
Appendices
A Usefull properties of sub-Gaussian random variables

This section presents useful preliminary results satisfied by sub-Gaussian random variables. In particular,
Lemma 5 provides a probabilistic upper-bound satisfied by the maximum of independent sub-Gaussian
random variables.

A.1 Preliminary results

Under Assumption 3, the random variables
n∑
i=1

∂f (〈xi,β∗〉, yi)xij , ∀j are sub-Gaussian. They conse-

quently satisfy the next Lemma 3:

Lemma 3 Let Z ∼ subG(σ2) for a fixed σ > 0. Then for any t > 0 it holds

E (exp(tZ)) ≤ e4σ2t2 .

In addition, for any positive integer ` ≥ 1 we have:

E
(
|Z|`

)
≤ (2σ2)`/2`Γ(`/2)

where Γ is the Gamma function defined as Γ(t) =
∫∞

0 xt−1e−xdx, ∀t > 0.

Finally, let Y = Z2 − E(Z2) then we have

E
(

exp

(
1

16σ2
Y

))
≤ 3

2
, (19)

and as a consequence E
(
exp

(
1

16σ2Z
2
))
≤ 2.

Proof: The two first results correspond to Lemmas 1.4 and 1.5 from Rigollet [2015].
In particular E

(
|Z|2

)
≤ 4σ2.

In addition, using the proof of Lemma 1.12 we have:

E (exp(tY )) ≤ 1 + 128t2σ4, ∀|t| ≤ 1

16σ2
.

Equation (19) holds in the particular case where t = 1/16σ2.
The last part of the lemma combines our precedent results with the observation that 3

2e
1/4 ≤ 2. �

A.2 Proof of Lemma 1

As a first consequence of Lemma 3, we derive the proof of Lemma 1 – stated in Section 2.3.



Proof: We note Si = ∂f (〈xi,β∗〉, yi) , ∀i.
Since β∗ minimizes the theoretical loss, we have E(Sixij) = 0, ∀i, j.
By definition of a sub-Gaussian random variable, we fix M > 0 such that: ∀t > 0,

P (|Sixi,j | > t) ≤ 2 exp

(
− t2

2L2M2

)
, ∀i, j.

Then from Lemma 3 it holds:

E (exp(tSixij)) ≤ e4L2M2t2 , ∀t > 0,∀i, j.

As a consequence, using Lemma 3 for the independent random variables (S1x1,j , . . . , Snxn,j), it holds
∀t > 0,

E

(
exp

(
t

n∑
i=1

Sixi,j

))
=

n∏
i=1

E (exp (tSixij)) ≤
n∏
i=1

e4L2M2t2 = e4nL2M2t2 .

Let M1 = 2
√

2M
√
n, then with a Chernoff bound:

P

(
n∑
i=1

Sixi,j > t

)
≤ min

s>0
exp

(
M2

1L
2s2

2
− st

)
= exp

(
− t2

2L2M2
1

)
, ∀t > 0,

which concludes the proof. �

A.3 A bound for the maximum of independent sub-Gaussian variables

The next two technical lemmas derive a probabilistic upper-bound for the maximum of sub-Gaussian random
variables. Lemma 4 extends Proposition E.1 [Bellec et al., 2016] to sub-Gaussian random variables.

Lemma 4 Let g1, . . . gp be independent sub-Gaussian random variables with variance σ2. Denote by
(g(1), . . . , g(p)) a non-increasing rearrangement of (|g1|, . . . , |gp|). Then ∀t > 0 and ∀j ∈ {1, . . . , p}:

P

(
1

jσ2

j∑
k=1

g2
(k) > t log

(
2p

j

))
≤
(

2p

j

)1− t
16

.

Proof: Let j ∈ {1, . . . , p}. We first apply a Chernoff bound:

P

(
1

jσ2

j∑
k=1

g2
(k) > t log

(
2p

j

))
≤ E

(
exp

(
1

16jσ2

j∑
k=1

g2
(k)

))(
2p

j

)− t
16

.

Then we use Jensen inequality to obtain

E

(
exp

(
1

16jσ2

j∑
k=1

g2
(k)

))
≤ 1

j

j∑
k=1

E
(

exp

(
1

16σ2
g2

(k)

))

≤ 1

j

p∑
k=1

E
(

exp

(
1

16σ2
g2
k

))
≤ 2p

j
with Lemma 3.

�
Using Lemma 4, we can derive the following bound which holds with high probability.

Lemma 5 We consider the assumptions and notations of Lemma 4. In addition, we define the coefficients
λj =

√
log(2p/j), j = 1, . . . p. Then for δ ∈

(
0, 1

2

)
, it holds with probability at least 1− δ:

sup
j=1,...,p

{
g(j)

σλj

}
≤ 12

√
log(1/δ).



Proof: We fix δ ∈
(
0, 1

2

)
and j ∈ {1, . . . , p}. We upper-bound g2

(j) by the average of all larger variables:

g2
(j) ≤

1

j

j∑
k=1

g2
(k).

Applying Lemma 4 gives, for t > 0:

P

(
g2

(j)

σ2λ2
j

> t

)
≤ P

(
1

jσ2

j∑
k=1

g2
(k) > tλ2

j

)
≤
(
j

2p

) t
16
−1

.

We fix t = 144 log(1/δ) and use an union bound to get:

P

(
sup

j=1,...,p

g(j)

σλj
> 12

√
log(1/δ)

)
≤
(

1

2p

)9 log(1/δ)−1 p∑
j=1

j9 log(1/δ)−1.

Since δ < 1
2 it holds that 9 log(1/δ) − 1 ≥ 9 log(2) − 1 > 0, then the map t > 0 7→ t9 log(1/δ)−1 is

increasing. An integral comparison gives:

p∑
j=1

j9 log(1/δ)−1 ≤ 1

2
(p+ 1)9 log(1/δ) =

1

2
δ−9 log(p+1).

In addition 9 log(1/δ)− 1 ≥ 7 log(1/δ) = −7 log(δ) and(
1

2p

)9 log(1/δ)−1

≤
(

1

2p

)−7 log(δ)

= δ7 log(2p).

Finally, by assuming p ≥ 2, then we have 7 log(2p)− 9 log(p+ 1) > 1, thus:

P

(
sup

j=1,...,p

g(j)

σλj
> 12

√
log(1/δ)

)
≤ δ,

which concludes the proof. �

B Proof of Theorem 2

We use the minimality of β̂ and Lemma 4 to derive the cone condition.

Proof: We assume without loss of generality that |h1| ≥ . . . ≥ |hp|. We define S0 = {1, . . . , k∗} as the
set of the k∗ highest coefficients of h = β̂ − β∗.

β̂ is the solution of Problem (2) hence:

1

n

n∑
i=1

f
(
〈xi, β̂〉; yi

)
+ λ‖β̂‖1 ≤

1

n

n∑
i=1

f (〈xi,β∗〉; yi) + λ‖β∗‖1. (20)

Using the definition of ∆ (β∗,h) as introduced in Theorem 3, Equation (20) can be written in a compact
form as:

∆ (β∗,h) ≤ λ‖β∗‖1 − λ‖β̂‖1.



Introducing the support S∗ of β∗ we have

∆ (β∗,h) ≤ λ‖β∗S∗‖1 − λ‖β̂S∗‖1 − λ‖β̂(S∗)c‖1
≤ λ‖hS∗‖1 − λ‖h(S∗)c‖1
≤ λ‖hS0‖1 − λ‖h(S0)c‖1,

(21)

where this last relation holds by definition of S0. We now want to lower bound ∆ (β∗,h). Exploiting the
existence of a bounded sub-Gradient ∂f we obtain

∆ (β∗,h) ≥ S (β∗,h) :=
1

n

n∑
i=1

∂f (〈xi,β∗〉; yi) 〈xi,h〉.

In addition we have:

|S (β∗,h) | =

∣∣∣∣∣∣ 1n
n∑
i=1

p∑
j=1

∂f (〈xi,β∗〉; yi)xijhj

∣∣∣∣∣∣
≤ 1√

n

p∑
j=1

(
1√
n

∣∣∣∣∣
n∑
i=1

∂f (〈xi,β∗〉; yi)xij

∣∣∣∣∣
)
|hj |.

Let us define the independent random variables gj = 1√
n

∑n
i=1 ∂f (〈xi,β∗〉; yi)xij , j = 1, . . . , p.

Assumption 3 guarantees that g1, . . . , gp are sub-Gaussian with variance L2M2. A first upper-bound of the
quantity |S(h)| could be obtained by considering the maximum of the sequence {gj}. However Lemma 5
gives us a stronger result.

Indeed, since δ ≤ 1 we introduce a non-increasing rearrangement (g(1), . . . , g(p)) of (|g1|, . . . , |gp|). We
recall that S0 = {1, . . . , k∗} denotes the subset of indexes of the k∗ highest elements of h and we use
Lemma 5 to get, with probability at least 1− δ

2 :

|S (β∗,h) | ≤ 1√
n

p∑
j=1

gj |hj | =
1√
n

p∑
j=1

g(j)|h(j)| =
1√
n

p∑
j=1

g(j)

LMλj
LMλj |h(j)|

≤ 1√
n

sup
j=1,...,p

{
g(j)

LMλj

} p∑
j=1

LMλj |h(j)|

≤ 12LM

√
log(2/δ)

n

p∑
j=1

λj |h(j)| with Lemma 5

≤ 12LM

√
log(2/δ)

n

p∑
j=1

λj |hj | since λ1 ≥ . . . ≥ λp and |h1| ≥ . . . ≥ |hp|

≤ 12LM

√
log(2/δ)

n

 k∗∑
j=1

λj |hj |+ λk∗

p∑
j=k∗

|hj |


= 12LM

√
log(2/δ)

n

 k∗∑
j=1

λj |hj |+ λk∗‖h(S0)c‖1

 .

(22)



Cauchy-Schwartz inequality leads to:

k∗∑
j=1

λj |hj | ≤

√√√√ k∗∑
j=1

λ2
j‖hS0‖2 ≤

√
k∗ log(2pe/k∗)‖hS0‖2,

where we have used the Stirling formula to get
(
n
e

)n ≤ n! and we have used:

k∗∑
j=1

λ2
j =

k∗∑
j=1

log(2p/j) = k∗ log(2p)− log(k∗!)

≤ k∗ log(2p)− k∗ log(k∗/e) = k∗ log(2pe/k∗).

In the statement of Theorem 2 we have defined λ = 12αLM
√
n−1 log(2pe/k∗) log(2/δ).

Because λk∗ ≤
√

log(2pe/k∗), Equation (22) leads to:

|S (β∗,h)| ≤ 1

α
λ
(√

k∗‖hS0‖2 + ‖h(S0)c‖1
)

Combined with Equation (21), it holds with probability at least 1− δ
2 :

−λ
α

(√
k∗‖hS0‖2 + ‖h(S0)c‖1

)
≤ λ‖hS0‖1 − λ‖h(S0)c‖1,

which immediately leads to:

‖h(S0)c‖1 ≤
α

α− 1
‖hS0‖1 +

√
k∗

α− 1
‖hS0‖2.

We conclude that h ∈ Λ
(
S0,

α
α−1 ,

√
k∗

α−1

)
with probability at least 1− δ

2 . �

C Proof of Theorem 3:

Proof: Let k ∈ {1, . . . , p} and S1, . . . Sq be a partition of {1, . . . , p} such that q = dp/ke and |S`| ≤ k,∀`.
We divide the proof of the theorem in 3 steps. We first upper-bound the inner supremum for a sequence of k
sparse vectors zS1 , . . . ,zSq satisfying ‖zS`

‖1 ≤ 3R,∀`. We then extend this bound for the supremum over
the compact set of sequences considered through an ε-net argument.

Step 1: Let us fix a sequence zS1 , . . . ,zSq ∈ Rp : Supp(zSj ) ⊂ Sj ,∀j and ‖zS`
‖1 ≤ 3R,∀`.

In particular, ‖zSj‖0 ≤ k, ∀j. In the rest of the proof, we define zS0 = 0 and:

w` = β∗ +
∑̀
j=1

zSj , ∀` ∈ {1, . . . , q} . (23)

In addition, we introduce Zi`, ∀i ∈ {1, . . . , n} , ∀` ∈ {1, . . . , q} as follows:

Zi` = f (〈xi,w`〉; yi)− f (〈xi,w`−1〉; yi) = f (〈xi,w`−1 + zS`
〉; yi)− f (〈xi,w`−1〉; yi) .



We fix ` ∈ {1, . . . , q}. Let us note that:

∆ (w`−1, zS`
) =

1

n

n∑
i=1

f (〈xi,w`−1 + zS`
〉; yi)−

1

n

n∑
i=1

f (〈xi,w`−1〉; yi)

=
1

n

n∑
i=1

{f (〈xi,w`−1 + zS`
〉; yi)− f (〈xi,w`−1〉; yi)}

=
1

n

n∑
i=1

Zi`.

(24)

Assumption 1 guarantees that f(., y) is L-Lipschitz ∀y then:

|Zi`| ≤ L |〈xi, zS`
〉| .

Then using Assumption 4.1(k) on the k sparse vector zS`
it holds:

|∆ (w`−1, zS`
)| ≤ 1

n

n∑
i=1

|Zi`| ≤
1

n

n∑
i=1

L |〈xi, zS`
〉| = L

n
‖XzS`

‖1 ≤
Lµ(k)√
nk
‖zS`
‖1.

Hence, with Hoeffding’s lemma, the centered bounded random variable ∆ (w`−1, zS`
)−E (∆ (w`−1, zS`

))

is sub-Gaussian with variance L2µ(k)2

nk ‖zS`
‖21. It then hold, ∀t > 0,

P (|∆ (w`−1, zS`
)− E (∆ (w`−1, zS`

))| ≥ t‖zS`
‖1) ≤ 2 exp

(
− knt2

2L2µ(k)2

)
. (25)

Equation (25) holds for all values of `. Thus, an union bound immediately gives:

P

(
sup

`=1,...,q
{|∆ (w`−1, zS`

)− E (∆ (w`−1, zS`
))| − t‖zS`

‖1} ≥ 0

)
≤ 2

⌈p
k

⌉
exp

(
− knt2

2L2µ(k)2

)
.

(26)

Step 2: We extend the result to any sequence of vectors zS1 , . . . ,zSq ∈ Rp : Supp(zS`
) ⊂ S` and

‖zS`
‖1 ≤ 3R,∀` throught an ε-net argument.

We recall that an ε-net of a set I is a subsetN of I such that each element of I is at a distance at most ε ofN .
We know from Lemma 1.18 from Rigollet [2015], that for any ε ∈ (0, 1), the ball

{
z ∈ Rd : ‖z‖1 ≤ R

}
has an ε-net of cardinality |N | ≤

(
2R+1
ε

)d
– the ε-net is defined in term for the L1 norm. In addition, by

following the proof of the lemma, we can create this set such that it contains 0.

Consequently, we use Equation (26) on a product of ε-nets Nk,R =
q∏
`=1

N `
k,R. Each N `

k,R is an ε-net of

the bounded set of k sparse vectors I`k,R = {zS`
∈ Rp : Supp(zS`

) ⊂ S` ; ‖zS`
‖1 ≤ 3R} which contains

0S`
. We note Ik,R =

q∏
`=1

I`k,R. It then holds:

P

 sup
(zS1

,...,zSq)∈Nk,R

{
sup

`=1,...,q
{|∆ (w`−1, zS`

)− E (∆ (w`−1, zS`
))| − t‖zS`

‖1} ≥ 0

}
≤ 2

⌈p
k

⌉(6R+ 1

ε

)k ⌈p
k

⌉
exp

(
− knt2

2L2µ(k)2

)
≤ 2

(
2p

k

)2(6R+ 1

ε

)k
exp

(
− knt2

2L2µ(k)2

)
.

(27)



Step 3: We now extend Equation (27) to control any vector in Ik,R. For zS1 , . . . ,zSq ∈ Ik,R, there exists
z̃S1 , . . . , z̃Sq ∈ Nk,R such that ‖zS`

− z̃S`
‖1 ≤ ε, ∀`. Similarly to Equation (23), we define:

w̃` = β∗ +
∑̀
j=1

z̃Sj , ∀` ∈ {1, . . . , q} .

For a given t, let us define

ft (w`−1, zS`
) = |∆ (w`−1, zS`

)− E (w`−1, zS`
)| − t‖zS`

‖1,∀`.

We fix `0(t) such that `0(t) ∈ argmax
`=1,...,q

{f7t (w`−1, zS`
)}. The choice of 7t will be justified later. We fix t

and will just note `0 = `0(t) when no confusion can be made.

With Assumption 1 we obtain:∣∣∣∆(w`0−1, zS`0

)
−∆

(
w̃`0−1, z̃S`0

)∣∣∣
=

1

n

∣∣∣∣∣
n∑
i=1

f (〈xi,w`0〉; yi)−
n∑
i=1

f (〈xi, w̃`0〉; yi) +
n∑
i=1

f (〈xi, w̃`0−1〉; yi)−
n∑
i=1

f (〈xi,w`0−1〉; yi)

∣∣∣∣∣
≤ 1

n

n∑
i=1

L |〈xi,w`0 − w̃`0〉|+
1

n

n∑
i=1

L |〈xi,w`0−1 − w̃`0−1〉|

=
1

n

n∑
i=1

L

∣∣∣∣∣
`0∑
`=1

〈xi, zS`
− z̃S`

〉

∣∣∣∣∣+
1

n

n∑
i=1

L

∣∣∣∣∣
`0−1∑
`=1

〈xi, zS`
− z̃S`

〉

∣∣∣∣∣
≤ 2

n

n∑
i=1

q∑
`=1

L |〈xi, zS`
− z̃S`

〉|

=
2√
n

q∑
`=1

L√
n
‖X( zS`

− z̃S`
)‖1

≤ 2√
n

q∑
`=1

L√
k
µ(k) ‖zS`

− z̃S`
‖1

≤ 2p

k
√
kn
Lµ(k)ε ≤ ηε.

(28)

where η = 2Lµ(k)√
n

and we have used Assumption 5.1(k). It then holds:

ft

(
w̃`0−1, z̃S`0

)
≥ ft

(
w`0−1, zS`0

)
−
∣∣∣∆(w`0−1, zS`0

)
−∆

(
w̃`0−1, z̃S`0

)∣∣∣
−
∣∣∣E(∆

(
w`0−1, zS`0

)
−∆

(
w̃`0−1, z̃S`0

))∣∣∣− t‖zS`0
− z̃S`0

‖1

≥ ft
(
w`0−1, zS`0

)
− 2ηε− tε.

Case 1: Let us assume that ‖zS`0
‖1 ≥ ε/2 and that t ≥ η, then we have:

ft

(
w̃`0−1, z̃S`0

)
≥ ft

(
w`0−1, zS`0

)
− 2(2η + t)‖zS`0

‖1 ≥ f7t

(
w`0−1, zS`0

)
. (29)



Case 2: We now assume ‖zS`0
‖1 ≤ ε/2. Since 0S`0

∈ Nk,R we derive similarly to Equation (28):∣∣∣∆(w`0−1, zS`0

)
−∆

(
w`0−1, 0S`0

)∣∣∣ ≤ Lµ(k)√
nk

∥∥∥zS`0

∥∥∥
1
,

which then implies that:

f7t

(
w`0−1, zS`0

)
≤ f7t

(
w`0−1, 0S`0

)
+

2Lµ(k)√
nk

∥∥∥zS`0

∥∥∥
1
− 7t

∥∥∥zS`0

∥∥∥
1
,

and this quantity is smaller than f7t

(
w`0−1, 0S`0

)
as long as 7t ≥ 2Lµ(k)√

nk
. The latter condition is satisfied

if t ≥ η.
In this case, we can define a new ˜̀

0 for the sequence zS1 , . . . ,zS`0−1
,0S`0

, zS`0+1
, . . . ,zSq . After a fi-

nite number of iteration, by using the result in Equation (29) and the definition of `0, we finally get that
f7t

(
w`0−1, zS`0

)
≤ ft

(
w̃`0−1, z̃S`0

)
for some z̃S1 , . . . , z̃Sq ∈ Nk,R.

As a consequence of cases 1 and 2, we obtain: ∀t ≥ η, ∀zS1 , . . . ,zSq ∈ Ik,R, ∃z̃S1 , . . . , z̃Sq ∈ Nk,R:

sup
`=1,...,q

f7t (w`−1, zS`
) = f7t

(
w`0−1, zS`0

)
≤ ft

(
w̃`0−1, z̃S`0

)
≤ sup

`=1,...,q
ft (w̃`−1, z̃S`

) .

This last relation is equivalent to saying that ∀t ≥ 7η:

sup
zS1

,...,zSq∈Ik,R

{
sup

`=1,...,q
ft (w`−1, zS`

)

}
≤ sup
zS1

,...,zSq∈Nk,R

{
sup

`=1,...,q
ft/7 (w̃`−1, z̃S`

, )

}
. (30)

As a consequence, we have ∀t ≥ 7η:

.

P

(
sup

zS1
,...,zSq∈Ik,R

{
sup

`=1,...,q
{|∆ (w`−1, zS`

)− E (∆ (w`−1, zS`
))| − t‖zS`

‖1}

}
≥ 0

)

≤ P

(
sup

zS1
,...,zSq∈Nk,R

{
sup

`=1,...,q

{
|∆ (w`−1, zS`

)− E (∆ (w`−1, zS`
))| − t

7
‖zS`
‖1
}}
≥ 0

)

≤ 2

(
2p

k

)2(6R+ 1

ε

)k
exp

(
− kn(t/7)2

2L2µ(k)2

)
≤
(

4p

k

)2

3k exp

(
− knt2

98L2µ(k)2

)
by fixing ε = 2R and since R ≥ 1.

(31)

Thus we select t such that t ≥ 7η and that the condition t2 ≥ 98L2µ(k)2

kn

[
k log(3) + 2 log

(
4p
k

)
+ log

(
2
δ

)]
holds 1. To this end, we define:

τ = 14Lµ(k)

√
log(3)

n
+

log (4p/k)

nk
+

log (2/δ)

nk
≥ 7η.

We conclude that with probability at least 1− δ
2 :

sup
zS1

,...,zSq∈Ik,R

{
sup

`=1,...,q
{|∆ (w`−1, zS`

)− E (∆ (w`−1, zS`
))| − τ (‖zS`

‖1 ∨ η)}

}
≤ 0.

�
1A somewhat faster proof would have consisted in fixing ε = 2R in the definition of the ε-net – of size now bounded by 3k – and

in noting that because of the L1-constraint, each element zS` is at a distance at most R = ‖zS`‖1/2 of its closest neighborhood in
the ε-net. However, we prefer the more general proof presented herein.



D Proof of Theorem 4:

Proof: The proof is divided in two steps. First, we lower-bound the quantity ∆ (β∗,h) with Theorem
3. Second, we refine this lower-bound with the use of the cone condition derived in Theorem 2 and the
restricted eigenvalue condition presented in Assumption 4.2.

Step 1: Let us fix the partition of {1, . . . , p}: S1 = {1, . . . , k∗} , S2 = {k∗ + 1, . . . , 2k∗} , . . . , Sq – with
q = dp/k∗e. Recall that h = β̂−β∗. Then it holds |S`| ≤ k∗ and ‖hS`

‖1 ≤ 3R. We thus can use Theorem
3 for the corresponding sequence hS1 , . . . ,hSq of k∗ sparse vectors.

∆(β∗,h) =
1

n

n∑
i=1

f (〈xi,β∗ + h〉; yi)−
1

n

n∑
i=1

f (〈xi,β∗〉; yi)

=
1

n

n∑
i=1

f

〈xi,β∗ +

q∑
j=1

hSj 〉; yi

− 1

n

n∑
i=1

f (〈xi,β∗〉; yi)

=

q∑
`=1

 1

n

n∑
i=1

f

〈xi,β∗ +
∑̀
j=1

hSj 〉; yi

− 1

n

n∑
i=1

f

〈xi,β∗ +
`−1∑
j=0

hSj 〉; yi


=

q∑
`=1

∆

β∗ +
`−1∑
j=0

hSj , hS`


=

q∑
`=1

∆ (w`−1, hS`
) .

(32)

where we have definedw` = β∗+
∑`

j=1 hSj ,∀` and hS0 = 0 as in the proof of Theorem 3. Consequently,
with Theorem 3, it holds with probability at least 1− δ

2 :

|∆ (w`−1,hS`
)− E (w`−1,hS`

)| ≥ τ‖hS`
‖1,∀`,

where τ = τ(k∗) = 14Lµ(k∗)

√
log(3)
n + log(4p/k∗)

nk∗ + log(2/δ)
nk∗ is fixed in the rest of the proof.

As a result, following Equation (32), we have with probability at least 1− δ
2 :

∆(β∗,h) ≥
q∑
`=1

{E (w`−1,hS`
)− τ‖hS`

‖1}

= E

(
q∑
`=1

∆ (w`−1, hS`
)

)
−

q∑
`=1

τ‖hS`
‖1

= E (∆(β∗,h))− τ‖h‖1.

(33)

In addition, since the samples are identical drawn:

E (∆(β∗,h)) =
1

n

n∑
i=1

E {f (〈xi,β∗ + h〉; yi)− f (〈xi,β∗〉; yi)} = L(β∗ + h)− L(β∗).

Consequently, we conclude that with probability at least 1− δ
2 :

∆(β∗,h) ≥ L(β∗ + h)− L(β∗)− τ‖h‖1. (34)



Step 2: We now lower-bound the right-hand side of Equation (34). SinceL is twice differentiable, a Taylor
development around β∗ gives:

L(β∗ + h)− L(β∗) = ∇L(β∗)Th+
1

2
hT∇2L(β∗)Th+ o (‖h‖2) .

The optimality of β∗ implies ∇L(β∗) = 0. In addition, Theorem 2 states that h ∈ Λ (S0, γ1, γ2) with
probability at least 1− δ

2 . Consequently, we can use the restricted eigenvalue condition defined in Assump-
tion 4.2(k∗, γ). However we do not want to keep the term o (‖h‖2) as it can hide non trivial dependencies.
To overcome this difficulty, we use the convexity of L and the maximum radius r(k∗, γ) introduced in the
growth condition Assumption 5.2.

Case 1: If ‖h‖2 ≤ r(k∗) – where r(k∗) is a shorthand for r(k∗, γ) – then with Theorem 2 and Assumption
4.2(k, γ), it holds with probability at least 1− δ

2 :

L(β∗ + h)− L(β∗) ≥ 1

4
κ(k∗)‖h‖22. (35)

Case 2: If now ‖h‖2 ≥ r(k∗), then using the convexity of L thus of t→ L (β∗ + th), we similarly obtain
with same probability:

L(β∗ + h)− L(β∗) ≥ ‖h‖2
r(k∗)

{
L
(
β∗ +

r(k∗)

‖h‖2
h

)
− L(β∗)

}
by convexity

≥ ‖h‖2
r(k∗)

inf
z: z∈Λ(S0,γ1,γ2)
‖z‖2=r(k∗)

{L(β∗ + z)− L(β∗)}

≥ ‖h‖2
r(k∗)

1

4
κ(k∗)r(k∗)2 =

1

4
κ(k∗)r(k∗)‖h‖2.

(36)

Combining Equations (34), (35) and (36), we conclude that with probability at least 1 − δ the following
restricted strong convexity with L1 tolerance function holds:

∆ (β∗,h) ≥ 1

4
κ(k∗)‖h‖22 ∧

1

4
κ(k∗)r(k∗)‖h‖2 − τ‖h‖1. (37)

To derive the condition for the L2 tolerance function, we use our cone condition derived in Theoreme 2. We
recall that S0 has been defined as the subset of the k∗ highest elements of h. It thus holds:

‖h‖1 = ‖hS0‖1 + ‖h(S0)c‖1

≤ |hS0‖1 +
α

α− 1
‖hS0‖1 +

√
k∗

α− 1
‖hS0‖2 since h ∈ Λ (S0, γ1, γ2)

=
2α− 1

α− 1
‖hS0‖1 +

√
k∗

α− 1
‖hS0‖2

≤ 2α− 1

α− 1

√
k∗‖hS0‖2 +

√
k∗

α− 1
‖hS0‖2 with Cauchy-Schwartz inequality on the k∗ sparse vector hS0

≤ 2α

α− 1

√
k∗‖h‖2.

(38)

We thus conclude that it holds with probability at least 1− δ :

∆ (β∗,h) ≥ 1

4
κ(k∗)‖h‖22 ∧

1

4
κ(k∗)r(k∗)‖h‖2 −

2α

α− 1
τ
√
k∗‖h‖2. (39)

�



E Proof of Theorem 1

Proof: We now prove our main Theorem 1. Following Equation (21) we have:

∆ (β∗,h) ≤ λ‖hS0‖1 − λ‖h(S0)c‖1.

Thus using the restricted strong convexity derived in Theorem 4, it holds with probability at least 1− δ:

1

4
κ(k∗)

{
‖h‖22 ∧ r(k∗)‖h‖2

}
≤ 2α

α− 1
τ
√
k∗‖h‖2 + λ‖hS0‖1 − λ‖h(S0)c‖1

≤ 2α

α− 1
τ
√
k∗‖h‖2 + λ

√
k∗‖hS0‖2

≤
(

2α

α− 1
τ + λ

)√
k∗‖h‖2.

(40)

With the definitions of τ and λ as in Theorem 2 and 3, Equation (40) leads to:

1

4
κ(k∗) {‖h‖2 ∧ r(k∗)} ≤ 12αLM

√
k∗ log(2pe/k∗)

n
log(2/δ)

+
28α

α− 1
Lµ(k∗)

√
log(3)

n
+

log (4p/k∗)

nk∗
+

log (2/δ) /k∗

nk∗
.

Exploiting Assumption 5.2(k∗, γ, δ), and using that α ≥ 2, we obtain with probability at least 1− δ:

‖h‖22 .
(
αLM

κ(k∗)

)2 k∗ log (p/k∗) log (2/δ)

n
+

(
αLµ(k∗)

κ(k∗)

)2 log(3) + log (4p/k∗) /k∗ + log (2/δ) /k∗

n
.

which concludes the proof. �

F Proof of Corollary 1

Proof: In order to derive the bound in expectation, we define the bounded random variable:

Z =
κ(k∗)2

α2L2
‖β̂ − β∗‖22.

Since Assumption 5(k∗, γ, δ0) is satisfied for a small enough δ0, we can fix C such that ∀δ ∈ (0, 1), it holds
with probability at least 1− δ:

Z ≤ CM2H log(2/δ) + C
µ(k∗)2

n
log(2/δ) where H =

k∗ log(p/k∗)

n
.

Then it holds ∀t ≥ t0 = log(4) :

P
(
Z/C ≥M2Ht+

µ(k∗)2

n
t

)
≤ 2e−t.

Let q0 = M2Ht0 + µ(k∗)2

n t0, then ∀q ≥ q0

P (Z/C ≥ q) ≤ 2 exp

(
− n

nM2H + µ(k∗)2
q

)
≤ 2 exp

(
− q

M2H

)
.



Consequently, by integration we have:

E(Z) =

∫ +∞

0
CP (|Z|/C ≥ q) dq

≤
∫ +∞

q0

CP (|Z|/C ≥ q) dq + Cq0

≤
∫ +∞

q0

2Ce−
q

M2H dq + Cq0

≤ 2CM2He−
q0

M2H + Cq0

≤ 2CM2H + CM2H log(4) + C
µ(k∗)

n
log(4)

≤ C1

(
M2H +

µ(k∗)2

n

)

(41)

for C1 = 2C + log(4). Hence we conclude:

E
(
‖β̂ − β∗‖22

)
.

(
αL

κ(k∗)

)2{
M2k

∗ log (p/k∗)

n
+
µ(k∗)√
n

}
.

�

G Proof of Theorem 5

Proof: We fix τ > 0 and denote X = (X1, . . . ,Xp) ∈ Rn×p the design matrix.
For β ∈ Rp, we define wτ (β) ∈ Rn by:

wτi (β) = min

(
1,

1

2τ
|zi|
)

sign(zi), ∀i

where zi = 1− yixTi β, ∀i. We easily check that

wτ (β) = argmax
‖w‖∞≤1

1

2n

n∑
i=1

(zi + wizi)−
τ

2n
‖w‖22.

Then the gradient of the smooth hinge loss is

∇gτ (β) = − 1

2n

n∑
i=1

(1 + wτi (β))yixi ∈ Rp.

For every couple β,γ ∈ Rp we have:

∇gτ (β)−∇gτ (γ) =
1

2n

n∑
i=1

(wτi (γ)− wτi (β))yixi. (42)

For a, b ∈ Rn we define the vector a ∗ b = (aibi)
n
i=1. Then we can rewrite Equation (42) as:

∇gτ (β)−∇gτ (γ) =
1

2n
XT [y ∗ (wτ (γ)−wτ (β))] . (43)



The operator norm associated to the Euclidean norm of the matrix X is ‖X‖ = max‖z‖2=1 ‖Xz‖2.
Let us recall that ‖X‖2 = ‖XT ‖2 = ‖XTX‖ = µmax(XTX) corresponds to the highest eigenvalue of the
matrix XTX.
Consequently, Equation (43) leads to:

‖∇Lτ (β)−∇Lτ (γ)‖2 ≤
1

2n
‖X‖ ‖wτ (γ)−wτ (β)‖2 . (44)

In addition, the first order necessary conditions for optimality applied to wτ (β) and wτ (γ) give:
n∑
i=1

{
1

2n
(1− yixTi β)− τ

n
wτi (β)

}
{wτi (γ)− wτi (β)} ≤ 0, (45)

and
n∑
i=1

{
1

2n
(1− yixTi γ)− τ

n
wτi (γ)

}
{wτi (β)− wτi (γ)} ≤ 0. (46)

Then by adding Equations (45) and (46) and rearranging the terms we have:

τ‖wτ (γ)−wτ (β)‖22

≤ 1

2

n∑
i=1

yix
T
i (β − γ) (wτi (γ)− wτi (β))

≤ 1

2
‖X (β − γ) ‖2‖wτ (γ)−wτ (β)‖2

≤ 1

2
‖X‖‖β − γ‖2‖wτ (γ)−wτ (β)‖2,

where we have used Cauchy-Schwartz inequality. We then have:

‖wτ (γ)−wτ (β)‖2 ≤
1

2τ
‖X‖‖β − γ‖2. (47)

We conclude the proof by combining Equations (44) and (47):

‖∇Lτ (β)−∇Lτ (γ)‖2 ≤
1

4nτ
‖X‖2‖β − γ‖2

=
µmax(n−1XTX)

4τ
‖β − γ‖2.

The case of Quantile Regression: For the quantile regression loss, the same smoothing method applies.
Let us simply note that:

ρθ(x) = max ((θ − 1)x, θx) =
1

2
((2θ − 1)x+ |x|)

= max
|w|≤1

1

2
((2θ − 1)x+ wx).

Hence we can immediately use the same steps than for the hinge loss – which is a particular case of the
quantile regression loss – and define the smooth quantile regression loss gτθ . Its gradient is:

∇gτθ (β) = − 1

2n

n∑
i=1

(2θ − 1 + wτi (β))yixi ∈ Rp, (48)

where we still have wτi = min
(
1, 1

2τ |zi|
)

sign(zi) but now zi = yi − xTi β, ∀i. The Lipschitz constant of
∇gτθ is still given by Theorem 5. �



H Proof of Theorem 6

Proof: We still assume |h1| ≥ . . . ≥ |hp|. Following Equation (21) it holds:

S(h) ≤ ∆(h) ≤ η|β∗|S − η|β̂|S . (49)

We want to upper-bound the right-hand side of Equation (49). We define the permutation φ ∈ Sp such that
|β∗|S =

∑k∗

j=1 λj |β∗φ(j)| and |β̂φ(k∗+1)| ≥ . . . ≥ |β̂φ(p)| – φ is uniquely defined. Hence it holds:

1

η
∆(h) ≤

k∗∑
j=1

λj |β∗φ(j)| − max
ψ∈Sp

p∑
j=1

λj |β̂ψ(j)| by definition of Slope

≤
k∗∑
j=1

λj

(
|β∗φ(j)| − |β̂φ(j)|

)
−

p∑
j=k∗+1

λj |β̂φ(j)| since φ ∈ Sp

=
k∗∑
j=1

λj |hφ(j)| −
p∑

j=k∗+1

λj |β̂φ(j)|

≤
k∗∑
j=1

λj |hφ(j)| −
p∑

j=k∗+1

λj |hφ(j)|.

(50)

Since λ is monotonically non decreasing:
∑k∗

j=1 λj |hφ(j)| ≤
∑k∗

j=1 λj |hj |.
Because |hφ(k∗+1)| ≥ . . . ≥ |hφ(p)|:

∑p
j=k∗+1 λj |hj | ≤

∑p
j=k∗+1 λj |hφ(j)|.

In addition, Equation (22) from Appendix B leads to, with probability at least 1− δ
2 :

|S(h)| ≤ 14LM

√
log(2/δ)

n

p∑
j=1

λj |hj | ≤
η

α
|h|S ,

where η is defined in the statement of the theorem. Thus, combining this last equation with Equation (50),
it holds with probability at least 1− δ

2 :

− 1

α
|h|S ≤

k∗∑
j=1

λj |hj | −
p∑

j=k∗+1

λj |hj |,

which is equivalent to saying that with probability at least 1− δ
2 :

p∑
j=k∗+1

λj |hj | ≤
α+ 1

α− 1

k∗∑
j=1

λj |hj |, (51)

that is h ∈ Γ
(
k∗, α+1

α−1

)
. �

I Proof of Corollary 2

Proof: We follow the proof of Theorem 1. Theorem 3 still holds with L1 tolerance loss function – the
results for L2 is however no longer true. In addition,the restricted strong convexity derived in Lemma 4



applies for Slope. We consequently obtain with probability at least 1− δ:

1

4
κ̃(k∗, ω)

{
‖h‖22 ∧ r(k∗)‖h‖2

}
≤ τ‖h‖1 + η

k∗∑
j=1

λj |hj | − η
p∑

j=k∗+1

λj |hj |

≤ τ‖hS0‖1 + η
k∗∑
j=1

λj |hj |+ τ‖h(S0)c‖1 − η
p∑

j=k∗+1

λj |hj |

≤ τ‖hS0‖1 + η
k∗∑
j=1

λj |hj |+ (τ − ηλp)‖h(S0)c‖1.

(52)

We want τ ≤ ηλp, that is 14Lµ(k∗)

√
log(3)
n + log(4p/k)

nk + log(2/δ)
nk ≤ 14αLM

√
log(2e)
n log(2/δ), which is

satisfied since µ(k∗) ≤ αM . Hence we obtain, similarly to Section E:

1

4
κ̃(k∗, ω)

{
‖h‖22 ∧ r(k∗)‖h‖2

}
≤ τ‖hS0‖1 + η

k∗∑
j=1

λj |hj |

≤ τ
√
k∗‖hS0‖2 + η

√
k∗ log(2pe/k∗)‖hS0‖2

≤ 2η
√
k∗ log(2pe/k∗)‖hS0‖2 since τ ≤ ηλp ≤ ηλk∗

≤ 28αLM

√
k∗ log(2pe/k∗)

n
log(2/δ)‖h‖2.

This last equation is very similar to Equation (40) in the proof of Theorem 1. We conclude the proof
identically, and obtain a similar bound in expectation by following the proof of Corollary 1. �


