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Abstract

We consider online learning for minimizing re-
gret in unknown, episodic Markov decision pro-
cesses (MDPs) with continuous states and ac-
tions. We develop variants of the UCRL and
posterior sampling algorithms that employ non-
parametric Gaussian process priors to generalize
across the state and action spaces. When the tran-
sition and reward functions of the true MDP are
members of the associated Reproducing Kernel
Hilbert Spaces of functions induced by symmet-
ric psd kernels, we show that the algorithms en-
joy sublinear regret bounds. The bounds are in
terms of explicit structural parameters of the ker-
nels, namely a novel generalization of the infor-
mation gain metric from kernelized bandit, and
highlight the influence of transition and reward
function structure on the learning performance.
Our results are applicable to multi-dimensional
state and action spaces with composite kernel
structures, and generalize results from the litera-
ture on kernelized bandits, and the adaptive con-
trol of parametric linear dynamical systems with
quadratic costs.

1 INTRODUCTION

The goal of reinforcement learning (RL) is to learn opti-
mal behavior by repeated interaction with an unknown en-
vironment, usually modelled as a Markov Decision Process
(MDP). Performance is typically measured by the amount
of interaction, in terms of episodes or rounds, needed to
arrive at an optimal (or near-optimal) policy; this is also
known as the sample complexity of RL [Strehl et al., 2009].
The sample complexity objective encourages efficient ex-
ploration across states and actions, but, at the same time, is
indifferent to the reward earned during the learning phase.

A related, but different, goal in RL is the online one, i.e.,
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to learn to gather high cumulative reward, or to equiva-
lently keep the learner’s regret (the gap between its and
the optimal policy’s net reward) as low as possible. This
is preferable in settings where experimentation comes at a
premium and the reward earned in each round is of direct
value, e.g., recommender systems (in which rewards cor-
respond to clickthrough events and ultimately translate to
revenue), dynamic pricing – in general, control of unknown
dynamical systems with instantaneous costs.

A primary challenge in RL is to learn efficiently across
complex (very large or infinite) state and action spaces.
In the most general tabula rasa MDP setting, the learner
must explore each state-action transition before develop-
ing a reasonably clear understanding of the environment,
which is prohibitive for large problems. Real-world do-
mains, though, possess more structure: transition and re-
ward behavior often varies smoothly over states and ac-
tions, making it possible to generalize via inductive infer-
ence – observing a state transition or reward is informative
of other, similar transitions or rewards. Scaling RL to large,
complex, real-world domains requires exploiting regularity
structure in the environment, which has typically been car-
ried out via the use of parametric MDP models in model-
based approaches, e.g., Osband and Van Roy [2014].

This paper takes a step in developing theory and algo-
rithms for online RL in environments with smooth tran-
sition and reward structure. We specifically consider the
episodic online learning problem in the nonparametric, ker-
nelizable MDP setting, i.e., of minimizing regret (relative
to an optimal finite-horizon policy) in MDPs with contin-
uous state and action spaces, whose transition and reward
functions exhibit smoothness over states and actions com-
patible with the structure of a reproducing kernel. We de-
velop variants of the well-known UCRL and posterior sam-
pling algorithms for MDPs with continuous state and action
spaces, and show that they enjoy sublinear, finite-time re-
gret bounds when the mean transition and reward functions
are assumed to belong to the associated Reproducing Ker-
nel Hilbert Space (RKHS) of functions.

Our results bound the regret of the algorithms in terms of
a novel generalization of the information gain of the state
transition and reward function kernels, from the memo-
ryless kernel bandit setting [Srinivas et al., 2009] to the
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state-based kernel MDP setting, and help shed light on how
the choice of kernel model influences regret performance.
We also leverage recent concentration of measure results
for RKHS-valued martingales, developed originally for the
kernelized bandit setting [Chowdhury and Gopalan, 2017,
Durand et al., 2017], to prove the results in the paper. To
the best of our knowledge, these are the first concrete re-
gret bounds for RL in the kernelizable setting, explicitly
showing the dependence of regret on kernel structure.

Our results represent a generalisation of several streams of
work. We generalise online learning in the kernelized ban-
dit setting [Valko et al., 2013, Chowdhury and Gopalan,
2017] to kernelized MDPs, and tabula rasa online learning
approaches for MDPs such as Upper Confidence Bound for
Reinforcement Learning (UCRL) [Jaksch et al., 2010] and
Posterior Sampling for Reinforcement Learning (PSRL)
[Osband et al., 2013, Ouyang et al., 2017] to MDPs with
kernel structure. We also generalize regret minimization
for an episodic variant of the well-known parametric Lin-
ear Quadratic Regulator (LQR) problem [Abbasi-Yadkori
and Szepesvári, 2011, 2015, Ibrahimi et al., 2012, Abeille
and Lazaric, 2017] to its nonlinear, nonparametric, infinite-
dimensional, kernelizable counterpart.

Overview of Main Results

Our first main result gives an algorithm for learning MDPs
with mean transition dynamics and reward structure as-
sumed to belong to appropriate Reproducing Kernel Hilbert
Spaces (RKHSs). This result is, to our knowledge, the first
frequentist regret guarantee for general kernelized MDPs.

Result 1 (Frequentist regret in kernelized MDPs, informal)
Consider episodic learning under the unknown dynam-
ics st+1 = PM (st, at) + Noise ∈ Rm, and rewards
rt = RM (st, at) + Noise, where PM and RM are
fixed RKHS functions with bounded norms. The regret
of GP-UCRL (Algorithm 1) is, with high probability1,
Õ
((
γT (R) + γmT (P )

)√
T
)

.

Here, γt(P ) (resp. γt(R)) roughly represents the maxi-
mum information gain about the unknown dynamics (resp.
rewards) after t rounds, which, for instance is polylog(t)
for the squared exponential kernel.

To put this in the perspective of existing work, Osband and
Van Roy [2014] also consider learning under dynamics and
rewards coming from general function classes, and show
(Bayesian) regret bounds depending on the eluder dimen-
sions of the classes. However, when applied to RKHS func-
tion classes as we consider here, these dimensions can be
infinitely large. In contrast, our results show that the maxi-
mum information gain is a suitable measure of complexity
of the function class that serves to bound regret.

1Õ suppresses logarithmic factors.

An important corollary results when this is applied to the
LQR problem, with a linear kernel structure for state tran-
sitions and a quadratic kernel structure for rewards:

Result 2 (Frequentist regret for LQR, informal)
Consider episodic learning under unknown linear dy-
namics st+1 = Ast + Bat + Noise, and quadratic
rewards rt = sTt Pst + aTt Qat + Noise. GP-UCRL
(Algorithm 1) instantiated with a linear transition kernel
and quadratic reward kernel enjoys, with high probability,
regret Õ

((
m2 +n2 +m(m+n)

)√
T
)

, wherem and n are
the state space and action space dimensions, respectively.

This recovers the bound of Osband and Van Roy [2014]
for the same bounded LQR problem. However, while
they derive this via the eluder dimension approach, we ar-
rive at this by a different bounding technique that applies
more generally to any kernelized dynamics. The result
also matches (order-wise) the bound of Abbasi-Yadkori and
Szepesvári [2011] restricted to the bounded LQR problem.

We also have the following Bayesian regret analogue for
PSRL.

Result 3 (Bayesian regret in kernelized MDPs, informal)
Under dynamics as in Result 1 but drawn according to a
known prior, the Bayes regret of PSRL (Algorithm 2) is
Õ
((
γT (R) + γmT (P )

)√
T
)

. Consequently, if the dynam-
ics are of the LQR form (Result 2), then PSRL instantiated
with a linear transition kernel and quadratic reward kernel
enjoys Bayes regret Õ

((
m2 + n2 +m(m+ n)

)√
T
)

.

Note: All the above results are stated assuming that the
episode duration H = O(lnT ) for clarity; the explicit de-
pendence onH can be found in the theorem statements that
follow.

Related Work Regret minimization has been studied
with parametric MDPs [Jaksch et al., 2010, Osband et al.,
2013, Gopalan and Mannor, 2015, Agrawal and Jia, 2017].
For online regret minimization in complex MDPs, apart
from the work of Osband and Van Roy [2014], Ortner and
Ryabko [2012] and Lakshmanan et al. [2015] consider con-
tinuous state spaces with Lipschitz transition dynamics but
unstructured, finite action spaces. Another important line
of work considers kernel structures for safe exploration in
MDPs [Turchetta et al., 2016, Berkenkamp et al., 2017].
We, however, seek to demonstrate algorithms with provable
regret guarantees in the kernelized MDP setting, which to
our knowledge are the first of their kind.

2 PROBLEM STATEMENT

We consider the problem of learning to optimize re-
ward in an unknown finite-horizon MDP, M? =
{S,A, R?, P?, H}, over repeated episodes of interaction.
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Here, S ⊂ Rm represents the state space, A ⊂ Rn the
action space, H the episode length, R?(s, a) the reward
distribution over R, and P?(s, a) the transition distribution
over S. At each period h = 1, 2, . . . ,H within an episode,
an agent observes a state sh ∈ S, takes an action ah ∈ A,
observes a reward rh ∼ R?(sh, ah), and causes the MDP
to transition to a next state sh+1 ∼ P?(sh, ah). We as-
sume that the agent, while not possessing knowledge of the
reward and transition distribution R?, P? of the unknown
MDP M?, knows S, A and H .

A policy π : S×{1, 2, . . . ,H} → A is defined to be a map-
ping from a state s ∈ S and a period 1 ≤ h ≤ H to an ac-
tion a ∈ A. For any MDP M = {S,A, RM , PM , H} and
policy π, the finite horizon, undiscounted, value function
for every state s ∈ S and every period 1 ≤ h ≤ H is de-
fined as VMπ,h(s) := EM,π

[∑H
j=hRM (sj , aj)

∣∣ sh = s
]
,

where the subscript π indicates the application of the learn-
ing policy π, i.e., aj = π(sj , j), and the subscript M ex-
plicitly references the MDP environment M , i.e., sj+1 ∼
PM (sj , aj), for all j = h, . . . ,H .

We use RM (s, a) = E
[
r
∣∣ r ∼ RM (s, a)

]
to denote the

mean of the reward distribution RM (s, a) that corresponds
to playing action a at state s in the MDP M . We can
view a sample r from the reward distribution RM (s, a)
as r = RM (s, a) + εR, where εR denotes a sample of
zero-mean, real-valued additive noise. Similarly, the tran-
sition distribution PM (s, a) can also be decomposed as a
mean value PM (s, a) in Rm plus a zero-mean additive
noise εP in Rm so that s′ = PM (s, a) + εP lies in2

S ⊂ Rm. A policy πM is said to be optimal for the
MDP M if VMπM ,h(s) = maxπ V

M
π,h(s) for all s ∈ S and

h = 1, . . . ,H .

For an MDP M , a distribution ϕ over S and period 1 ≤
h ≤ H , we define the one step future value function as
the expected value of the optimal policy πM , with the
next state distributed according to ϕ, i.e. UMh (ϕ) :=

Es′∼ϕ
[
VMπM ,h+1(s′)

]
. We assume the following regularity

condition on the future value function of any MDP (also
made by Osband and Van Roy [2014]).

Assumption (A1) For any two single-step transition dis-
tributions ϕ1, ϕ2 over S, and 1 ≤ h ≤ H ,∣∣UMh (ϕ1)− UMh (ϕ2)

∣∣ ≤ LM ‖ϕ1 − ϕ2‖2 , (1)

where ϕ := Es′∼ϕ[s′] ∈ S denotes the mean of the distri-
bution ϕ. In other words, the one-step future value func-
tions for each period h are Lipschitz continuous with re-
spect to the ‖·‖2-norm of the mean3, with global Lipschitz

2Osband and Van Roy [2014] argue that the assumption S ⊂
Rm is not restrictive for most practical settings.

3Assumption (1) is essentially equivalent to assuming knowl-
edge of the centered state transition noise distributions, since it
implies that any two transition distributions with the same means
are identical.

constant LM . We also assume that there is a known con-
stant L such that L? := LM?

≤ L.

Regret At the beginning of each episode l,
an RL algorithm chooses a policy πl depend-
ing upon the observed state-action-reward se-
quences upto episode l − 1, denoted by the history
Hl−1 := {sj,k, aj,k, rj,k, sj,k+1}1≤j≤l−1,1≤k≤H , and
executes it for the entire duration of the episode. In other
words, at each period h of the l-th episode, the learning
algorithm chooses action al,h = πl(sl,h, h), receives
reward rl,h = R?(sl,h, al,h) + εR,l,h and observes the
next state sl,h+1 = P ?(sl,h, al,h) + εP,l,h. The goal of
an episodic online RL algorithm is to maximize its cumu-
lative reward across episodes, or, equivalently, minimize
its cumulative regret: the loss incurred in terms of the
value function due to not knowing the optimal policy
π? := πM? of the unknown MDP M? beforehand and
instead using the policy πl for each episode l, l = 1, 2, . . ..
The cumulative (expected) regret of an RL algorithm
π = {π1, π2, . . .} upto time horizon T = τH is defined as
Regret(T ) =

∑τ
l=1

[
VM?
π?,1

(sl,1) − VM?
πl,1

(sl,1)
]
, where the

initial states sl,1, l ≥ 1 are assumed to be fixed.

Notations For the rest of the paper, unless otherwise
specified, we define z := (s, a), z′ := (s′, a′) and zl,h :=
(sl,h, al,h) for all l ≥ 1 and 1 ≤ h ≤ H .

3 ALGORITHMS
3.1 Representing Uncertainty

The algorithms we design represent uncertainty in the
reward and transition distribution R?, P? by maintain-
ing Gaussian process (GP) priors over the mean reward
function R? : S × A → R and the mean tran-
sition function P ? : S × A × {1, . . . ,m} → R
of the unknown MDP M?. (We denote P ?(s, a) :=
[P ?(s, a, 1) . . . P ?(s, a,m)]T .) A Gaussian Process over
X , denoted byGPX (µ(·), k(·, ·)), is a collection of random
variables (f(x))x∈X , one for each x ∈ X , such that ev-
ery finite sub-collection of random variables (f(xi))

m
i=1 is

jointly Gaussian with mean E [f(xi)] = µ(xi) and covari-
ance E [(f(xi)− µ(xi))(f(xj)− µ(xj))] = k(xi, xj),
1 ≤ i, j ≤ m, m ∈ N. We use GPZ(0, kR) and
GPZ̃(0, kP ) as the initial prior distributions over R? and
P ?, with positive semi-definite covariance (kernel) func-
tions kR and kP respectively, where Z := S × A, Z̃ :=
Z × {1, . . . ,m}. We also assume that the noise vari-
ables εR,l,h and εP,l,h are drawn independently, across l
and h, from N (0, λR) and N (0, λP I) respectively, with
λR, λP ≥ 0. Then, by standard properties of GPs [Ras-
mussen and Williams, 2006], conditioned on the history
Hl, the posterior distribution over R? is also a Gaussian
process, GPZ(µR,l, kR,l), with mean and kernel functions

µR,l(z) = kR,l(z)
T (KR,l + λRI)−1Rl,

kR,l(z, z
′) = kR(z, z′)− kR,l(z)T (KR,l + λRI)−1kR,l(z

′),

σ2
R,l(z) = kR,l(z, z).

(2)
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Here Rl := [r1,1, . . . , rl,H ]T denotes the vector of rewards
observed at Zl := {zj,k}1≤j≤l,1≤k≤H = {z1,1, . . . , zl,H},
the set of all state-action pairs available at the end of
episode l. kR,l(z) := [kR(z1,1, z), . . . , kR(zl,H , z)]

T de-
notes the vector of kernel evaluations between z and ele-
ments of the set Zl and KR,l := [kR(u, v)]u,v∈Zl

denotes
the kernel matrix computed at Zl.
Similarly, conditioned on Hl, the posterior distribution
over P ? isGPZ̃(µP,l, kP,l) with mean and kernel functions

µP,l(z, i) = kP,l(z, i)
T (KP,l + λP I)−1Sl,

kP,l
(
(z, i), (z′, j)

)
= kP ((z, i), (z, i))

− kP,l(z, i)T (KP,l + λP I)−1kP,l(z
′, j),

σ2
P,l(z, i) = kP,l

(
(z, i), (z, i)

)
.

(3)

Here Sl := [sT1,2, . . . , s
T
l,H+1]T denotes the vector of state

transitions at Zl = {z1,1, . . . , zl,H}, the set of all state-
action pairs available at the end of episode l. kP,l(z, i) :=[
kP
(
(z1,1, 1), (z, i)

)
, . . . , kP

(
(zl,H ,m), (z, i)

)]T
denotes

the vector of kernel evaluations between (z, i) and ele-
ments of the set Z̃l :=

{
(zj,k, i)

}
1≤j≤l,1≤k≤H,1≤i≤m ={

(z1,1, 1), . . . , (zl,H ,m)
}

and KP,l :=
[
kP (u, v)

]
u,v∈Z̃l

denotes the kernel matrix computed at Z̃l.

Thus, at the end of episode l, conditioned on the history
Hl, the posterior distributions over R?(z) and P ?(z, i)
is updated and maintained as N

(
µR,l(z), σ

2
R,l(z)

)
and

N
(
µP,l(z, i), σ

2
P,l(z, i)

)
respectively, for every z ∈ Z and

i = 1, . . . ,m. This representation not only permits gen-
eralization via inductive inference across state and action
spaces, but also allows for tractable updates. We now
present our online algorithms GP-UCRL and PSRL for ker-
nelized MDPs.

3.2 GP-UCRL Algorithm

GP-UCRL (Algorithm 1) is an optimistic algorithm based
on the Upper Confidence Bound principle, which adapts
the confidence sets of UCRL2 [Jaksch et al., 2010] to ex-
ploit the kernel structure. At the start of every episode
l, GP-UCRL constructs confidence sets CR,l and CP,l for
the mean reward function and transition function, respec-
tively, using the parameters of GP posteriors as given in
Section 3.1. The exact forms of the confidence sets ap-
pear in the theoretical result later, e.g., (8) and (9). It
then builds the set Ml of all plausible MDPs M with
the mean reward function RM ∈ CR,l, the mean transi-
tion function PM ∈ CP,l and the global Lipschitz con-
stant (1) LM of future value functions upper bounded by
a known constant L, where L? ≤ L. It then selects an op-
timistic policy πl for the family of MDPsMl in the sense
that VMl

πl,1
(sl,1) = maxπ maxM∈Ml

VMπ,1(sl,1), where sl,1
is the initial state and Ml is the most optimistic realiza-
tion fromMl, and executes πl for the entire episode. The

pseudo-code of GP-UCRL is given in Algorithm 1. Even
though GP-UCRL is described using the language of GP
priors/posteriors, it can also be understood as kernelized
regression with appropriately designed confidence sets.

Algorithm 1 GP-UCRL
Input: Kernel functions kR and kP .
Set µR,0(z) = µP,0(z, i) = 0, σ2

R,0(z) = kR(z, z),
σ2
P,0(z, i) = kP

(
(z, i), (z, i)

)
∀z ∈ Z,∀i = 1, . . . ,m.

for episode l = 1, 2, 3, . . . do
Construct confidence sets CR,l and CP,l.
Construct the set of all plausible MDPsMl = {M :
LM ≤ L,RM ∈ CR,l, PM ∈ CP,l}.
Choose policy πl such that VMl

πl,1
(sl,1) =

maxπ maxM∈Ml
VMπ,1(sl,1).

for period h = 1, 2, 3, . . . ,H do
Choose action al,h = πl(sl,h, h).
Observe reward rl,h = R?(zl,h) + εR,l,h.
Observe next state sl,h+1 = P ?(zl,h) + εP,l,h.

end for
Update µR,l, σR,l using (2) and µP,l, σP,l using (3).

end for

Optimizing for an optimistic policy is not computationally
tractable in general, even though planning for the optimal
policy is possible for a given MDP. A popular approach to
overcome this difficulty is to sample a random MDP at ev-
ery episode and solve for its optimal policy, called posterior
sampling [Osband and Van Roy, 2016].

3.3 PSRL Algorithm

PSRL (Algorithm 2), in its most general form, starts with
a prior distribution Φ ≡ (ΦR,ΦP ) over MDPs, where
ΦR and ΦP are priors over reward and transition distri-
butions respectively. At the beginning of episode l, us-
ing the history of observations Hl−1, it updates the pos-
terior Φl ≡ (ΦR,l,ΦP,l) and samples an MDP Ml from
it 4 (ΦR,l and ΦP,l are posteriors over reward and tran-
sition distributions respectively). It then selects an op-
timal policy πl of the sampled MDP Ml, in the sense
that VMl

πl,h
(s) = maxπ V

Ml

π,h (s) for all s ∈ S and for all
h = 1, 2, . . . ,H , and executes πl for the entire episode.

For example, if ΦR and ΦP are specified by GPs
GPZ(0, kR) and GPZ̃(0, kP ) respectively with Gaussian
observation model, then the posteriors ΦR,l and ΦP,l are
given by GP posteriors as discussed in Section 3.1. Here
at every episode l, PSRL samples an MDP Ml with mean
reward function RMl

∼ GPZ(µR,l−1, kR,l−1) and mean
transition function PMl

∼ GPZ̃(µP,l−1, kP,l−1).

4Sampling can be done using MCMC methods even if Φl
doesn’t admit any closed form.
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Algorithm 2 PSRL
Input: Prior Φ.
Set Φ1 = Φ.
for episode l = 1, 2, 3, . . . do

Sample Ml ∼ Φl.
Choose policy πl such that VMl

πl,h
(s) =

maxπ V
Ml

π,h (s) ∀s ∈ S,∀h = 1, 2, . . . ,H .

for period h = 1, 2, 3, . . . ,H do
Choose action al,h = πl(sl,h, h).
Observe reward rl,h = R?(zl,h) + εR,l,h.
Observe next state sl,h+1 = P ?(zl,h) + εP,l,h.

end for
Update Φl to Φl+1, using {sl,h, al,h, sl,h+1}1≤h≤H .

end for

Computational issues Optimal planning may be compu-
tationally intractable even for a given MDP, so it is com-
mon in the literature to assume access to an approximate
MDP planner Γ(M, ε) which returns an ε-optimal policy
for M . Given such a planner Γ, if it is possible to obtain
(through extended value iteration [Jaksch et al., 2010] or
otherwise) an efficient planner Γ̃(M, ε) which returns an
ε-optimal policy for the most optimistic MDP from a fam-
ily M, then we modify PSRL and GP-UCRL to choose
πl = Γ(Ml,

√
H/l) and πl = Γ̃(Ml,

√
H/l) respec-

tively at every episode l. It follows that this adds only an
O(
√
T ) factor in the respective regret bounds. The design

of such approximate planners for continuous state and ac-
tion spaces remains a subject of active research, whereas
our focus in this work is on the statistical efficiency of the
online learning problem.

4 MAIN RESULTS

In this section, we provide our main theoretical upper
bounds on the cumulative regret. All the proofs are de-
ferred to the appendix for lack of space.

4.1 Preliminaries and assumptions

Maximum Information Gain (MIG) Let f : X → R
be a (possibly random) real-valued function defined on a
domain X . For each A ⊂ X , let fA := [f(x)]x∈A denote
a vector containing f ’s evaluations at each point in A and
YA denote a noisy version of fA obtained by passing fA
through a channel P [YA|fA]. The Maximum Information
Gain (MIG) about f after t noisy observations is defined as
γt(f,X ) := maxA⊂X :|A|=t I(fA;YA), where I(X;Y ) de-
notes the Shannon mutual information between two jointly
distributed random variables X,Y . If f ∼ GPX (0, k) and
the channel is iid GaussianN (0, λ), then γt(f,X ) depends
only on k,X , λ Srinivas et al. [2009]. But the dependency
on λ is only of Õ(1/λ) and hence in this setting we denote

MIG as γt(k,X ) to indicate the dependencies on k and X
explicitly. IfX ⊂ Rd is compact and convex, then γt(k,X )
is sublinear in t for different classes of kernels; e.g. for the
linear kernel5 γt(k,X ) = Õ(d ln t) and for the Squared
Exponential (SE) kernel6, γt(k,X ) = Õ

(
(ln t)d

)
.

Composite kernels Let X = X1×X2. A composite ker-
nel k : X ×X → R can be constructed by using individual
kernels k1 : X1 × X1 → R and k2 : X2 × X2 → R. For
instance, a product kernel k = k1 ⊗ k2 is obtained by set-
ting (k1⊗k2)

(
(x1, x2), (x′1, x

′
2)
)

:= k1(x1, x
′
1)k2(x2, x

′
2).

Another example is that of an additive kernel k = k1 ⊕ k2

by setting (k1 ⊕ k2)
(
(x1, x2), (x′1, x

′
2)
)

= k1(x1, x
′
1) +

k2(x2, x
′
2). Krause and Ong [2011] bound the MIG for

additive and product kernels in terms of the MIG for indi-
vidual kernels as

γt(k1 ⊕ k2,X ) ≤ γt(k1,X1) + γt(k2,X2) + 2 ln t, (4)

and, if k2 has rank at most d (i.e. all kernel matrices over
any finite subset of X2 have rank at most d), as

γt(k1 ⊗ k2,X ) ≤ dγt(k1,X1) + d ln t. (5)

Therefore, if the MIGs for individual kernels are sublin-
ear in t, then the same is true for their products and ad-
ditions. For example, the MIG for the product of a d1-
dimensional linear kernel and a d2-dimensional SE kernel
is Õ

(
d1(ln t)d2

)
.

Regularity assumptions (A2) Each of our results in this
section will assume that R? and P ? have small norms in
the Reproducing Kernel Hilbert Spaces (RKHSs) associ-
ated with kernels kR and kP respectively. An RKHS of
real-valued functions X → R, denoted by Hk(X ), is com-
pletely specified by its kernel function k(·, ·) and vice-
versa, with an inner product 〈·, ·〉k obeying the reproduc-
ing property f(x) = 〈f, k(x, ·)〉k for all f ∈ Hk(X ).
The induced RKHS norm ‖f‖k =

√
〈f, f〉

k
is a mea-

sure of smoothness of f with respect to the kernel func-
tion k. We assume known bounds on the RKHS norms
of the mean reward and mean transition functions: R? ∈
HkR(Z),

∥∥R?∥∥kR ≤ BR and P ? ∈ HkP (Z̃),
∥∥P ?∥∥kP ≤

BP , where Z := S ×A and Z̃ := Z × {1, . . . ,m}.

Noise assumptions (A3) For the purpose of this section,
we assume that the noise sequence {εR,l,h}l≥1,1≤h≤H is
conditionally σR-sub-Gaussian, i.e., there exists a known
σR ≥ 0 such that for any η ∈ R,

E
[
exp(η εR,l,h)

∣∣ FR,l,h−1

]
≤ exp

(
η2σ2

R/2
)
, (6)

where FR,l,h−1 is the sigma algebra generated by
the random variables {sj,k, aj,k, εR,j,k}1≤j≤l−1,1≤k≤H ,
{sl,k, al,k, εR,l,k}1≤k≤h−1, sl,h and al,h. Similarly,

5k(x, x′) = xTx′.
6k(x, x′) = exp

(
−‖x− x′‖22 /2l

2
)
, l > 0.
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the noise sequence {εP,l,h}l≥1,1≤h≤H is assumed to be
conditionally component-wise independent and σP -sub-
Gaussian, in the sense that there exists a known σP ≥ 0
such that for any η ∈ R and 1 ≤ i ≤ m,

E
[
exp

(
ηεP,l,h(i)

) ∣∣ FP,l,h−1

]
≤ exp

(
η2σ2

P /2
)
,

E
[
εP,l,hε

T
P,l,h

∣∣ FP,l,h−1

]
= I,

(7)

where FP,l,h−1 is the sigma algebra generated by
the random variables {sj,k, aj,k, εP,j,k}1≤j≤l−1,1≤k≤H ,
{sl,k, al,k, εP,l,k}1≤k≤h−1, sl,h and al,h.

4.2 Regret Bound for GP-UCRL in Kernelized MDPs

We run GP-UCRL (Algorithm 1) using GP priors and
Gaussian noise models as given in Section 3.2. Note that,
in this section, though the algorithm relies on GP priors, the
setting under which it is analyzed is ‘agnostic’, i.e., under
a fixed but unknown true MDP environment.

Choice of confidence sets At the beginning of each
episode l, GP-UCRL constructs the confidence set CR,l as

CR,l =
{
f : |f(z)− µR,l−1(z)| ≤ βR,lσR,l−1(z)∀z ∈ Z

}
,

(8)
where µR,l(z) and σR,l(z) are as defined in (2) with λR =

H . βR,l := BR+
σR√
H

√
2
(

ln(3/δ) + γ(l−1)H(R)
)
, where

γt(R) ≡ γt(kR,Z) denotes the maximum information
gain (or an upper bound on the maximum information gain)
about any f ∼ GPZ(0, kR) after t noisy observations
obtained by passing f through an iid Gaussian channel
N (0, H).

Similarly, GP-UCRL constructs the confidence set CP,l as

CP,l =
{
f : ‖f(z)− µP,l−1(z)‖2 ≤ βP,l ‖σP,l−1(z)‖2 ∀z ∈ Z

}
.

(9)
Here, µP,l(z) := [µP,l(z, 1), . . . , µP,l(z,m)]T and
σP,l(z) := [σP,l(z, 1), . . . , σP,l(z,m)]T , where µP,l(z, i)
and σP,l(z, i) are as defined in (3) with λP = mH .

βP,l := BP +
σP√
mH

√
2
(

ln(3/δ) + γm(l−1)H(P )
)
,

where γt(P ) ≡ γt(kP , Z̃) denotes the maximum infor-
mation gain about any f ∼ GPZ̃(0, kP ) after t noisy ob-
servations obtained by passing f through an iid Gaussian
channel N (0,mH).

Theorem 1 (Frequentist regret bound for GP-UCRL)
Let assumptions (A1) - (A3) hold, kR(z, z) ≤ 1 and
kP ((z, i), (z, i)) ≤ 1 for all z ∈ Z and 1 ≤ i ≤ m7. Then
for any 0 ≤ δ ≤ 1, GP-UCRL, with confidence sets (8) and
(9), enjoys, with probability at least 1− δ, the regret bound

Regret(T ) ≤ 2βR,τ
√

2eHγT (R)T + 2LβP,τ
√

2emHγmT (P )T

+(LD + 2BRH)
√

2T ln(3/δ),

7This is called the bounded variance property of kernels and it
holds for most of the common kernels (e.g. Squared Exponential).

where T := τH is the total time in τ episodes, βR,τ =

BR+
σR√
H

√
2
(

ln(3/δ) + γ(τ−1)H(R)
)

and βP,τ = BP +

σP√
mH

√
2
(

ln(3/δ) + γm(τ−1)H(P )
)
, L is a known upper

bound over the global Lipschitz constant (1) L? for the fu-
ture value function of M? and D := maxs,s′∈S ‖s− s′‖2
denotes the diameter of S.

Interpretation of the bound As MIG increases with
the number of observations, βR,l and βP,l increase with

l. Hence βR,τ = Õ
(
BR +

σR√
H

√
γT (R)

)
and βP,τ =

Õ
(
BP +

σP√
mH

√
γmT (P )

)
. Thus, Theorem 1 implies

that the cumulative regret of GP-UCRL after T timesteps
is Õ

((√
HγT (R) + γT (R)

)√
T + L

(√
mHγmT (P ) +

γmT (P )
)√
T + H

√
T
)

with high probability. Hence, we
see that the cumulative regret of GP-UCRL scales linearly
with γT (R) and γmT (P ). As γT (R) and γmT (P ) grow
sublinearly with T for most popular kernels (eg. Squared
Exponential (SE), polynomial), the cumulative regret of
GP-UCRL can grow sublinearly with T . We illustrate this
with the following concrete examples:

(a) Example bound on γT (R): Recall that γT (R) ≡
γT (kR,Z), where the kernel kR is defined on the product
space Z = S × A. If k1 and k2 are kernels on the state
space S ⊂ Rm and the action space A ⊂ Rn, respectively,
and kR is an additive kernel of k1 and k2, then (4) implies
that γT (kR,Z) ≤ γT (k1,S) + γT (k2,A) + 2 lnT . Fur-
ther, if both S, A are compact and convex, and both k1, k2

are Squared Exponential (SE) kernels, then γT (k1,S) =
Õ
(
(lnT )m

)
and γT (k2,A) = Õ

(
(lnT )n

)
. Hence in this

case γT (R) = Õ
(
(lnT )max{m,n}).

(b) Example bound on γmT (P ): Recall that γmT (P ) ≡
γmT (kP , Z̃), where the kernel kP is defined on the product
space Z̃ = Z × {1, . . . ,m}. If k3 and k4 are kernels on
the product space Z and the index set {1, . . . ,m}, respec-
tively, and kP is a product kernel of k3 and k4, then (5)
implies that γmT (kP , Z̃) ≤ mγmT (k3,Z) + m ln(mT ),
since all kernel matrices over any subset of {1, . . . ,m}
have rank at most m. Further, if k5 is a SE kernel on
the state space S, k6 is a linear kernel on the action
space A and k3 is a product kernel, then (5) implies that
γmT (k3,Z) = Õ

(
n
(

ln(mT )
)m)

, as the rank of an n-
dimensional linear kernel is at most n. Hence, in this case,
γmT (P ) = Õ

(
mn
(

ln(mT )
)m)

.

Proof Sketch for Theorem 1 First, see that when R? ∈
CR,l and P ? ∈ CP,l, then the following are true:

(a) M? lies in Ml, the family of MDPs constructed by
GP-UCRL. Hence VMl

πl,1
(sl,1) ≥ VM?

π?,1
(sl,1), where Ml

is the most optimistic realization from Ml, and thus
Regret(T ) ≤

∑τ
l=1

(
VMl
πl,1

(sl,1)− VM?
πl,1

(sl,1)
)
.
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(b) Optimistic rewards/transitions do not deviate too
much:

∣∣RMl
(zl,h)−R?(zl,h)

∣∣ ≤ 2βR,l σR,l−1(zl,h) and∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2
≤ 2βP,l ‖σP,l−1(zl,h)‖2, since

by construction RMl
∈ CR,l and PMl

∈ CP,l.

Further it can be shown that:

(c) Cumulative predictive variances are bounded:∑τ
l=1

∑H
h=1 σR,l−1(zl,h) ≤

√
2eHγT (R)T and∑τ

l=1

∑H
h=1 ‖σP,l−1(zl,h)‖2 ≤

√
2emHγmT (P )T .

(d) Bounds on deviations of rewards and
transitions imply bounds on deviation of
the value function:

∑τ
l=1

(
VMl
πl,1

(sl,1) −
VM?
πl,1

(sl,1)
)
≤

∑τ
l=1

∑H
h=1

∣∣RMl
(zl,h)−R?(zl,h)

∣∣ +

L
∑τ
l=1

∑H
h=1

∥∥PMl
(zl,h)− P ?(zl,h)

∥∥
2

+ (LD +

2BRH)
√

2τH ln(3/δ), with probability at least 1− δ/3.

The proof now follows by combining (a), (b), (c) and (d),
and showing the confidence set properties P

[
R? ∈ CR,l

]
≥

1− δ/3 and P
[
P ? ∈ CP,l

]
≥ 1− δ/3.

4.3 Regret Bound for PSRL

Osband and Van Roy [2016] show that if we have a fre-
quentist regret bound for UCRL in hand, then we can ob-
tain a similar bound (upto a constant factor) on the Bayes
regret (defined as the expected regret under the prior distri-
bution Φ) of PSRL. We use this idea to obtain a sublinear
bound on the Bayes regret of PSRL for kernelized MDPs.

Theorem 2 (Bayes regret of PSRL under RKHS prior)
Let assumptions (A1) - (A3) hold, kR(z, z) ≤ 1 and
kP ((z, i), (z, i)) ≤ 1 for all z ∈ Z and 1 ≤ i ≤ m. Let Φ
be a (known) prior distribution over MDPs M?. Then, the
Bayes regret of PSRL satisfies

E [Regret(T )] ≤ 2αR,τ
√

2eHγT (R)T

+3E [L?]αP,τ
√

2emHγmT (P )T + 3BR,

where T = τH is the total time in τ episodes, L? is the
global Lipschitz constant for the future value function (1)

of M?, αR,τ = BR +
σR√
H

√
2
(

ln(3T ) + γ(τ−1)H(R)
)

and αP,τ = BP +
σP√
mH

√
2
(

ln(3T ) + γm(τ−1)H(P )
)
.

Theorem 2 implies that the Bayes regret of PSRL af-
ter T timesteps is Õ

((√
HγT (R) + γT (R)

)√
T +

E [L?]
(√

mHγmT (P )+γmT (P )
)√
T+H

√
T
)

, and thus
has the same scaling as the bound for GP-UCRL.

Remark. Observe that when H ≤ γT (R) and mH ≤
γmT (P )8, then the regret of GP-UCRL is Õ

((
γT (R) +

8Both conditions hold, for instance, if H = O(lnT ) with a
polynomial or SE kernel.

LγmT (P )
)√
T
)

with high probability and the Bayes regret

of PSRL is Õ
((
γT (R)+E [L?] γmT (P )

)√
T
)

, where both
L (an upper bound on L?) and E [L?] basically measure the
connectedness of the MDP M?.

Comparison with the eluder dimension results Osband
and Van Roy [2014] assume that R? and P ? are elements
from two function classes R and P , respectively, with
bounded ‖·‖2-norm, and show that PSRL obtains Bayes re-

gret Õ
((√

dK(R)dE(R)+E [L?]
√
dK(P)dE(P)

)√
T
)

,
where dK(F) (Kolmogorov dimension) and dE(F) (eluder
dimension) measure the “complexity” of a function class
F . As a special case, if both R? and P ? are lin-
ear functions in finite dimension d, then they show that
dE(R), dK(R) = Õ(d) and dE(P), dK(P) = Õ(md).
In our setting, R? and P ? are RKHS functions, and hence,
by the reproducing property, they are linear functionals in
(possibly) infinite dimension. From this viewpoint, all of
dE(R), dK(R), dE(P) and dK(P) can blow upto infin-
ity yielding trivial bounds. Therefore, we need a suitable
measure of complexity of the RKHS spaces, and a single
information-theoretic quantity, namely the Maximum In-
formation Gain (MIG), is seen to serve this purpose.

To the best of our knowledge, Theorem 1 is the first fre-
quentist regret bound and Theorem 2 is the first Bayesian
regret bound in the kernelized MDP setting (i.e., when the
MDP model is from an RKHS class). We see that both
algorithms achieve similar regret bounds in terms of de-
pendencies on time, MDP connectedness and Maximum
Information Gain. However, Theorem 1 is a stronger prob-
abilistic guarantee than Theorem 2 since it holds with high
probability for any MDP M? and not just in expectation
over the draw from the prior distribution.

As special cases of our results, we now derive regret bounds
for two representative RL domains, namely tabular MDPs
and linear quadratic control systems.

Tabula-rasa MDPs In this case, both S and A are finite
and expressed as S = {1, . . . , |S|} and A = {1, . . . , |A|}.
This corresponds to taking kR and kP as product ker-
nels, i.e., kR((i, j), (i′, j′)) = kP ((i, j), (i′, j′)) =
k1(i, i′)k2(j, j′) for all 1 ≤ i, i′ ≤ |S| and 1 ≤ j, j′ ≤ |A|,
where both k1 and k2 are linear kernels with dimensions
|S| and |A|, respectively, such that k1(i, i′) = 1{i=i′} and
k2(j, j′) = 1{j=j′}. Hence (5) implies that γT (kR,Z) ≤
|A| γT (k1,S) + |A| lnT , as the rank of k2 is at most |A|.
Further, as k1 is a linear kernel, γT (k1,S) = Õ(|S| lnT ),
hence γT (R) ≡ γT (kR,Z) = Õ(|S| |A| lnT ). Simi-
larly, γmT (P ) = Õ(|S| |A| lnT ) as in this case m = 1.
Plugging these into our bounds with the Lipschitz constant
L? = O(H), we see that both GP-UCRL and PSRL suffer
regret Õ(H |S| |A|

√
T ) for tabula-rasa MDPs.
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Control of Bounded Linear Quadratic Systems Con-
sider learning under the standard discrete-time, episodic,
linear quadratic regulator (LQR) model: at period h of
episode l,

sl,h+1 = Asl,h +Bal,h + εP,l,h,

rl,h = sTl,hPsl,h + aTl,hQal,h + εR,l,h,
(10)

where rl,h ∈ R is the reward obtained by executing action
al,h ∈ A ⊂ Rn at state sl,h ∈ S ⊂ Rm and sl,h+1 is
the next state. P ∈ Rm×m, Q ∈ Rn×n, A ∈ Rm×m and
B ∈ Rm×n are unknown matrices with P and Q assumed
positive-definite, and εR,l,h, εP,l,h follow a sub-Gaussian
noise model as per 6 and 7, respectively.

Corollary 1 (Regret of GP-UCRL for LQR) Let M? be
a linear quadratic system (10), and both S and A be com-
pact and convex. Let H ≤ min{(m2 + n2) lnT, (m +
n) ln(mT )}9. Then, for any 0 < δ ≤ 1, GP-UCRL enjoys,
with probability at least 1− δ, the regret bound

Regret(T ) = Õ
((
BR(m2+n2)+LBPm(m+n)

)√
T ln(1/δ)

)
.

Here, BR =
(
‖P‖2F + ‖Q‖2F

)1/2
and BP =

(
‖A‖2F +

‖B‖2F
)1/2

, L is a known upper bound over Dλ1, D =
maxs,s′∈S ‖s− s′‖2 is the diameter of S and λ1 is the
largest eigenvalue of the positive definite matrix G, which
is a unique solution to the Riccati equations Lancaster and
Rodman [1995] for the unconstrained optimal value func-
tion V (s) = sTGs.

Proof The proof uses composite kernels, based on linear
and quadratic kernels, to represent the LQR model. First,
note that the mean reward function is R?(s, a) = sTPs +
aTQa and the mean transition function is P ?(s, a) = As+
Ba. Now recall our notation z = (s, a), z′ = (s′, a′),
Z = S × A and Z̃ = Z × {1, . . . ,m}. Then defining
P ? = [A1, . . . , Am, B1, . . . , Bm]T , where Ai, 1 ≤ i ≤ m
and Bi, 1 ≤ i ≤ m are the rows A and B respectively,
we see that P ? lies in the RKHS HkP (Z̃) with the kernel
kP
(
(z, i), (z′, j)

)
= k1(z, z′)k2(i, j), where k1(z, z′) =

sT s′ + aTa′ and k2(i, j) = 1{i=j}, 1 ≤ i, j ≤ m. Since
kP is a product of the kernels k1 and k2, (5) implies that

γt(P ) ≡ γt(kP , Z̃) ≤ mγt(k1,Z) +m ln t, (11)

as the rank of k2 is atmost m. Further k1 is a sum of two
linear kernels, defined over S and A respectively. Hence
(4) implies γt(k1,Z) ≤ Õ(m ln t) + Õ(n ln t) + 2 ln t =
Õ
(
(m + n) ln t

)
, since the MIG of a d-dimensional lin-

ear kernel is Õ(d ln t). Hence, by (11), we have γt(P ) =
Õ
(
m(m+ n) ln t

)
.

Similarly defining R? = [P1, . . . , Pm, Q1, . . . , Qn]T ,
wherePi, 1 ≤ i ≤ m andQi, 1 ≤ i ≤ n are the rowsP and

9This assumption naturally holds in most settings and is used
here only for brevity.

Q respectively, we see that R? lies in the RKHS HkR(Z)
with the quadratic kernel kR(z, z′) = (sT s′)2 + (aTa′)2.
Since kR is an additive kernel, (4) implies that

γt(R) = γt(kR,Z) ≤ γt(k3,S)+γt(k3,A)+2 ln t, (12)

where k3(x, x′) := (xTx′)2 = (xTx′)(xTx′) is a
quadratic kernel and thus a product of two linear ker-
nels. Hence, (5) implies that γt(k3,S) ≤ m Õ(m ln t) +
m ln t = Õ(m2 ln t), since the rank of an m-dimensional
linear kernel is at most m. Similarly γt(k3,A) =
Õ(n2 ln t). Hence from (12), we have γt(R) = Õ

(
(m2 +

n2) ln t
)
. Now, following a similar argument as by Os-

band and Van Roy [2014, Corollary 2], we can show that
the Lipschitz constant L? = Dλ1. Further, in this set-
ting, we take BR =

∥∥R?∥∥kR =
(
‖P‖2F + ‖Q‖2F

)1/2
and BP =

∥∥P ?∥∥kP =
(
‖A‖2F + ‖B‖2F

)1/2
. Now the

result follows from Theorem 1 using H ≤ min{(m2 +
n2) lnT, (m+ n) ln(mT )}.
Corollary 2 (Bayes regret of PSRL for LQR) LetM? be
a linear quadratic system defined as per (10), Φ be the
(known) distribution of M? and both S and A be com-
pact and convex. Let H ≤ min{(m2 + n2) lnT, (m +
n) ln(mT )}. Then the Bayes regret of PSRL satisfies

E [Regret(T )] = Õ
((
BR(m2+n2)+Dλ1BPm(m+n)

)√
T
)
,

where BR, BP , D and λ1 are as given in Corollary 1.

Proof Using the similar arguments as above and noting
that E [L?] = Dλ1, the result follows from Theorem 2.

Remark. Corollary 2 matches the bound given in Osband
and Van Roy [2014] for the same bounded LQR problem.
But the analysis technique is different here, and this result
is derived as a special case of more general kernelized dy-
namics. Corollary 1 (order-wise) matches the bound given
in Abbasi-Yadkori and Szepesvári [2011] if we restrict their
result to the bounded LQR problem.

5 DISCUSSION
We have derived the first regret bounds for RL in the
kernelized MDP setup with continuous state and action
spaces, with explicit dependence of the bounds on the max-
imum information gains of the transition and reward func-
tion classes. In Appendix C, we have also developed the
Bayesian RL analogue of Gaussian process bandits Srini-
vas et al. [2009], i.e., learning under the assumption that
MDP dynamics and reward behavior are sampled accord-
ing to Gaussian process priors. We have proved Bayesian
regret bounds for GP-UCRL and PSRL under GP priors.
We only have a (weak) Bayes regret bound for PSRL in
kernelized MDPs, and would like to examine if a frequen-
tist bound also holds. Another concrete direction is to ex-
amine if similar guarantees can be attained in the model-
free setup, which may obviate complicated planning in the
model-based setup here.
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