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Abstract

In many prediction tasks such as medical di-
agnostics, sequential decisions are crucial to
provide optimal individual treatment. Bud-
get in real-life applications is always limited,
and it can represent any limited resource such
as time, money, or side e↵ects of medications.
In this contribution, we develop a POMDP-
based framework to learn cost-sensitive het-
erogeneous cascading systems. We provide
both the theoretical support for the intro-
duced approach and the intuition behind it.
We evaluate our novel method on some stan-
dard benchmarks, and we discuss how the
learned models can be interpreted by human
experts.

1 Introduction

In medical applications, there is an acute need for se-
quential rules to acquire patients data, since medical
measurements vary tremendously in acquisition cost
and in predictive power. There exist numerous exam-
ples from clinical practice that illustrate the impor-
tance to find a trade o↵ between predictive error of
a model and the cost of features used by this model.
E.g., the type 2 diabetes remission after a bariatric
surgery can be predicted using a set of cheap clinical
parameters such as diabetes duration, age, etc., and
the prediction is quite accurate for some subjects [1].
However, for a particular group of individuals such a
simple model is not accurate enough, and to increase
the predictive accuracy, it is advised to measure the C-
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Figure 1: An example of an individualized diagnos-
tic protocol: heterogeneous data sources involved in
the health status prediction, and their corresponding
costs.

peptide what is a rather expensive and invasive proce-
dure, and should be avoided for majority of individuals
[11]. In this case the clinicians would prefer a cascade
classifier which rejects a decision at the first stage if it
is not accurate enough, and if there is a hope that a
more expensive additional measurement would provide
a more accurate patients stratification. Another mo-
tivating example is illustrated by Figure 1 that shows
that a patient can be stratified using either cheap clini-
cal parameters (30 USD), or clinical and metabolomics
data (what is more expensive and costs 180 USD), or
that the expensive metagenomics measurements are
needed in addition to the clinical and metabolomics
data (with the overall cost more than 1000 USD).

Dynamic diagnostic protocols are individually tailored
acquisitions of patients data with the aim to provide
the most accurate diagnostics for the lowest cost. In
contrast with standard approach where all patients
follow the same medical protocol, dynamic patients
treatment incorporates heterogeneous data, and also
the order of medical analyses can vary from one pa-
tient to another. Such a dynamic process of patients
data acquisition can be called an adaptive strategy.

The goal of cascade classifiers under budget constraints
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is to classify examples with low cost, and to minimise
the number of expensive or time-consuming features
(or measurements). Here, under cost we mean the cost
paid by a learner during training to acquire relevant
information, and at performance time, there is a cost
to pay to get relevant information about the current
observation. The cost can reflect money or time for
data acquisition, or even side e↵ects of a treatment.

We adopt a POMDP (Partially Observable Markov
Decision Process) framework to model individual op-
timal policies under budget constraints. In contrast to
much of the existing literature, we propose a method
which simultaneously learns classification and rejection
models together with the personalized feature selection.

Our contribution is multi-fold, and can be summarized
as follows:

• We propose a POMDP framework for handling a
general dynamic diagnostic protocol setting, and
introduce an original methodology to learn indi-
vidual adaptive strategies;

• Our method learns cost-sensitive heterogeneous
cascading systems;

• We show how a model learned with the proposed
method can be interpreted, and how its output
can be explained by human experts;

• Numerical experiments on benchmark data show
that the proposed method achieves the state-of-
the-art performance in terms of accuracy. The
qualitative evaluation illustrates that the individ-
ualised dynamic strategies allow to stratify ob-
servations what can be used in the methods of
personalised medicine.

The paper is organised as follows. We discuss the re-
lated work in Section 2. We introduce our approach
in Section 3. The interpretable deep learning methods
are discussed in Section 4. Numerical experiments are
shown in Section 5. Concluding remarks and perspec-
tives close the paper.

2 Related Work

In this work, we focus on multi-stage sequential reject
classifiers that reduce the cost of data acquisition. A
number of methods to post-process classifiers in order
to reduce their test time complexity were proposed.
The largest part of them uses a cascade of classifiers
with a reject option. In a cascade, at each stage, a clas-
sifier can either classify an input or reject it, and send
it to the next classifiers [22, 3]. Most cascade clas-
sifiers are usually designed for binary problems, and

aim to reduce computational cost during prediction.
The multi-stage cascade classifiers deal with multi-
class problems, and they can make a classification de-
cision at any stage.

The learning with rejection framework aims to learn
simultaneously two functions: a classifier to label an
observation and a rejection function [6]. The trade-
o↵ between predictive accuracy and rejection rate was
studied by [4] where the reject classifiers were consid-
ered in the Bayesian setting.

Recent works in the non-Bayesian scenario introduce
classifiers with a reject option where the reject region
is defined via a distance to the separating hyperplane.
A seminal work of [2] provided a theoretical analysis
for a discontinuous loss function taking into account
the rejection cost.

The problem of classification with reject where a clas-
sifier has an option to abstain from taking decision
about a label, was discussed in a number of recent
publications, and there have been several attempts to
integrate a reject option in the state-of-the-art classi-
fiers such as support vector machines [9, 7]. A cas-
cade system of classifiers with a reject option which
minimizes the cost to stratify patients was introduced
by [8]. The idea to construct a cascade classifier using
trees was exploited by several research teams, e.g., [12]
formalised the problem of learning cost-e↵ective mod-
els as a Markov decision tree, and employed a vari-
ant of the upper confidence bound for trees (UCT).
A two-stage algorithm based on random forests and
an e�cient prunning of all trees simultaneously was
proposed by [16].

The most important aspect of cascade classifiers is to
learn a function which decides whether to reject an
observation or to label it. A problem how to learn a
function which is able to identify regions where a low
prediction cost model is su�cient compared to a high
prediction cost model was considered by [15]. At test
time, the method uses the gating function to choose a
prediction model.

In [21], the problem of supervised sequential classifi-
cation under budget is formulated as a Markov Deci-
sion Process (MDP). However, the order of measure-
ments or features is fixed and the paper focuses to
find reject regions based on known decision bound-
aries, which means that the classification models of all
stages are learned in advance and are available. The
cascade problem is formulated as a simple dynamic
programming, and the problem reduced to learning
reject regions which are subject specific.

Reinforcement learning is actively explored to pre-
scribe optimal treatment where an assessment score
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of patients status is used as a reward. A combina-
tion of hidden Markov models and deep Q-networks
was shown to learn optimal individual heparin dosing
for intensive care unit patients [17]. Another combi-
nation of modern machine learning methods, namely,
of a sparse autoencoder and policy iteration was used
in [24] to model personalized optimal glycemic trajec-
tories. [18] has shown that optimal quantity of intra-
venous medication can be estimated with double deep
Q-learning. Tabular Q-learning was proposed in [20]
to recommend treatment for schizophrenia patients. A
medication strategy for non-small cell lung cancer can
be learned by approximating the Q-function using a
support vector regression which can incorporate cen-
sored data [25].

Recently [23] pointed out that the modern dynamic
treatment recommendation systems are learned either
by a supervised method, or using reinforcement learn-
ing. To combine their benefits, [23] introduced a su-
pervised reinforcement approach where recurrent neu-
ral networks are used to solve a POMDP.

3 From POMDP to MDP in Cascade

Learning with Reject Option

3.1 Context and Preliminaries

In real-world decision making applications, uncer-
tainty comes from two sources: uncertainty related to
the e↵ects of actions and uncertainty about the cur-
rent state, i.e., partial observability. The POMDP is
a widely used framework to deal with these uncertain-
ties. Compared to fully observable MDPs, the uncer-
tainty about the current state is a characteristic of
POMDPs. In our scenario, the features are gradu-
ally observed along the cascade, and a decision can
be made from partial observations. The problem can
naturally be modeled as a POMDP.

In the problem of diagnostic protocol learning, at
each stage of a cascade classifier, the system decides
whether to classify an observation, or to continue data
acquisition. The process of data acquisition ends when
the system is confident enough to return a prediction.
What is specific to the task of diagnostic protocol
learning, it is that taking an action, i.e., new data
acquisition, does not change the state of the patient.
Such a POMDP is known as a purely epistemic MDP.
A purely epistemic MDP [19] is a much less studied
framework, where the actions bring new information
without changing the current state.

It is challenging to solve a POMDP, and the problem
is often reformulated as a MDP with extended states,
e.g., the belief-state MDP or the history-state MDP
(see e.g. [10]). For the sake of simplicity, we choose to

build a history-state MDP, where each state consists
of the history of all measurements done so far on a
patient. Note that such a state does not contain un-
observed features or the class of interest. This leads to
a fully observable MDP, where standard reinforcement
learning algorithms can be applied.

To facilitate the reading, we provide the most impor-
tant notations in Table 1. Here, for a purpose of clar-

Table 1: Important notations

Notation Description

L Number of classes
K Number of features
t Current depth in the cascade
[N ] Set of integers from 1 to N
(xi, yi)i2[N ] Observations with classes
xk Feature value k
x[t] Feature values collected prior to t
at Action at step t,

< 0 : feature index,
> 0 : class label

a[t] Vector of actions prior to t
c Cost function
V ⇧(s) Expected cost from state s

under policy ⇧
Q⇧(s, a) Cost-to-go to a under policy ⇧
Qw(s, a) Approximation of function Q
fw Classifier
rw Rejection/selection model
M[t] Mask corresponding to a[t]
�w(.) Weight function of softmax regression

ity, we present our methods with two restrictions. In
real life applications, (1) a measurement may be asso-
ciated with a group of features as a matrix, sequence,
graph or hyper-graph and (2) the cost of a wrong clas-
sification depends on the estimated label (e.g false pos-
itive or false negative). To simplify the presentation
but without any loss of generality, we consider that
each measurement is related to one feature only. All
the results and observations presented below can be
extended directly to any shape of data. We also asso-
ciate a cost of 1 to any misclassification. Di↵erentiated
weights are hyperparameters of the cascade classifier
which can be integrated directly.

3.2 Problem Statement

Let (xi, yi)i2[N ] be a training sample from a distri-
bution D : (X,Y ) ⇠ D. We will omit the super-
script i in the definition of the supervised learning
problem: predicting y from partial or fully observ-
able x. The dependent variable y belongs to the set
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of classes [L] = {1, . . . , L} The variable x comes from
a large set X consisting of K subspaces of features:
x = (xk)k2[K] 2 X with X = X1 ⇥ . . . ⇥ XK . Each
feature k corresponds to a specific measurement asso-
ciated to an acquisition cost �k. At each step of the
cascade, the decision process can either choose to ob-
serve a new feature or to stop and to return the class
ŷ. The cost of a wrong classification is 1. The aim is to
determine a policy ⇡ of actions minimizing the global
cost.

At step t 2 [K], the action at recommended by the
policy belongs to {�K, . . . , L}. In particular, we define
two types of actions:

1. at 2 {�K, . . . ,�1}, the policy recommends to ac-
quire feature of index �at.

2. at 2 {1, . . . , L}, the policy recommends to stop
acquiring new features, and to provided the pre-
dicted label at.

A third (degenerate) category corresponds to the case
where the process has been stopped at a previous step:
at = 0 if and only if at�1 > 0.

3.3 Cascade with Abstention

The state st summarizes all the observations from step
1 to t : st = (a[t];x[t]), where a[t] = (ai)i2[t] and
x[t] = (x�ai)i2[t] with the convention x�ai = ; when
ai > 0. For the sake of compactness in the following
definitions, we set s0 = ;. The cost function is:

c(st) =

8
<

:

1at 6=y with y ⇠ Y | st , if at > 0,
��at , if at < 0,
0 , otherwise.

(1)

If at = 0, the cost is null (third circumstance). Note
that the cost at step t strongly depends on the last
action at which does not appear explicitly in the pa-
rameter as it is included in st. The global cost C and
the cost from step k, noted Ck, are given by:

C(sK) =
X

t2[K]

c(st) and Ct(sK) =
X

k2[t:K]

c(st) , (2)

where [t : K] = {t, . . . ,K}. The policy ⇡ is determin-
istic and maps the action at with the available data
st�1: at = ⇡(st�1). Let C⇡ be the expected cost asso-
ciated to policy ⇡: C⇡ = ED[C(sK)]. The cost-to-go
from step t, noted V ⇡, only depends on policy and
current state st�1:

V ⇡(st�1) = ED[Ct(sK) | st�1]. (3)

Q⇡(st�1, at) denotes the cost to take a further step in
the direction at, also named the cost-to-go to at:

Q⇡(st�1, at) = ED [Ct(sK) | st�1, at] . (4)

According to the nature of the action, we have:

Q⇡(st�1, at) =

8
<

:

PD(at 6= Y | st�1) , if at > 0
�at + V ⇡(st) , if at < 0,
0 , if at = 0.

We emphasize that the order of actions prior to step
t does not modify the cost-to-go from step t. The ac-
curacy of the model based on st�1 is compared to the
acquisition cost of new features and the potential gain
in terms of accuracy. Thus, the decision at step t is
based on the current state st�1, the “historic state” of
observations to step t, but their order does not play
any role. The vector a[t�1] might then be thought as
a vector of indices to identify the feature values x[t�1].

The following properties give some insights in the op-
timal solution ⇡⇤:

⇡? = argmin
⇡

C⇡. (5)

Theorem 1. Let ŷ and r̂ be two natural candidates in
case of classification and rejection when the distribu-
tion D is known:

ŷ = argmax
at2[L]

PD(at = Y | st�1) , (6)

and

r̂ = � argmin
at2[�K:�1]

Q⇡(st�1, at) . (7)

For all t 2 [K] (or to the end of the cascade), the
optimal solution of the MDP system satisfies:

⇡?(st�1) = a?t =

8
><

>:

ŷ , if max
at>0

PD(at = Y | st�1)

> 1� min
at<0

Q⇡(st�1, at)

r̂ , otherwise.

(8)

Proof. The trivial case where the cascade has been
stopped at a previous step is not considered in this
proof. Finding the optimal solution reduces to opti-
mize each single stage, and at step t, we have:

a?t = argmin
at2[�K:L]\{0}

Q⇧(st�1, at) . (9)

From there,

a?t = argmin
at2[�K:L]\{0}

[PD(at 6= Y | st�1)1{at>0}

+Q⇧(st�], at)1{at<0}]

= argmin
at2[�K:L]\{0}

[{1� PD(at = Y | st�1)}1{at>0}

+Q⇧(st�1, at)1{at<0}] .
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Thus, the optimal decision is to stop the feature ac-
quisition, and to recommend the class ŷ i↵:

min
at2[L]

[1� PD(at = Y | st�1)]

< min
at2[�K:�1]

Q⇧(st�1, at) ,

max
at2[L]

PD(at = Y | st�1)

> 1� min
at2[�K:�1]

Q⇧(st�1, at) .

If this inequality is not true, the optimal solution
would be reject (r̂) in favor of a new measurement.

4 Deep Models

In this section, we describe how we learn our cascad-
ing model. We apply the deep Q-learning to estimate
it. We are interested in particular in an interpretable
model which is able to stratify observations in several
groups to promote development of methods of person-
alized medicine.

4.1 Deep Q-Learning

DQN (deep Q-network) [14] combines reinforcement
learning with deep neural networks. We use the ver-
sion with the experience replay that aims to random-
ize the data order and to remove correlations in the
observation sequence. The complex function Q is ap-
proximated by one (or some) neural network(s) with
weights w, and the training procedure consists to ad-
just the w to the data through the Bellman equation.
At iteration j, the Q-learning process is based on the
following objective function:

L(wj) = EU(D)

h
L
�
y;Qwj (s, a)

�i
, (10)

with y = c + �mina0 Qw�
j
(s0, a0), where U(D) means

that the sample (s, a, c, s0) is drawn uniformly and
where L denotes a loss function. In our problem for-
mulation, � = 1, since we cannot neglect any cost paid
in the cascade. The parameters wj are the parameters
of the Q-network at iteration j, and w�

j are the weights
to compute the target at iteration j � 1.

The function Q is approximated by two deep neural
networks, fw and rw, corresponding to the classifier
(a > 0) and the rejection/selection model (a < 0).

Q⇡(s, a) ⇡ Qw(s, a) =

⇢
fw(s, a) , if a > 0
rw(s, a) , if a < 0.

(11)

The policy estimate is obtained by using the result
expressed in equation (8) (see Theorem 1, Section 3).

⇧w(s, a) =

(
yw , if min

a>0
fw(s, a) < min

a<0
rw(s, a)

rw , otherwise,
(12)

with yw = argmin
a>0

fw(s, a) and rw = argmin
a<0

rw(s, a).

4.2 Interpretable Aspects of the Classifier

Although real-valued “black box” classifiers are pow-
erful tools in medical diagnostics and prognostics, a
model that is able to explain its predictions is of a big
interest for clinicians [1]. We are aware that it is possi-
ble that there is a price to pay in accuracy for a model
which is simple and easily interpretable.

The inputs of both neural networks (fw and rw) are
the current state: st = (a[t];x[t]). The indices of fea-
tures already observed at current step t, noted a[t],
are encoded as a binary vector mask M[t] of size K: 1
if the feature k has been observed, 0 otherwise. The
value of the observed features x[t] might be extracted
from the vector x (all the features) by applying the
element-wise product with M[t]. Thus, the state st is
summarized by (M[t],M[t] � x). In this vector of size
2⇥K, an unobserved feature k is associated to a null
value for the k�th elements of both M[t] and M[t]�x.

The classifier fw is a deep neural network, composed of
fully connected layers, and the last layer is based on a
softmax regression. The fully connected layers provide
the parameters �w used in the final regression. They
return a L ⇥ K matrix of weights depending only on
the mask:

�w : (M[t]) ! �w(M[t]) = (�a
w(M[t]))a2[L] , (13)

where �a
w(M[t]) is a vector of size K. The final layer

corresponds to a softmax function taking the vector
M[t] � x:

fw(st, a) =
exp h�a

w(M[t]),M[t] � xiP
a>0

exp h�a
w(M[t]),M[t] � xi . (14)

Thus, the values of the observed features, M[t] � x,
are used only in the last layer. This together with the
small number of features used in most of the circum-
stances (see Figures 3 and 5) support the post hoc in-
terpretability of the classifier. Moreover, if the human
experts focus on feature k observed at time t in the
cascade, the product [�a0,k

w (M[t])��a,k
w (M[t])]xk is the

weight associated to the features of index k in the log-
arithm of the odds of action a against a0. This allows
to assess easily the importance and the uncertainty
associated to this feature in regard of the decision at
time t.

As the interpretability based on the sparsity and
the linearity could compromise the accuracy of our
method, we choose to associate the classifier with a
flexible rejection/selection model, rw which is a stan-
dard deep neural network composed of fully connected
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layers. Its ability to identify complex patterns yield-
ing to rejection should allow our model to identify the
complex cases for which extra information are needed.
The input of the rejection/selection model is the vector
(M[t],M[t] � x) and its output are the approximated
cost-to-go for all the actions which recommend the se-
lection of a new features (Qw(a, s))a2{�K,...,�1}.

4.3 Pretraining

There are two phases:

1. At first, the classifier is pretrained on all training
data. Each observation is associated to a mask
drawn randomly (uniform distribution).

2. The rejection/selection model can be pretrained
jointly with the classifier by a run of Q-learning.
This second phase is optional (details below).

In the second phase, the classifier has already been
pretrained. We then focus on the rejection/selection
model rw. Here, the di↵erence with the training relies
on the input of rw: only the masks are provided and
not the values of features already observed. The input
is (M[t], 0K) with 0K a null vector of size K. An impor-
tant consequence is that the rejection/selection model
is not subject-specific anymore. For a certain mask
(the labels of features already observed), the evalu-
ated cost-to-go to a new feature, rw(s, a) with a < 0,
do not depends of x[t]. The specific choice of reject-
ing or not is then based on the evaluated probability
of each label, fw(s, a) with a > 0. Thus, the second
phase of pretraining corresponds to the training of a
full cascade classifier model. However, the goal of this
model is to identify a unique order for the cascade,
optimised for all the subjects.

The model that we propose in this contribution is
much more richer, since it is able to identify personal-
ized order of features. During the final training phase,
the unique order of exploration estimated during the
pretraining is used as benchmark to evaluate paths
which are now subject specific. The second and op-
tional pretraining phase has two e↵ects:

• It decreases the variability of the exploration
path.

• It increases the accuracy and as a tradeo↵, the
number of features explored.

In the next section, we test the performance of two
versions of the introduced interpretable cascade classi-
fier with abstention. ICCA stands for our model with
only the first phase of pretraining (classifier). When
the two phases of pretraining are completed, the model
is denoted p-ICCA.

5 Experiments

In this section, we illustrate the performance of the
proposed approach. The existing cascading classi-
fiers are mostly focused on learning rejection func-
tion [21, 16, 15] assuming that the classifiers are avail-
able. On the other hand, the literature on classifiers
with rejection option [6, 5, 8, 7] studies the rejection
function only. Therefore, although quite a rich litera-
ture on cascades and on rejections exist, to our knowl-
edge, there is no any approach which is directly com-
parable to our dynamic feature selection method.

After some reflections, we decided to compare our ap-
proach to the random forests classifier. The model of
random forest with feature selection can be viewed as
a static version of a cascade classifier. Indeed, in our
approach, the possible costs map with an average num-
ber of features observed. To make it comparable, the
random forest is based on the same number of features
selected by maximal importance criterion. To allow a
reliable conversion between the cost and the number of
features explored, we assume that all the features have
the same cost �. The Interpretable Cascacade Classifier
with Abstention (ICCA) is expected to have an advan-
tage over the random forests classifier in case where it
is reasonable to stop the exploration quite early, or,
on the contrary, if an extensive individualized feature
exploration is necessary for a particular observation.

In this section, we discuss our results on two standard
benchmarks in details. These sets are downloadable
from the UCI Machine Learning repository1 [13]:

• Breast Cancer Wisconsin (Prognostic). We dis-
pose of about 30 parameters describing charac-
teristics of the cell nuclei present in the medical
images for 198 patients. All parameters are con-
tinuous.

• Mammography. The Mammography set contains
961 observations and 6 variables, and the goal is
to predict the outcome of the breast cancer screen-
ing, and to avoid unnecessary invasive procedures
such as biopsy.

On Figures 2 and 4, we see that both ICCA and the
p-ICCA models outperform the random forest classi-
fier in terms of accuracy on the two data sets. The
number of features shown on the Figures is a mean
over the test sample (5-fold cross-validation) estimated
by our model. For a fixed value of � (the unit cost
of a feature), the pretrained version of our model (p-
ICCA) has a better accuracy than its standard version
(ICCA), but the number of features explored is also

1
http://archive.ics.uci.edu/ml/
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Figure 2: Breast Cancer Wisconsin (Prognostic): Ac-
curacy and standard deviation for ICCA (in blue),
p-ICCA (in yellow), and the random forest classi-
fier (dotted line). The features share the same cost:
� 2 [10�4, 1/3.10�2].

Figure 3: Breast Cancer Wisconsin (Prognostic): his-
togram of the number of features explored for ICCA.
In blue: all observations (size: 569, mean: 4.8); in or-
ange: the misclassified observations (size: 21, mean:
12.3). Overall accuracy: 96,31%.

higher. Thus, for � varying in an interval, the accuracy
curves for p-ICCA are quite similar to the ones of the
ICCA. The histograms on Figures 3 and 5 represent
the distribution of the number of features explored be-
fore a classification decision by ICCA. The results have
been obtained for a fixed parameter cost � over the test
samples produced by a 5-fold cross-validation. In both
cases, the distributions are concentrated around their
means. For some patients, the method allows to ex-
plore a big number of features. The distributions for
the missclassified patients show that, in general, the
method allows a longer exploration for patients which
are di�cult to classify. This is especially true for the
Breast Cancer Wisconsin data set: for 75% of the mis-
classified subjects, the number of features explored is

Figure 4: Mammography dataset: Accuracy and stan-
dard deviation for ICCA (in blue), p-ICCA (in yellow),
and the random forest classifier (dotted line). The fea-
tures share the same cost: � 2 [3.6.10�3, 5.9.10�2].

Figure 5: Mammography dataset: Histogram of the
number of features explored for ICCA. In blue: all
observations (961, mean: 5,5); in orange: the misclas-
sified data (size: 203, mean: 6,7). Overall accuracy:
78,87%.

higher than the average on all data (4.8), 40% of the
misclassified individuals are associated to a depth in
the cascade higher than 15. This is a sensitive re-
sult which shows that our model identifies the di�cult
cases and tries to collect more information by feature
exploration.

The results are less clear for the Mammography task.
However, the mean of depth in the cascade for the
misclassified data is still significantly above the mean
of all observations (Figure 5).

Figure 6 shows obtained exploration paths identified
by the p-ICCA (unit cost: � = 1/120) on the Breast
Cancer data. The nodes are features ids, and the val-
ues on the edges reflect the patients percentage in this
or that group. It can be observed that patients are
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Figure 6: Breast Cancer Wisconsin: The cascade
proposed by p-ICCA, exploration path of maximal
depth 5 for all patients.

naturally stratified by the algorithm into three clus-
ters (or three paths), and three diagnostic protocols
can be developed.

The individualized choice of features reveals some nat-
ural questions about personalised diagnostic protocols.
The weights of the softmax regression of the classifier
fw can give some insights in it. If the features 20, 9
and 7 have been observed, the choice of classifying or
not can be associated to a strong evidence or a lack
of evidence associated to one of the features. This
can be explained by studying the di↵erence of weights:
�1
20 � �0

20, �
1
9 � �0

9 and �1
7 � �0

7 , where 1 and 0 are the
classes (see Eq. (13)). However, the choice of a par-
ticular path (e.g., feature 7 instead of 1) is less easy to
interpret, since it is related to the interaction between
the classifier and the selection/rejection model.

We clearly see from the results of the numerical ex-
periments, that the proposed method outperforms the
random forest on the Breast Cancer and on the Mam-
mography data sets. On other tested benchmarks of
the UCI repository, such as Bankruptcy, Ionosphere,
Haberman’s survival, Mushrooms, and the Glaucoma
data, our method achieves a very reasonable perfor-
mance, however, it does not outperform the state-of-
the-art. We also concluded that for data sets where
there is a couple of dominant features (and they are
the same for all observations), our method is not really
needed.

Implementation details: The neural networks for
the rejection/selection model are composed of three
fully connected layers. Each layer contains 5 units for
the Breast Diagnostic Wisconsin dataset and 4 nodes
for the Mammography data set. The activations are
the Relu function for the two first layers, and the soft-
plus function (x ! log(1 + ex)) for the last one. The
loss function is the standard MSE.

The neural networks corresponding to the classifier are
composed of two fully connected layers, and the last
deterministic layer is the softmax regression (14). The
loss function is the cross-entropy. For both neural net-
works, we use the Adam optimizer with the learning
rate equal to 0.01.

During the Q-learning procedure, we use an ✏-greedy
principle starting with 1, with a decay of 0.995 at each
episode. The minibatch sample size for the experience
replay memory is 32. At each episode, a new cascade
associated to one observation is added to the memory.
We run 2000 episodes. We also run 2000 episodes for
the pretraining (40 epochs are run for the classifier).
All above mentioned hyperparameters of the cascade
classifier with abstention have been fixed by cross val-
idation.

Our implementation in Keras will be made publicly
available shortly.

6 Conclusions

The challenge was to develop a principled approach
to learn individual diagnostic protocols under limited
budget. The proper theoretical support for the pro-
posed formulation is provided in Section 3. The result
of Theorem 1 provides the theoretical explanations for
the optimal decision in terms of classification and re-
jection in a MDP system, and a better understanding
of the cases where a prediction has to be postponed,
and new data have to be acquired.

An important advantage of the proposed method is
that its formalization is simple and implementation is
straightforward. Our approach does not compromise
the usage of the deep Q-networks. In addition, one
could easily incorporate the cost values which can be
specific for each separate variable or the cost can be
defined for groups of variables.

Currently we are investigating novel solutions based on
sparse models to make the deep models interpretable.
Another avenue of research are various models for clas-
sifiers and reject functions. We are also interested
to incorporate Monte Carlo Tree Search into the pro-
posed cascading framework.
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