
Krzysztof Choromanski*, Aldo Pacchiano*, Jeffrey Pennington*, Yunhao Tang*

KAMA-NNs: low-dimensional rotation based neural networks: Supplementary
Material

A Proof of Theorem 1 and Theorem 2

Consider the Kernel estimators URNf (x,y) and ORNf (x,y), corresponding to the unstructured-Gaussian and
orthogonal-Gaussian pointwise non-linear kernels, constructed from m random features. The two estimators are
unbiased, i.e. E[URNf (x,y)] = E[ORNf (x,y)] = Kf (x,y), while the mean-squared errors differ and equal,

MSE[URNf (x,y)] = E [URNf (x,y)]
2 −Kf (x,y)2

= Ew∼G

[
1

m

m∑
i=1

f(w>i x)f(w>i y)

]2

−Kf (x,y)2

= Ew∼G

 1

m2

m∑
i,j=1

f(w>i x)f(w>i y)f(w>j x)f(w>j y)

−Kf (x,y)2

= Ew∼G

[
1

m
f(w>1 x)f(w>1 y)f(w>1 x)f(w>1 y)

]
+ Ew∼G

[
m− 1

m
f(w>1 x)f(w>1 y)f(w>2 x)f(w>2 y)

]
−Kf (x,y)2 ,

(S1)

and,

MSE[ORNf (x,y)] = Ew∼Gort

[
1

m
f(w>1 x)f(w>1 y)f(w>1 x)f(w>1 y)

]
+ Ew∼Gort

[
m− 1

m
f(w>1 x)f(w>1 y)f(w>2 x)f(w>2 y)

]
−Kf (x,y)2 .

(S2)

Here we have used the permutation symmetry of the matrix distributions to express the MSE in terms of a term
depending on only a single row (w1) and a term depending on two rows (w1 and w2). Because the rows of Gort

are marginally Gaussian, the terms that depend only on w1 are identical for both G and Gort. Therefore we
have that the difference in MSE, ∆MSE ≡ MSE[URNf (x,y)]−MSE[ORNf (x,y)], is given by,

∆MSE =
m− 1

m

(
Ew∼G

[
f(w>1 x)f(w>1 y)f(w>2 x)f(w>2 y)

]
− Ew∼Gort

[
f(w>1 x)f(w>1 y)f(w>2 x)f(w>2 y)

])
.

(S3)

The matrix distributions of G and Gort are rotationally-invariant. Therefore we can choose a coordinate system
in which x and y lie in the first two directions. Specifically, let

(e1, e2) = (x,y)

(
x>x x>y
y>x y>y

)− 1
2

, (S4)

be the first two coordinate directions. Here we assume that x is not collinear with y in order that the inverse
matrix square root exists. The collinear case follows from a similar argument or by taking the collinear limit of
the result we now derive. In this new coordinate system, the functional dependence of ∆MSE reduces to four
variables, we which capture in a new function, g, to ease the notation,

g(w11, w12, w21, w22) ≡ f(w>1 x)f(w>1 y)f(w>2 x)f(w>2 y)

= f(w11e
>
1 x + w12e

>
2 x)f(w11e

>
1 y + w12e

>
2 y)f(w21e

>
1 x + w22e

>
2 x)f(w21e

>
1 y + w22e

>
2 y) .

(S5)

Finally we rewrite ∆MSE in terms of integrals,

∆MSE =
m− 1

m

(
IG(g)− IGort(g)

)
, (S6)



KAMA-NNs: low-dimensional rotation based neural networks

where the integrals we seek to evaluate are,

IG(g) =

∫
ds1ds2dt1dt2

e−
1
2 (s21+s22+t21+t22)

4π2
g(s1, s2, t1, t2)

IGort
(g) =

∫
dχ1dχ2

e−
1
2 (χ2

1+χ2
2)

2d−2Γ(d2 )2
χd−1

1 χd−1
2

∫
Od

dU g(χ1u11, χ1u12, χ2u21, χ2u22) .

(S7)

In writing the expression for IGort
(g), we have used the fact that Gort may be regarded as an orthogonal matrix

whose rows have been scaled by χ-distributed random variables with d degrees of freedom. Next, we observe
that the integrand depends on only two rows of U . Integrating over the remaining d− 2 rows induces a marginal
distribution over the Stiefel manifold V2(Rd) = {V ∈ R2,d |V V > = I2},

IGort
(g) =

∫
dχ1dχ2

e−
1
2 (χ2

1+χ2
2)

2d−2Γ(d2 )2
χd−1

1 χd−1
2

∫
V2(Rd)

dV g(χ1v11, χ1v12, χ2v21, χ2v22)

=
(d− 2)(d− 3)

4π2

∫
dχ1dχ2

e−
1
2 (χ2

1+χ2
2)

2d−2Γ(d2 )2
χd−1

1 χd−1
2

∫
TT><I2

dT det(I2 − TT>)
d−5
2 g(χ1t11, χ1t12, χ2t21, χ2t22) ,

(S8)

where in the second line we have marginalized out d−2 rows of V , and TT> < I2 denotes those matrices T ∈ R2,2

for which I2 − TT> is positive definite. Next we apply the following change of variables,


χ1

χ2

t11

t12

t21

t22

 =



√
ds2 + s2

1 + s2
2√

dt2 + t21 + t22
s1√

ds2+s21+s22
s2√

ds2+s21+s22
t1√

dt2+t21+t22
t2√

dt2+t21+t22


, (S9)

which gives,

IGort(g) =

∫
ds1ds2dt1dt2

e−
1
2 (s21+s22+t21+t22)

4π2
ρ(d, s1, s2, t1, t2)g(s1, s2, t1, t2) , (S10)

where the function ρ encodes the effect of orthogonality and equals,

ρ(d, s1, s2, t1, t2) =
(d− 2)(d− 3)dd−2

2d−2Γ(d2 )2

∫
dsdt e−

d
2 (s2+t2)sd−3td−3

×
√

1 +
s2

1 + s2
2

ds2

√
1 +

t21 + t22
dt2

[
1− s1t1 + s2t2

d2s2t2

] 1
2 (d−5)

+

.

(S11)

The large-d asymptotics of ρ can be obtained using the saddle point method, also known as Laplace’s method.
As d→∞, the integrand decays exponentially in d, and is maximized when s = t = 1, which lies in the interior
of the integration region as d → ∞. We can therefore expand the integrand around this point and obtain an
asymptotic expansion in d by evaluating Gaussian integrals. The result is,

ρ(d, s1, s2, t1, t2) = 1− 2− s2
1 − s2

2 − t21 − t22 + s2
1t

2
1 + s2

2t
2
2 + 2s1s2t1t2

2d
+O

(
1

d2

)
≡ 1− ρ1(s1, s2, t1, t2)

d
+O

(
1

d2

)
.

(S12)

Altogether, we have,

∆MSE =
m− 1

m

∫
ds1ds2dt1dt2

e−
1
2 (s21+s22+t21+t22)

4π2

ρ1(s1, s2, t1, t2)

d
g(s1, s2, t1, t2) +O

(
1

d2

)
. (S13)



Krzysztof Choromanski*, Aldo Pacchiano*, Jeffrey Pennington*, Yunhao Tang*

Next we prove the non-negativity of ∆MSE by rewriting it in terms of differential operators acting on Kf (x,y).
To this end, consider the following change of variables,

z1 ≡
(
z11

z12

)
=

(
s1e
>
1 x + s2e

>
2 x

s1e
>
1 y + s2e

>
2 y

)
= (X>X)−

1
2

(
s1

s2

)
z2 ≡

(
z21

z22

)
=

(
t1e
>
1 x + t2e

>
2 x

t1e
>
1 y + t2e

>
2 y

)
= (X>X)−

1
2

(
t1
t2

)
,

(S14)

where X = (x,y). In these variables, ∆MSE can be written as,

∆MSE =
1

d

m− 1

m

∫
dz11dz12

e−
1
2z
>
1 (X>X)−1z1√

det (2πX>X)
f(z11)f(z12)

∫
dz21dz22

e−
1
2z
>
2 (X>X)−1z2√

det (2πX>X)
f(z21)f(z22)

×
[
1− 1

2
z>1
(
X>X

)−1
z1 −

1

2
z>2
(
X>X

)−1
z2 +

1

2

(
z>1
(
X>X

)−1
z2

)2
]

+O
(

1

d2

)
.

(S15)

Observe that the each additive term of the integrand can be factorized into a product of integrals depending only
on z1 or z2. Each such term can be expressed in terms of derivatives of Kf (x,y) by noting that,

Kf (x,y) =

∫
dz11dz12

e−
1
2z
>
1 (X>X)−1z1√

det (2πX>X)
f(z11)f(z12)

=

∫
dz21dz22

e−
1
2z
>
2 (X>X)−1z2√

det (2πX>X)
f(z21)f(z22) ,

(S16)

and exchanging the order of integration and derivatives with respect to θ ≡ (θ1, θ2, θ3)> = (x>x,x>y,y>y)>. In
particular, some straightforward algebra gives,

∆MSE =
1

d

m− 1

m

[
(θ1∂1Kf + θ2∂2Kf + θ3∂3Kf )2 +

θ1θ3 − θ2
2

2

(
(∂2Kf )2 − 4∂1Kf∂3Kf

)]
+O

(
1

d2

)
, (S17)

where ∂i ≡ ∂/∂θi. This representation is possible because the rotational symmetry of G and Gort requires that
Kf (x,y) be a function of the three rotationally-invariant quantities θ1, θ2, and θ3. Moreover, also by using this
symmetry, it is easy to check that,

∆MSE =
1

d

m− 1

m
trR2 +O

(
1

d2

)
, (S18)

where the entries of R are given by,

Rij = Rji =
1

2

(
xi
∂Kf (x,y)

∂xj
+ yi

∂Kf (x,y)

∂yj

)
. (S19)

BecauseR is a symmetric matrix, its eigenvalues are real, and therefore trR2 ≥ 0, which proves that asymptotically,

∆MSE ≥ 0. (S20)

The inequality is strict for most inputs x and y. In order to reveal the conditions under which equality can hold,
we observe that because R is a real symmetric matrix, trR2 = 0 implies that R = 0. Therefore the following
additional equations must be satisfied in order that ∆MSE = 0 asymptotically,

0 = trR = θ1∂1Kf + 2θ2∂2Kf + θ3∂3Kf

0 = x>Rx = θ2
1∂1Kf + 2θ1θ2∂2Kf + θ2

2∂3Kf

0 = x>Ry = θ1θ2∂1Kf + (θ1θ3 + θ2
2)∂2Kf + θ2θ3∂3Kf

0 = y>Ry = θ2
2∂1Kf + 2θ2θ3∂2Kf + θ2

3∂3Kf .

(S21)

A solution to these equations requires one of the following conditions on the inputs (in terms of θ) and the kernel
(in terms of its derivatives ∂iKf ):



KAMA-NNs: low-dimensional rotation based neural networks

1. θ1 = θ2 = θ3 = 0
2. θ1 = θ2 = ∂3Kf = 0
3. θ2 = θ3 = ∂1Kf = 0
4. ∂1Kf = ∂2Kf = ∂3Kf = 0
5. θ1θ3 = θ2

2, θ1∂1 + θ3∂3 = 0, ∂2θ2 = 0

If x 6= 0, y 6= 0, ∇xKf 6= 0, ∇yKf 6= 0, and x and y are not collinear, then none of these equations can be
satisfied and therefore we have, asymptotically,

∆MSE ≥ O(
1

d
) . (S22)

That proves Theorem 1. To prove Theorem 2, we use the proof of Theorem 1 in [Pillai and Smith, 2015] showing
that for every a, b, ε > 0 there exists a constant C(b) > 0 such that if k > max(C(b)d log(d), (5a+6+ 1

2 +2ε)d log(d))
then:

‖µHAAR − µKAC‖TV ≤ d2a+2(1− 1

2d
)(5a+5)d log(d) +

1

d4(a+1)
+

2

dε
+ 6000d2− 2(a−1)

5 + d6− b
3 , (S23)

where µD stands for the probabilistic measure related to the probabilistic distribution D, KAC is a distribution
of a vector Ke1 for Kac’s random walk matrix K using k Givens random rotations and HAAR stands for the
Haar distribution on the sphere. Notice that from that theorem we get:

|MSE(KRNk
f (x,y))−MSE(ORNf (x,y))| = o(

1

d
) (S24)

for k = C · d log(d) and constant C > 0 large enough. Combining this with Theorem 1, we complete the proof of
Theorem 2.

B Proof of Theorem 3

Theorem 4.

F (M0)− F (Mt) ≥
t−1∑
u=0

‖∇F (Mu)‖2

2d(d− 1)B

The proof of this theorem is an adapted version of the coordinate descent procedure proposed by
[Patrascu and Necoara, 2015]. We start by enunciating the following lemma:
Lemma 1 (Lemma 1 from [Shalit and Chechik, 2014]). If f : R→ R is periodic and differentiable, having period
2π, and B Lipschitz derivative f ′. It follows that for all Θ ∈ [−π, π]: f(Θ) ≤ f(0) + Θf ′(0) + B

2 Θ2

As a consequence, for all I, J the function F (Mt−1G
Θ
I,J ) ≤ F (Mt−1G

0
I,J )− F ′(Mt−1G

0
I,J )2

2B , the minimizer of the
expression above. By definition of the algorithm, the indices of the givens rotation chosen are the ones minimizing,
among all the

Recall the Frobenius norm of the riemanninan gradient of F satisfies:

‖∇F (Mt−1)‖2F =
∑

1≤I<J≤d

2F ′(Mt−1G
0
I,J)2

:=
∑

1≤I<J≤d

2F ′I,J(0)2

The second equality follows because for all I, J pairs, G0
I,J = I and we define FI,J(Θ) = F (Mt−1G

Θ
I,J).

Since Algorithm 1 picks the optimal I, J pair, the descent gain from t − 1 to t is at least the average of the
gradient’s

(
d
2

)
directions:

F (Mt−1)− F (Mt) ≥ max
I,J

F ′I,J(0)2

2B
≥ ‖∇F (Mt−1)‖2F

2Bd(d− 1)

The result follows.



Krzysztof Choromanski*, Aldo Pacchiano*, Jeffrey Pennington*, Yunhao Tang*

C Experiments

C.1 Implementation Details

All algorithms are implemented in TensorFlow [Abadi et al., 2016] based on OpenAI baselines
[Dhariwal et al., 2017]. We use the default parameter settings for PPO and TRPO algorithms. For PPO,
the clipping rate is ε = 0.2, learning rate α ∈ {3 · 10−4, 3 · 10−5} and. For TRPO, the trust region size is ε = 0.01.
The batchsize for update is n = 2048 for all algorithms.

For PPO, the policy is parameterized as a neural network with 2 hidden layers each with 64 hidden units and tanh
non-linear activation in between layers. The last layer does not have non-linear activation. The value function is
parameterized as a neural network with similar architecture.

For TRPO, the policy is parameterized as a neural network with 2 hidden layers each with 32 hidden units
and tanh non-linear activation in between layers. The last layer does not have non-linear activation. The value
function is parameterized as a neural network with similar architecture.

All environments are from OpenAI gym [Brockman et al., 2016, Todorov et al., 2012] and Roboschool
[Schulman et al., 2017].

C.2 Additional Experiments

We have shown that KAMA-NN policies achieve substantial compression of parameters while maintaining
good performance. By varying the number of Givens rotations K in the structured matrix, we can avoid two
undesirable extremes: fully-connected policies (good performance, but many parameters) and Toeplitz policies
(significant compression, but bad performance since the model is rigid). Below we show that we can achieve
further compression for KAMA-NNs for our RL tasks by reducing the number of rotations in the first and third
structured matrices. We let K1,3 be the number of rotations in the first and third structured matrix and K2 be
the number of rotations in the second structured matrix.

While in previous experiments we uses K = K1,3 = K2 = 200 for PPO and K = K1,3 = K2 = 100 for TRPO,
now we use K1,3 = 100,K2 = 200 for PPO and K1,3 = 50,K2 = 100 for TRPO.

(a) TRPO-HalfCheetah (b) TRPO-Hopper

Figure S1: Illustration of KAMA-NNs policies on MuJoCo benchmark tasks with PPO/TRPO. KAMA-NNs policies with
varying number of Givens rotations in the first/third matrix and the second matrix is compared against an unstructured
policy and Toeplitz policy. For each task we train the policy with PPO/TRPO for a fixed number of steps and we show
the mean ± std performance. Vertical axis is the cumulative reward and horizontal axis stands for the # of time steps.


	Proof of Theorem 1 and Theorem 2
	Proof of Theorem 3 
	Experiments
	Implementation Details
	Additional Experiments


