �(xi) ⇤ �(xi) = 1 for all i, so the feature vectors lie on the
hyperboloid. Because the remaining entries of M are at most �1, �(xi) ⇤ �(xj) � 1 for all i, j. By Lemma
D.1, our constructed feature vectors �(xi) all lie on the same sheet of a hyperboloid, so they may be viewed as
embedded in the hyperboloid model of hyperbolic space.

D.4 Implementation Details of Quadratic Hyperbolic SVM

The precise form of quadratic hyperbolic SVM used in our experiments is obtained by applying the bootstrap
technique of Lemma 5.1 to the following Euclidean kernel

kE(x,y) =
(xT

y)2 + x
T
y

2
,

which indeed satisfies the condition that kE(x,x) < 1 for all kxk < 1. Intuitively, this corresponds to the class of
decision functions that can be expressed as the intersection of the hyperboloid model with a polynomial consisting
of monomials only up to degree 2. Due to the extra dimension in the ambient space of hyperboloid model, the
corresponding Euclidean kernel with the same degrees of freedom in the Euclidean setting is k(x,y) = (xT

y+1)2,
which additionally leverages an intercept term. As baseline in our comparisons, we solve the Euclidean kernel
SVM with the (xT

y+1)2 kernel using the LIBSVM package (https://www.csie.ntu.edu.tw/~cjlin/libsvm/).
For our method, although one may directly solve the kernel formulation of hyperbolic SVM (Section 5.1), we
observed that existing methods for solving SVMs with indefinite kernels empirically lack robustness. We thus
opted instead to optimize the primal problem with the equivalent feature map using our hyperbolic linear SVM
implementation.

E Euclidean SVMs in Other Hyperbolic Space Models

Although Euclidean SVMs in our main experiments were based on data points in the Poincaré ball model, in
principle, Euclidean SVM can be applied to data points represented in any hyperbolic space model. Figure E.1
shows additional comparisons of hyperbolic SVM with Euclidean SVM where the input coordinates are given
in the hyperboloid and Klein models. In both cases, hyperbolic SVM significantly outperforms Euclidean SVM
with one-sided paired-sample t-test p-values of 7.20 ⇥ 10�9 for the hyperboloid model and 1.58 ⇥ 10�25 for
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Figure E.1: Comparison of hyperbolic and Euclidean SVMs based on the hyperboloid and Klein

models. Panels (a) and (b) correspond to the experiments depicted in Figure 2a, but with input data coordinates
for Euclidean SVM provided in the hyperboloid and Klein models, respectively. In addition, as in Figure 4a, we
used a mixture of elliptical Gaussian distributions instead of isotrophic ones to evaluate the methods based on
a more challenging setting. Hyperbolic SVM significantly outperforms both versions of Euclidean SVMs.

the Klein model. Note that in the Klein model, hyperbolic geodesics coincide with the geodesics of the ambient
Euclidean space. Thus, Euclidean SVM based on the Klein model considers the same class of decision boundaries
as hyperbolic SVM, yet achieves poor performance due to the distortions introduced in margin calculations.


