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A LARGE-m ASYMPTOTICS FOR
LINEAR GAUSSIAN EXAMPLE

In the linear Gaussian example in Section 5, the ig-
norance region does not in general disappear in the
large treatment number (large-m) limit. Here, we
extend our example to an asymptotic frame where
the ignorance region maintains the same (multiplica-
tive) size even as m goes to infinity. Consider a se-
quence of problems where the number of treatments
analyzed in each problem is increasing in the se-
quence. Each problem has its own data generating
process, with some structural parameters indexed by
m: (αm, βm, γ, σ

2
U , σ

2
A, σ

2
Y ). We keep the scalar pa-

rameters not indexed by m fixed.

Importantly, we expect the marginal variance of Y to
be relatively stable, no matter how many treatments
we choose to analyze. Given our setup, this means
that if the number of treatments is large, the effect of
each individual treatment on average needs to become
smaller as m grows large, or else the variance of Y
would increase in m (this is clear from the specification
of ΣY Y ). To handle this, we fix some constant scalars
a0 and b0 and assume that, for problem m,

αm = 1m×1 · a0/
√
m; βm = 1m×1 · b0/

√
m.

Thus, as m → ∞, the norms of αm and βm, as well
as their inner product α>mβm, which appears in the
expression for ΣY Y , remain fixed. 2

Under this setup, the interval of valid values for the
latent scaling factor c remains fixed for any value of
m.For a fixed c in this interval, we examine how the
corresponding shift vector ∆β,m(c) = β1(c)−β behaves
as m grows large. The components of the shift ∆β,m(c)
scale as m−1/2. Specifically, applying the Sherman-

2The asymptotic frame in this section is not the only
way to maintain stable variance in Y as m increases.

Morrison formula,

∆β,m(c) = Σ−1AAαm · γσ
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Thus, for each k, the ratio of the kth component of
the shift vector relative to the kth component of the
true parameters remains fixed in m:
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Thus, even asymptotically as m→∞ there is no iden-
tification.

B PROOFS OF RESULTS

For convenience, we restate each result in addition to
providing its proof.

B.1 Proof of Proposition 2

Proposition 2. In the setting of Theorem 1, suppose
that P (U | A) is almost surely non-degenerate. Then,
the following are true

1. The copula density c(Y,U | A) is not identified.
2. Either P (Y | do(A)) = P (Y | A), or P (Y | do(A))

is not identified.

Proof. For the first statement, the joint distribution
P (U, Y,A) can be written

P (U,A, Y ) = P (A)P (Y | A)P (U | A)c(Y, U | A),

By assumption, P (Y,A) and P (U,A) are identified,
but the copula density c(Y,U | A) remains unspecified
because there are no restrictions on P (Y | U,A).

For the second statement, note that the independence
copula c(Y, U | A) = 1 is compatible with the ob-
served data, as a result of the first statement. Under
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the independence copula, P (Y | do(A)) = P (Y | A).
If this causal hypothesis is not true, then the true
P (Y | do(A)) is also compatible with the observed
data, so multiple causal hypotheses are compatible
with the observed data, and P (Y | do(A = a)) is not
identified.

B.2 Proof of Proposition 3

Proposition 3. Suppose that Assumption 1 holds,
that P (U) is not degenerate, and that there exists a
consistent estimator Û(Am) of U as m grows large.
Then positivity is violated as m grows large.

Proof. Because P (U) is non-degenerate, U takes on
multiple values with positive probability. In this case,
we establish that Am concentrates in different sets of
Am depending on the value of U . For each m and each
latent variable value u in the support of U , define the
set

Em(u) = {am : Û(am) 6= u}.

Em(u) is the set of cause vector values am ∈ Am that
Û(·) would map to a value other than u. Because
Û(Am) is consistent, for each u in the support of U ,
as m grows large,

P (Am ∈ Em(u) | U = u) = P (Û(Am) 6= u | U = u)→ 0.

Likewise, for any u′ 6= u in the support of U ,

P (A ∈ Em(u) | U = u′) = P (Û(Am) 6= u | U = u′)→ 1.

Thus, positivity is violated.

B.3 Proof of Theorem 1

Theorem 1. Suppose that Assumption 1 holds, that
P (U,A) is identified, and that the model for P (Y |
U,A) is not subject to parametric restrictions.

Then either P (Y | do(A)) = P (Y | A) almost every-
where, or P (Y | do(A)) is not identified. ‘

Proof. One of two cases must hold: P (U | A) is
either degenerate almost everywhere, or not. In
the non-degenerate case, Proposition 2 proves non-
identification, except in the trivial case.

In the degnerate case, there are again two cases: either
P (U) is degenerate, or not. If P (U) is not degener-
ate, Proposition 3 shows that the positivity assump-
tion fails, and because P (Y | U,A) is nonparametric
by assumption, P (Y | U,A) is inestimable for some
(u, a) ∈ U × A, and (1) is not identified. If P (U) is
degenerate, then the latent variable does not induce
any confounding, and P (Y | do(A)) = P (Y | A).


