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Abstract

Representing data in hyperbolic space can ef-
fectively capture latent hierarchical relation-
ships. To enable accurate classification of
points in hyperbolic space while respecting
their hyperbolic geometry, we introduce hy-
perbolic SVM, a hyperbolic formulation of
support vector machine classifiers, and de-
scribe its theoretical connection to the Eu-
clidean counterpart. We also generalize Eu-
clidean kernel SVM to hyperbolic space, al-
lowing nonlinear hyperbolic decision bound-
aries and providing a geometric interpreta-
tion for a certain class of indefinite kernels.
Hyperbolic SVM improves classification ac-
curacy in simulation and in real-world prob-
lems involving complex networks and word
embeddings. Our work enables end-to-end
analyses based on the inherent hyperbolic ge-
ometry of the data without resorting to ill-
fitting tools developed for Euclidean space.

1 Introduction

Learning informative feature representations of sym-
bolic data, such as text documents or graphs, is key to
the success of downstream pattern recognition tasks.
Recently, embedding data into hyperbolic space—a
class of non-Euclidean spaces with constant negative
curvature—has received increasing attention due to
its effectiveness in capturing latent hierarchical struc-
ture (Alanis-Lobato et al., 2016; Muscoloni et al., 2017;
Chamberlain et al., 2017; De Sa et al., 2018; Kri-
oukov et al., 2010; Nickel and Kiela, 2017; Papadopou-
los et al., 2015). This capability is likely because a
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key property of hyperbolic space is that the amount
of space grows exponentially with the distance from
a reference point, in contrast to the slower, polyno-
mial growth in Euclidean space. The geometry of
tree-structured data, which similarly expands expo-
nentially with distance from the root, can thus be
accurately captured in hyperbolic space, but not in
Euclidean space (Krioukov et al., 2010).

A number of recent studies have therefore developed
effective algorithms for embedding data in hyperbolic
space, achieving superior performance on downstream
tasks [e.g., answering semantic queries of words (De Sa
et al., 2018; Nickel and Kiela, 2017) or link predic-
tion in complex networks (Alanis-Lobato et al., 2016;
Muscoloni et al., 2017; Chamberlain et al., 2017; Pa-
padopoulos et al., 2015)] compared to their Euclidean
counterparts, consistent with the intuition that bet-
ter representing the inherent geometry of the data can
improve downstream predictions.

However, aside from rudimentary analysis such as cal-
culating the (hyperbolic) distances or angles between
pairs of data points, solutions for standard pattern
recognition tasks such as classification and cluster-
ing are limited to algorithms that are designed for
data points in Euclidean spaces. For example, when
Chamberlain et al. (2017) set out to classify nodes in
a graph after embedding them into hyperbolic space,
they resorted to performing logistic regression directly
on the embedding coordinates, which relies on decision
boundaries that are linear in the Euclidean sense, but
are somewhat arbitrary when viewed in the underlying
hyperbolic space.

To enable principled, end-to-end analyses that respect
the inherent geometry of the data , we generalize linear
support vector classifiers, one of the most widely-used
classification methods, to data points in hyperbolic
space. Despite the complexities of hyperbolic distance
calculation, we prove that support vector classifica-
tion in hyperbolic space can be performed by solving
a simple, albeit nonconvex, optimization problem that
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resembles the Euclidean formulation of SVM, elucidat-
ing the close connection between the two. To enable
nonlinear classification in hyperbolic space, we derive
the kernel version of hyperbolic SVM in a manner sim-
ilar to the Euclidean case. We provide a technique for
turning certain Euclidean kernels (e.g., the polynomial
kernel) into a hyperbolic kernel and prove necessary
and sufficient conditions for an arbitrary indefinite ker-
nel to be understood as a natural (Minkowski) inner
product kernel in hyperbolic space.

Hyperbolic SVM has superior experimental perfor-
mance over the Euclidean version on two types of sim-
ulated datasets (Gaussian point clouds and evolving
scale-free networks), real network datasets analyzed
by Chamberlain et al. (2017), and semantic classifica-
tion datasets based on hyperbolic word embeddings.
A link to our software and benchmark datasets will be
included in the final version of this paper.

The rest of the paper is organized as follows. We re-
view hyperbolic geometry and support vector classifi-
cation in Sections 2 and 3 and introduce our method,
hyperbolic SVM, in Section 4. In Section 5, we extend
our methods to hyperbolic kernel SVM, allowing non-
linear decision boundaries. We provide experimental
evaluations of hyperbolic SVM in Section 6, and con-
clude with discussion and future work in Section 7.
Our implementation of hyperbolic SVM can be found
at https://github.com/hhcho/hyplinear.

2 The Hyperboloid Model

While hyperbolic space cannot be isometrically em-
bedded in Euclidean space, there are several useful
models of hyperbolic space formulated as a subset of
Euclidean space. Our work primarily uses the hyper-
boloid model, described here. Three other models—
Poincaré ball, Klein ball, and Poincaré half-space—are
treated fully in Appendix. Figure 1 shows each of these
models and corresponding geodesics.

Equip R™*!, with an inner product of the form

X*Yy =2oYo —Z1Y1 — *°* — TnYn-

This is commonly known as Minkowski space. The n-
dimensional hyperboloid model " sits inside R"*! as
the forward sheet of a hyperboloid:

L" = {x = (z0,...,2,) ER"™ x5 2 = 1,29 > 0}.

The distance between two points in L™ is defined as
the length of the geodesic path on the hyperboloid
that connects the two points. These geodesic paths
are exactly the intersections of L™ with 2-D planes
containing the origin in the ambient Euclidean space
R™*! (Figure 1a).

3 Support Vector Classification
Review

Let {(x\),y@)}™ | be a set of m training data in-
stances, where the feature vector xU) is a point in a
metric space X with distance function d, and y¥) e
{1, -1} denotes the true label for all j. Let h : X
{1, -1} be any decision rule. The geometric margin of
h with respect to a single data instance (x,y) is:

Yu(x,9) = yh(x) - inf{d(x',x) : X' € X, h(x") # h(x)}.

Increasing the value of ~y, across the training data
points is desirable; for correct classifications, we in-
crease our confidence, and for incorrect classifications,
we minimize the error.

Maximum margin learning of the optimal decision rule
h*, which provides the foundation for support vector
machines, can now be formalized as

h* = arg max min ~y, (x7), y()), (1)
heH JFE[m]

where H is the set of candidate decision rules.

If we let the data space X’ be R™ and d be the Euclidean
distance function and consider only linear classifiers,
then it can be shown that the maximum-margin prob-
lem given in Eq. 1 is equivalent to the following convex
optimization problem:

The algorithm that solves this problem (via its dual) is
known as a support vector machine (SVM). Introduc-
ing a relaxation for the separability constraints gives
a more commonly used soft-margin variant of SVM:

1 0 ;
minimizey cgn §HWH2 + sz(y(])(WTX(J))) (3)
j=1

where ¢(z) = max(0,1 — z), and the parameter C' > 0
determines the trade-off between minimizing misclas-
sification and maximizing the margin. Solving this
optimization problem either in its primal form or via
its dual has been established as a standard tool for
classification in a wide range of domains (Fan et al.,
2008).

4 Hyperbolic Support Vector
Machines

We newly tackle the problem of solving the max-
margin problem in Eq. 1 when the data points lie in



Hyunghoon Cho, Benjamin DeMeo, Jian Peng, Bonnie Berger

(a) Hyperboloid

(b) Poincaré ball

Figure 1: Linear decision hyperplanes in hyper-
bolic space models. Examples where w, w’, and w”’
denote different vectors in R? that correspond to dif-
ferent decision hyperplanes in hyperbolic space. The
correspondence of hyperplanes between different mod-
els is meant as an illustration and not drawn to scale.

hyperbolic space. In particular, we will adopt the hy-
perboloid model to let X = L™ and let d be the hyper-
bolic distance function. The data points need not be
initially specified using the hyperboloid model, since
coordinates in other models of hyperbolic space can
be easily converted to L".

Analogous to the Euclidean SVM, we consider a set
of decision functions that lead to geodesic decision
boundaries in the hyperbolic space. It is known that
any hyperbolic line (geodesic) in L™ is an intersection
between L™ and a 2D FEuclidean plane in the ambient
space R**1. Thus, a natural way to define decision
hyperplanes in L™ is to use n-dimensional hyperplanes
in R™*! as a proxy. More precisely, we let

H={h(x;w):w e R"™ wxw <0} (4)

where

wxx > 0,

h(z;w) = {1

—1 otherwise,

and * denotes the Minkowski inner product. The cor-
responding decision boundaries are the n-dimensional
hyperplanes in R" ™! given by w * x = 0.

The condition that w has negative Minkowski norm
squared (w * w < 0) is needed to ensure we obtain
a non-trivial decision function; otherwise, the decision
hyperplane does not intersect with L” in R**! and
thus all points in L™ are classified as the same label.

The following lemma gives a simple closed-form ex-
pression for the geometric margin of a given data point
to a decision hyperplane in hyperbolic space:

Lemma 4.1. Given w € R™ such that w x w <
0 and a data point x € L™, the minimum hyperbolic
distance from x to the decision boundary associated
with w, i.e., {z:wx*xz=0,z € L"}, is given by

sinh-! W ok X
i — .
N
A proof of Lemma 4.1 is provided in the Appendix.

Given this formula, one can apply a sequence of trans-
formations to the max-margin classification problem in
Eq. 1 for the hyperbolic setting to obtain the following
result.

Theorem 4.1. The maximum margin classification
problem (Eq. 1), with hyperbolic feature space X = L™,
hyperbolic distance function d, and hyperbolic-linear
decision functions H as defined in Eq. 4, is equivalent
to the following optimization problem:

minimizeycgn+r — §W * W,

subject to y¥)(w xx)) > 1,Vj € [m),

wxw < 0.

The proof of Theorem 4.1 is analogous to the Eu-
clidean version, and is provided in the Appendix.

Despite the apparent complexity of hyperbolic dis-
tance calculation, the optimal (linear) maximum mar-
gin classifiers in hyperbolic space can be identified via
a relatively simple optimization problem that closely
resembles the Euclidean version of SVM, where Eu-
clidean inner products are replaced with Minkowski
inner products. Unlike Euclidean SVM, however, our
optimization problem has a non-convex objective as
well as a non-convex constraint. Yet, for non-trivial,
finite-sized problems where both classes are present in
the data, it is necessary and sufficient to consider only
the set of w for which at least one data point lies on
either side of the decision boundary, suggesting that
the optimal solution lies within a tighter convex region
that maps out the convex hull of given data points.

Note that if we restrict H to decision functions where
wo = 0, then our formulation coincides with with Eu-
clidean SVM. Thus, Euclidean SVM can be viewed as
a special case of our formulation where the first coor-
dinate (corresponding to the time axis in Minkowski
spacetime) is neglected.

Finally, the soft-margin formulation of hyperbolic
SVM can be derived by relaxing the separability con-
straints as in the Euclidean case. We impose a penalty
proportional to the hyperbolic distance to the correct
classification. Analogous to the Euclidean formula-
tion, we fix the scale of penalty so that the closest
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point to decision boundary, x,,, satisfies w * x,,, = 1.
Invoking Lemma 4.1, we see that the hyperbolic mar-
gin of x,, is sinhfl(l). Points closer to the decision
boundary are penalized proportional to their hyper-
bolic distance from the margin. This leads to the op-
timization problem

1 m _ '
minimizeyecgn+1 — gWEW + C’; 0(y9) (w  xD))
subject to w x w < 0, (5)

(1) — sinh!(2)).

Because the above formulation is non-convex, we use
projected gradient descent to provably find a local op-
timum (Calamai and Moré, 1987). The initial w is
determined based on the solution w’ of a soft-margin
SVM in the ambient Euclidean space of the hyper-
boloid model, so that w * x = (w')”Tx for all x. This
provides a good initialization for the optimization and
improves the stability of the algorithm in the presence
of potentially many local optima.

where £(z) = max(0, sinh

5 Nonlinear Classification in
Hyperbolic Space

To enable classification with nonlinear decision bound-
aries, we construct feature mappings 1 : L* — L7
that map the data points to another (typically higher-
dimensional) hyperbolic feature space. Linear deci-
sion functions in L™ correspond to nonlinear decision
functions in ™. This technique is well-established in
the Euclidean setting and is commonly achieved with-
out constructing the feature mapping ¢, but instead
working only with the kernel function k(x®,x0)) =
H(xNTH(x)). A Euclidean linear SVM on the trans-
formed data points ¢(x(?)) is equivalent to solving

minimize,, Z Z 05y Z)y(J)k

i=1 j=1
subject to 0 < a; < C\, Vi € [m],

m

(J) +Za

which is referred to as kernel SVM. Once a solution
for « is obtained, the prediction for a new data point
z is the sign of > | o k(x(®,z). In the following, we
adapt this framework to hyperbolic space.

5.1 Hyperbolic Kernel SVM

Analogous to the derivation of kernel SVM in the Eu-
clidean setting, analyzing the first order conditions of
the Lagrangian of the max margin problem in The-
orem 4.1 reveals that any w that represents a sta-
tionary solution can be written in the form w =
=3 aid(xD) for 0 < @ < C. Re-parameterizing,

we obtain the following formulation of hyperbolic ker-
nel SVM (full derivation in Appendix):

minimize,, ZZ@ o5y )y(J)kH @),

i
subject to 0 < a; < C, Vi,

S % gy Py Dk (x,

i g

+ZO‘Z

x) > 0.

where kpy denotes the Minkowski inner-product
kernel (Minkowski kernel for short) defined as
Ep(x®, x0)) = —4p(x@) % 4p(x19)) with a correspond-

ing feature map v : L™ — L™

Fuclidean kernels are usually required to be posi-
tive semidefinite (PSD), i.e., all eigenvalues of M =
[k(x®,x0))] are non-negative for any set of x(*.
However, as we discuss further in Section 5.3, the
Minkowski kernel is always non-PSD, so hyperbolic
kernel SVM is distinct from standard Euclidean SVM.

5.2 Bootstrap Construction of Nonlinear
Hyperbolic Kernels

The following lemma allows us to take any Euclidean
kernel satisfying a certain condition and build a valid
hyperbolic counterpart:

Lemma 5.1. Let kg be a Fuclidean inner product ker-
nel that satisfies kp(x,x) < 1 for all ||x|| < 1. Then

kp(9(x),9(y)) — 1

kg(x,y) =
uxy) V(1= ke(9(x), 9(x))) (1~ ke(g(y). 9(¥)))

is a valid Minkowski inner product kernel, where g
maps coordinates in the hyperboloid model to the Klein
ball model.

Notably, Lemma 5.1 immediately gives a general-
ization of Euclidean polynomial kernels kg(x,y) =
(xTy)? for any degree d to hyperbolic space. The re-
sulting hyperbolic polynomial kernel in fact naturally
corresponds to decision functions that take the shape
of polynomial curves or hypersurfaces in hyperbolic
space, which we describe in more detail in Appendix,
along with the proof of the lemma.

5.3 Hyperbolic Kernel Matrix Properties

In Euclidean kernel SVM, much of the power arises
from the ability to construct and optimize over kernels
between arbitrary objects (graphs, documents, etc.),
as long as the kernels are PSD. In order to allow arbi-
trary kernels in hyperbolic space, we asked what prop-
erties must be satisfied by a kernel k(x,y) in order for
it to be formulated as —¢(x) * ¢(y) for some feature-
space mapping ¢. We have the following Theorem:
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Theorem 5.1. Let M be an n X n real symmetric
matriz. Then M can be expressed as —[p(x;) * ¢(x;)]
for some mapping ¢ into the hyperboloid model if and
only if the following hold:

1. The diagonal entries of M are all —1, and the
remaining entries are < —1.

2. M has exactly one negative eigenvalue.

These criteria allow the researcher to identify when
a certain non-PSD kernel SVM problem can be re-
phrased as a hyperbolic SVM problem. Note that if M
obeys the conditions when —1 is replaced with some
—a < 0, M can be scaled to fit the criteria without
affecting the optimization problem it represents. A full
proof of Theorem 5.1 is presented in the Appendix.

Interestingly, a natural extension of Gaussian radial
basis function (RBF) kernel with hyperbolic distance
function dg, defined as k(x,y) = exp{—vdm(x,y)*}
with a parameter v > 0, does not satisfy the conditions
of Theorem 5.1 in general. Although the Euclidean
RBF kernel has an equivalent infinite-dimensional fea-
ture map, our observation shows that a similar deriva-
tion is not directly possible in the hyperbolic case.
Whether there is a modified form of hyperbolic RBF
that fits the description of Theorem 5.1 remains an
open question. Note that in practice a polynomial
kernel with a sufficiently high degree may be a viable
alternative to RBF kernels (Cotter et al., 2011).

6 Experimental Results

Below, we compare hyperbolic SVM to the original
Euclidean SVM (i.e., L2-regularized hinge-loss opti-
mization) on a range of real and simulated datasets.
After describing our evaluation setup (Section 6.1),
we present the results for linear classification (Sec-
tions 6.2-6.4). Experiments for nonlinear classification
in hyperbolic space are provided in Section 6.5.

6.1 Evaluation Setting

To enable multi-class classification, we adopt a one-vs-
all (OVA) strategy, where several binary classifiers are
independently trained to distinguish each class from
the rest. For each method, the resulting prediction
scores on the holdout data are transformed into prob-
ability outputs via Platt scaling (Platt et al., 1999)
across all classes and collectively analyzed to quan-
tify the overall classification accuracy. For hyperbolic
SVM we use the Minkowski inner product between the
learned weight vector and the data point in the hyper-
boloid model as the prediction score, which is a mono-
tonic transformation of the geometric margin.

In both hyperbolic and Euclidean SVMs, the tradeoff
between minimizing misclassification and maximizing
margin is determined by the parameter C' (see Eqgs. 3
and 5). In all our experiments, we determined the
optimal C' € {0.1, 1,10} separately for each run via a
nested cross-validation procedure.

Our main performance metric is macro-averaged area
under the precision recall curve (AUPR), which is ob-
tained by computing the AUPR of predicting each
class against the rest separately, then taking the av-
erage across all classes. The results based on other
performance metrics, such as the area under the ROC
curve and the micro-average variants of both metrics,
led to similar conclusions across all our experiments.

6.2 Simulated Gaussian Mixture Datasets

We first generated a collection of 100 toy datasets by
sampling data points from a Gaussian mixture model
defined in the Poincaré disk model. Note that, analo-
gous to the Euclidean setting, the probability density
function of an (isotropic) hyperbolic Gaussian distri-
bution decays exponentially with the squared hyper-
bolic distance from the centroid, inversely scaled by
the variance parameter. For each dataset, we sampled
four centroids from a zero-mean hyperbolic Gaussian
distribution with variance parameter 1.5. Then, we
sampled 100 data points from a unit-variance hyper-
bolic Gaussian distribution centered at each centroid
to form a dataset of 400 points assigned to 4 classes.

The results of two-fold cross validation experiments
on each of the 100 datasets are summarized in Fig-
ure 2a. We observed a strongly significant improve-
ment of hyperbolic SVM over the Euclidean version in
terms of prediction accuracy, with a one-sided paired-
sample t-test p-value of 6.17 x 10728, Our method also
outperformed Euclidean SVM based on the Klein and
hyperboloid models of hyperbolic space (Appendix).

We attribute the performance improvement of hyper-
bolic SVM to the fact that its decision functions better
match the geometry of the given data. Example de-
cision boundaries for both methods are shown in Fig-
ures 2b and c. Note that the apparent nonlinearity
of hyperbolic decision boundaries is due to our use of
the Poincaré disk for visualization; in the hyperbolic
space, these decision boundaries are in fact linear.

6.3 Semantic Classification of Word
Embeddings

A key application of hyperbolic embeddings is learning
representations of words that capture their semantic
hierarchy (De Sa et al., 2018; Nickel and Kiela, 2017).
We next evaluated hyperbolic SVM on a natural lan-
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Figure 2: Multi-class classification of Gaussian mixtures in hyperbolic space.

Hyperbolic SVM

Euclidean SVM

(a) Two-fold cross

validation results for 100 hyperbolic Gaussian mixture datasets. Fach dot represents the average performance
over 5 trials. Vertical and horizontal lines represent standard deviations. Example decision hyperplanes for
hyperbolic and Euclidean SVMs are shown in (b) and (c), respectively, using the Poincaré disk model. Color of
each decision boundary denotes which component is being discriminated from the rest.

WordNet Classifier (Linear)
Subtree Hyperbolic SVM | Euclidean SVM
tree.n.01 0.29 +£0.03 0.22 £0.01
worker.n.01 0.31 £0.01 0.23 £0.01
group.n.01 0.66 + 0.01 0.59 +0.01
solid.n.01 0.67 +£0.13 0.53 +0.03
mammal.n.01 0.70 £ 0.11 0.41 +0.07
animal.n.01 0.89 £0.01 0.87 £0.01

Table 1: Semantic classification performance on
WordNet dataset. For six different subtrees of the
WordNet hierarchy, we performed five-fold cross val-
idation for predicting words in the subtree based on
the 2D hyperbolic embedding of Ganea et al. (2018a).
Average AUPR summarized over 10 trials is shown,
each followed by the standard deviation. Better per-
formance for each dataset is shown in boldface.

guage processing task of classifying whether a given
word belongs to a semantic category. Following the
work of Ganea et al. (2018b), we embedded the se-
mantic hierarchy of all English nouns in the WordNet
dataset® into a 2D hyperbolic space using a recently
proposed approach of Ganea et al. (2018a). We then
performed cross validation experiments for predicting
whether a word belongs to a chosen subtree based on
the hyperbolic embeddings. We observed that hyper-
bolic SVM consistently outperforms Euclidean SVM
applied directly on the Poincaré disk coordinates (Ta-
ble 1). Our performance improvement was most sig-
nificant for predicting words in the mammal subtree,
where hyperbolic SVM increased the average AUPR
by 0.29 over the Euclidean approach.

6.4 Node Classification in Complex Networks

Another key application of hyperbolic space embed-
ding is modeling complex, scale-free networks (Alanis-

*https://wordnet.princeton.edu/

Lobato et al., 2016; Muscoloni et al., 2017; Papadopou-
los et al., 2015, 2012). We tested whether hyperbolic
SVM can improve node classification performance on
the hyperbolic embedding of such networks.

6.4.1 Real-World Static Networks

We evaluated hyperbolic SVM on four real-world net-
work datasets used by Chamberlain et al. (2017).
These include: (1) karate (Zachary, 1977): a social
network of 34 people divided into two factions, (2) pol-
books': co-purchasing patterns of 105 political books
in 2004 divided into 3 affiliations, (3) football (Girvan
and Newman, 2002): football matches among 115 col-
leges in Fall 2000 divided into 12 leagues, and (4) pol-
blogs (Lada and Natalie, 2005): a hyperlink network
of 1224 political blogs in 2005 divided into two affil-
iations. We excluded the adjnoun dataset due to the
near-random performance of all methods considered.

For each dataset, we embedded the network into a 2D
hyperbolic space using the approach of Chamberlain
et al. (2017) based on random walks. Their method
closely follows an existing network embedding algo-
rithm called DeepWalk (Perozzi et al., 2014) except
Euclidean inner products are replaced with a measure
of hyperbolic angle. Given the hyperbolic embedding
of each network, we performed two-fold cross valida-
tion to compare the node classification accuracy of hy-
perbolic SVM with Euclidean SVM.

For all four datasets, hyperbolic SVM matched or out-
performed the performance of Euclidean SVM (Ta-
ble 2). Notably, the two datasets where the per-
formance was comparable between the two meth-
ods (karate and polblogs) consisted of only two well-
separated classes, in which case a Euclidean linear de-
cision boundary is expected to perform well.

"http://www-personal .umich.edu/~mejn/netdata/
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Classifier Embedding Dataset

(Linear) (Dimension) karate polbooks football polblogs
Hyperbolic SVM | Hyperbolic (2) | 0.86 +0.03 | 0.73 £0.04 | 0.24 +0.03 | 0.93 £0.01
Euclidean SVM | Hyperbolic (2) | 0.86 +£0.03 | 0.66 £0.02 | 0.21+£0.01 | 0.93 +0.01
Euclidean SVM | Euclidean (2) | 0.47+0.07 | 0.34+0.03 | 0.09+£0.01 | 0.60=+0.09
Euclidean SVM | Euclidean (5) | 0.55+0.08 | 0.354+0.03 | 0.10£0.01 | 0.69+0.04
Euclidean SVM | Euclidean (10) | 0.50 £0.08 | 0.36 +0.03 | 0.10£0.01 | 0.72+0.04
Euclidean SVM | Euclidean (25) | 0.50+£0.09 | 0.37+0.04 | 0.11+0.02 | 0.80+0.03

Table 2: Node classification performance on four real-world network datasets. We performed two-fold
cross validation experiments on four real-world network datasets with labeled nodes. Average macro-AUPR over
a total of 20 cross-validation trials based on 5 different embeddings of each network is shown, each followed by
the standard deviation. Numbers corresponding to the best performance on each dataset are shown in boldface.

In addition, we tested Euclidean SVM based on the
Euclidean embeddings obtained by DeepWalk with
dimensions 2, 5, 10, and 25. Even with as many
as 25 dimensions, Fuclidean SVM was not able to
achieve competitive prediction accuracy based on the
Euclidean embeddings across all datasets (Table 2).
This supports the conclusion that hyperbolic geome-
try likely underlies these networks and that increasing
the number of dimensions for the Euclidean embed-
ding does not necessarily lead to representations that
are as informative as the hyperbolic embedding.

6.4.2 Simulated Dynamic Networks

We next considered node classification tasks on time-
varying networks, a commonly studied subject in the
context of hyperbolic geometry. To this end, we gener-
ated random scale-free networks using the popularity-
vs-similarity (PS) model (Figure 3a), which was shown
to capture the properties of many real-world net-
works (Papadopoulos et al., 2012). We embedded
each simulated network into hyperbolic space using
LaBNE (Alanis-Lobato et al., 2016), a network em-
bedding method based on the PS model (Figure 3b).

Inspired by the gene function prediction task in net-
work biology (Cho et al., 2016), we then generated a
multi-class, multi-label dataset for each simulated net-
work. For each new label, we randomly choose a node
in the network to be the first node to be annotated
with the label. Then, we replay the evolution of the
network, and each time a new node is connected to an
existing node with a given label, the label propagates
to the new node with a set probability (0.8 in our ex-
periments), which simulates the stochastic inheritance
of node properties in evolving networks.

Given a target range for the label size (number of
nodes having the label), we created 10 labels to ob-
tain a multi-label classification dataset with 10 classes.
This process was repeated 5 times for 10 different sim-
ulated networks to generate a total of 150 datasets
with varying label sizes (20-50, 50-100, and 100-200).

Across all label size ranges and networks, hyperbolic
SVM matched or outperformed Euclidean SVM (Fig-
ure 3c). The overall improvement of hyperbolic SVM
was statistically significant, with a one-sided paired-
sample t-test p-value of 3.99 x 10721,

6.5 Nonlinear Hyperbolic Classification

Here we demonstrate the performance of hyperbolic
SVM with nonlinear decision boundaries in hyperbolic
space. Given the relatively simple geometry of our
datasets, we restrict our attention to the quadratic
versions of hyperbolic versus Euclidean SVMs in our
experiments. Implementation details of quadratic hy-
perbolic SVM is provided in the Appendix.

We tested both methods on more challenging Gaus-
sian mixture datasets, where each component was
an elliptical Gaussian distribution (with a random
shape) rather than an isotropic distribution (Sec-
tion 6.2). Quadratic hyperbolic SVM significantly out-
performs quadratic Euclidean SVM on these datasets
(Figure 4a) with a one-sided paired t-test p-value of
5.00 x 10718, Similar improvement was observed on
the evolving network node classification datasets (Fig-
ure 4b) with a p-value of 9.09 x 10723, Our improve-
ment was most pronounced for datasets of smaller la-
bels (20-50 nodes), likely because larger labels more
evenly partition the space and are less sensitive to the
particular choice of decision boundaries. Quadratic
hyperbolic SVM outperformed Euclidean SVM on the
WordNet benchmark data (Table 3), in addition to im-
proving on the linear classification results in Table 1.

7 Discussion and Future Work

We developed support vector classification in hyper-
bolic space, demonstrated its improved performance
on a wide range of datasets, and developed the hy-
perbolic analog of kernel SVM, lending geometric in-
tuition and algorithmic tractability to large-margin
learning with a range of non-PSD kernels (Theorem
5.1). Alternative non-convex optimization methods,
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Figure 3: Multi-class multi-label classification of nodes in simulated evolving networks. (a) One of
the simulated networks used to generate our benchmark datasets based on the PS model (Papadopoulos et al.,
2012). We set the number of nodes to 500, average degree to 4, scaling exponent to 2.25, and temperature to 0, in
order to achieve a modest level of clustering. (b) Embedding of the same network in two-dimensional hyperbolic
space as visualized in the Poincaré disk model. (¢) Two-fold cross validation results for predicting 10 labels per
dataset, where each label is assigned to a random node and stochastically propagated to its descendants. We
repeated the experiment for different size ranges for the labels, denoted by marker type/color. Each marker
represents the mean performance over 5 trials. Vertical and horizontal lines represent standard deviations.

(@) Elliptical Gaussian Mixtures ~ (b) Evolving Networks
-2 -2 Label Sizes
g g ©20-50 #
g g 08 m50-100 "é-*y’
5 038 & 4100200 s
1S4 4 =L
s S 06 |=5F
= > a4 ¥
2 2 Wi
2 06 2 04 4
g 3 L
2 2
153 Q
g £02
T 04 =
7 06 038 02 04 06 08

Euclidean SVM (Quadratic) Euclidean SVM (Quadratic)

Figure 4: Comparison of quadratic hyperbolic
and Euclidean SVMs on our simulated datasets.
Panels (a) and (b) correspond to the experiments de-
picted in Figure 2a and Figure 3c, respectively, but
with quadratic classifiers. In addition, for (a), we
used a mixture of elliptical Gaussian distributions in-
stead of isotrophic ones to better motivate the use
of quadratic decision functions. On both benchmark
datasets, quadratic hyperbolic SVM significantly out-
performs the Euclidean counterpart.

such as Krein methods (Loosli et al., 2016) or program-
ming with differences of convex functions (Xu et al.,
2017), may further improve the performance of hyper-
bolic SVM.

Our work belongs to a growing body of algorithms that
learn directly over a Riemannian manifold (Porikli,
2010; Tuzel et al., 2008). Linear hyperplane-based
classifiers and clustering algorithms have previously
been formulated for spherical spaces (Dhillon and
Modha, 2001; Lebanon and Lafferty, 2004; Wilson and
Hancock, 2010). To the best of our knowledge, our
work is the first to develop and experimentally demon-
strate support vector classification in hyperbolic geom-

WordNet Classifier (Quadratic)
Subtree Hyperbolic SVM | Euclidean SVM

tree.n.01 0.46 +0.07 0.28 +0.22
worker.n.01 0.48 +0.12 0.16 £0.10
group.n.01 0.65 + 0.03 0.61 £0.01
solid.n.01 0.72 £ 0.02 0.60 £+ 0.09
mammal.n.01 0.91 +£0.04 0.89 +0.05
animal.n.01 0.90 + 0.01 0.90 + 0.01

Table 3: Semantic classification with quadratic
hyperbolic and Euclidean SVMs. We replicated
the experiment in Table 1 for quadratic classifiers.
Mean AUPR summarized over 10 trials is shown, each
followed by the standard deviation. Numbers within a
standard deviation from the best result are in boldface.

etry. We envision further development of hyperbolic
space-equivalents of other standard machine learning
tools in the near future. For example, a concurrent
work of Ganea et al. (2018b) introduces a hyperbolic
formulation of neural networks, a potential alternative
for hyperbolic space classification.

The kernel representation of hyperbolic SVM allows
us to learn in hyperbolic space without constructing
an embedding. Instead, we can look for kernels that
satisfy the conditions enumerated in Theorem 5.1. Al-
though many convenient kernels are not PSD, some of
them may be equivalent to a Minkowski kernel after
some modifications, permitting a convenient formula-
tion in hyperbolic space. Thus, our work represents a
first step towards a geometric understanding of indef-
inite kernel classification.
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