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Appendix A Rademacher Complexity
and Generalization
Bounds

For completeness, we provide the proof of Theorem
1, following the approach of Sabato et al. (2013). We
then extend it to prove Theorem 2.

To derive the sample complexity of our hypothesis
classes H2,0 and H1,0, we will use the Rademacher
complexity. Let Z be some domain. The empirical
Rademacher complexity of a class of functions F ⊆ RZ
with respect to a set S = {zi} ⊆ Z, for 1 ≤ i ≤ m is

R(F , S) =
1

m
Eσ

[∣∣∣∣∣sup
f∈F

m∑
i=1

σif(zi)

∣∣∣∣∣
]
, (1)

where σ = (σ1, . . . ,σm) are m independent uniform
{±1}-valued variables. The empirical Gaussian com-
plexity G(F , S) is similarly defined with the entries
of σ being m independent standard Gaussian random
variables. The average Rademacher complexity of F
with respect to a distribution D over Z and a sample
size m is

Rm(F ,D) = ES∼Dm [R(F , S)]. (2)

Consider a hypothesis class H and a loss function `.
For a hypothesis h ∈ H, let h` : X × {±1} 7→ R be
defined as h`(x, y) = `(y, h(x)). The resulting function
class H` is H` = {h`|h ∈ H}. Assume that the range
of H` is [0, 1]. Then, from Mendelson (2002), for any
δ ∈ (0, 1), with probability 1− δ, every h ∈ H satisfies
that

`(h,D) ≤ `(h, S) + 2Rm(H`,D) +

√
8 ln(2/δ)

m
. (3)

Denote the class of ramp-loss functions applied to the
hypothesis class H by

RAMP ◦ H = {(x, y) 7→ ramp(h, (x, y))|h ∈ H}. (4)

In addition to the empirical Rademacher complexity,
we will use the notion of L2 covering numbers, defined
as follows.
Definition 1. An ε-cover of a subset A of a pseu-
dometric space (S,d) is a set A′ such that for each
a ∈ A, there exists a′ ∈ A′ such that d(a, a′) ≤ ε. The
ε-covering number of A is:

N (ε, A, d) = min{|A′| : A′ is an ε-cover of A}. (5)
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We now provide direct proofs for Theorems 1 and 2. In
order to bound the Rademacher complexity of the class

RAMPγ ◦H2,0, we will first bound its covering number.
To do so, we will express the functions in this class as
sums of two functions with respect to wa and wb. We
require the three following lemmas from Sabato et al.
(2013), reported below for completeness.

Lemma 1 (Sabato et al. (2013), Lemma 8). Let
(X , ‖·‖◦) be a normed space. Let F ⊆ X be a set,
and let G : X 7→ 2X be a mapping from objects in X to
sets of objects in X . Assume that G is c-Lipschitz with
respect to the Hausdorff distance ∆H on sets, that is
assume that

∀f1, f2 ∈ X ,∆H(G(f1),G(f2)) ≤ c‖f1 − f2‖◦, (6)

where ∆H(G1,G2) = supg1∈G1 infg2∈G2‖g1 − g2‖◦. Let
FG = {f + g|f ∈ F , g ∈ G(f)}. Then,

N (ε,FG , ◦) ≤
N (ε/(2 + c),F , ◦) · sup

f∈F
N (ε/(2 + c),G(f), ◦). (7)

Lemma 2 (Sabato et al. (2013), Lemma 9). Let f :
X 7→ R be a function and let Z ⊆ RX be a function
class over some domain X . Let G : RX 7→ 2RX

be the
mapping defined by

G(f) , {x 7→ Jf(x) + z(x)K− f(x)|z ∈ Z}. (8)

Then, G is 1-Lipschitz with respect to the Hausdorff
distance.

Lemma 3 (Sabato et al. (2013), Lemma 10). Let
f : X 7→ R be a function and let Z ⊆ RX be a function
class over some domain X . Let G(f) be defined as in
(8). Then, the pseudo-dimension of G(f) is at most the
pseudo-dimension of Z.

Our next lemma requires the definition of the no-
tions of pseudo-shattering (Pollard, 2012) and pseudo-
dimension.

Definition 2. Let F be a set of functions f : X 7→ R,
and γ > 0. The set {xa, . . . ,xm} ⊆ X is pseudo-
shattered by F with the witness r ∈ Rm if for all y ∈
{±1}m there is an f ∈ F such that ∀i ∈ [1, . . . ,m],
y[i](f(xi)− r[i]) > 0.

The pseudo-dimension pdim of a hypothesis class is
the size of the largest set that is pseudo-shattered by
this class.

Lemma 4. Let H = {x 7→ 〈w,x〉|‖w‖0 ≤ k}. Then,

pdim(H) = O (k log d) . (9)

Equipped with these lemmas, we can now derive an
upper bound on the Rademacher complexity of RAMP◦
H2,0 in the following theorem. Theorem 1 then follows
directly from Proposition 1.
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Theorem 1. Let D be a distribution over Rd × {±1}.
Assume that all samples are such that ‖xi‖2 ≤ 1. Then,

R(RAMP ◦ H2,0,D) ≤

√
O(k log d+B2 log2(m))

m
.

(10)

Proof. In this proof, all absolute constants are assumed
to be positive and are denoted by C or Ci for some
integer i. Their values may change from line to line or
even within the same line.

Note that

ramp(h,x, y) = J1− y〈w,x〉K = 1− Jy〈w,x〉K (11)

Shifting by a constant and negating do not change
the covering number of a function class. Therefore,
N (ε,RAMP◦H2,0, L2(S)) is equal to the covering num-
ber of {(x, y) 7→ Jy〈wa+wb,x〉/K|‖wa‖2 ≤ B, ‖wb‖0 ≤
k}.

Define

F = {x 7→ y〈wa,x〉|‖wa‖2 ≤ B}. (12)

Let G : RRd 7→ 2R
Rd

be the mapping defined by:

G(f) = {x 7→ Jf(x) + y〈wb,x〉K− f(x)|‖wb‖0 ≤ k}.
(13)

From Lemma 2, G is 1-Lipschitz with respect to the
Hausdorff distance. Clearly, FG = {f + g|f ∈ F , g ∈
G(f)} = RAMP ◦ H2,0. Thus, from Lemma 1, it holds
that

N (ε,RAMP ◦ H2,0, L2(S)) ≤
N (ε/3,F , L2(S)) · sup

f∈F
N (ε/3,G(f), L2(S)). (14)

We now proceed to bound the two covering num-
bers on the right-hand side. First, consider
N (ε/3,G(f), L2(S)). From Lemma 3, the pseudo-
dimension of G(f) is the same as the pseudo-dimension
of {x 7→ y〈wb,x〉|‖wb‖0 ≤ k}, which is given by
Lemma 4. The L2 covering number of G(f) may then be
bounded by its pseudo-dimension as follows (Bartlett,
2006):

N (ε/3,G(f), L2(S)) ≤ 2

(
36e

ε2

)k log d

. (15)

Second, consider N (ε/3,F , L2(S)). From Sudakov’s
minoration theorem (Sudakov, 1971; Ledoux and Tala-
grand, 1991),

lnN (ε/3,F , L2(S)) ≤ C

mε2
E2
s[sup
f∈F

m∑
i=1

sif(xi)], (16)

where si are independent standard normal variables.
The right-hand side can be bounded as follows:

E[sup
f∈F

m∑
i=1

sif(xi)] = Es

[
sup

w:‖w‖2≤B
y〈w,

m∑
i=1

sixi〉

]

≤ BEs

√√√√‖ m∑
i=1

sixi]‖22


≤ B

√√√√Es

[
‖
m∑
i=1

sixi‖22

]

= B

√√√√Es

[
‖
m∑
i=1

xi‖22

]
≤ B

√
m,

where we used Jensen’s inequality. Therefore, we have

lnN (ε/3,F , L2(S)) ≤ CB2

ε2
. (17)

Substituting (15) and (17) in (14) and adjusting con-
stants, we get

lnN (ε,RAMP ◦ H2,0, L2(S)) ≤

C1

(
1 + k log d ln

C2

ε
+
B2

ε2

)
. (18)

We can now bound the Rademacher complexity of
RAMP◦H2,0 by its L2 covering numbers. FromMendel-
son (2002), it holds that, for any monotone sequence
{εi} decreasing to 0 such that ε0 = 1,

√
mR(RAMP ◦ H2,0, S)

≤ C1

N∑
i=1

εi−1

√
lnN (ε,RAMP ◦ H2,0, L2(S)) + 2εN

√
m

≤ C1

N∑
i=1

εi−1

√
1 + k log d ln

C2

ε
+
B2

ε2
+ 2εN

√
m

≤ C1

N∑
i=1

εi−1

(
1 +

√
k log d ln

C2

ε
+
B

ε

)
+ 2εN

√
m,

where we substituted (18). Let εi = 2−i. We obtain
√
mR(RAMP ◦ H2,0, S) ≤

C
(
1 +

√
k log d+NB

)
+ 2−N+1√m. (19)

Setting N = log(2m), we have

R(RAMP ◦ H2,0, S) ≤
C√
m

(
1 +

√
k log d+B log(2m)

)
.

(20)
Taking expectation over both sides yields

R(RAMP ◦ H2,0,D) ≤ C√
m

(
1 +

√
k log d+B log(2m)

)
≤

√
O(k log d+B2log2(2m))

m
. (21)
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We can prove similarly the following theorem for the
hypothesis class H1,0.

Theorem 2. Let D be a distribution over Rd × {±1}.
Assume that all samples are such that ‖xi‖2 ≤ 1. Then,

R(RAMP◦H1,0,D) ≤

√
O(k log d+B2 log d log2(m))

m
.

(22)

The proof is similar to that of Theorem 1 and is thus
omitted here. In this case, (17) becomes

lnN (ε/3,F , L2(S)) ≤ CB2 log d

ε2
, (23)

using the following lemma, adapted from Lemma 19 in
Bartlett and Mendelson (2002).

Lemma 5. Let x ∈ Rd such that ‖x‖1. Define

F1 = {x 7→ 〈w,x〉|‖w‖1 ≤ B}. (24)

Then, we have

G(F , S) ≤ CB
√

log d

m
, (25)

for some C > 0, where G(F , S) is the empirical Gaus-
sian complexity, defined below (1).
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