Appendices

A Usefull properties of sub-Gaussian random variables

This section presents useful preliminary results satisfied by sub-Gaussian random variables. In particular,
Lemma 5 provides a probabilistic upper-bound satisfied by the maximum of independent sub-Gaussian

random variables.

A.1 Preliminary results

n
Under Assumption 3, the random variables ) Of ((x;, 8%),v;) x;;, Vj are sub-Gaussian. They conse-

=1
quently satisfy the next Lemma 3:

Lemma 3 Let Z ~ subG(c?) for a fixed o > 0. Then for any t > 0 it holds
E (exp(tZ)) < el
In addition, for any positive integer £ > 1 we have:
E (yzyg) < (202)9201(2/2)

where T is the Gamma function defined as T'(t) = [ #'~'e "dx, Vt > 0.
Finally, let Y = Z? — E(Z?) then we have

1 3

E v)) <2

(ex (1602 ))-2’
<

2.

and as a consequence (exp (@Z 2))

Proof: The two first results correspond to Lemmas 1.4 and 1.5 from Rigollet [2015].
In particular E (| Z|?) < 402
In addition, using the proof of Lemma 1.12 we have:

1
E (exp(tY)) < 1+ 128t%0%, V|t| < —.
1602

Equation (19) holds in the particular case where t = 1/160°2.

The last part of the lemma combines our precedent results with the observation that %el/ <,

A.2 Proof of Lemma 1

As a first consequence of Lemma 3, we derive the proof of Lemma 1 — stated in Section 2.3.
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Proof: We note S; = 0f ((x;, 8%),yi), Vi.
Since B* minimizes the theoretical loss, we have E(S;z;;) = 0, Vi, j.
By definition of a sub-Gaussian random variable, we fix M > 0 such that: V¢ > 0,

P (]Ssxi | > t) < 2exp <_2L§2]\42> , Vi, j.
Then from Lemma 3 it holds:

E (exp(tSixij)) < M s 0,V 5.

As a consequence, using Lemma 3 for the independent random variables (Six1 j,. .., Sy%y ), it holds
vVt > 0,

n n
E (exp (tz Sixi,j>> HE exp (tS; x” < H 4L2 M2 _ e4nL2M2t2'
i=1 i1

=1
Let M7 = 2v/2M/n, then with a Chernoff bound:

n
, MZL2s? t2
P (Z Siwij; > t> < rsn>151 exp (2 — st | =exp —m , V>0,

i=1
which concludes the proof. U
A.3 A bound for the maximum of independent sub-Gaussian variables

The next two technical lemmas derive a probabilistic upper-bound for the maximum of sub-Gaussian random
variables. Lemma 4 extends Proposition E.1 [Bellec et al., 2016] to sub-Gaussian random variables.

Lemma4 Let g1,...g, be independent sub-Gaussian random variables with variance o2, Denote by
(9(1)s - - - » Y(p)) @ non-increasing rearrangement of (|g1|, . .. ,|gp|). ThenVt > 0 and Vj € {1,...,p}:
(ot = s (2)) < (2)
5 g og | — S| — .
jo? &= J J
Proof: Letj € {1,...,p}. We first apply a Chernoff bound:
. . .
1 < 2p 1 < 2p\ " 16
P .7292 >tlog<,>><E<exp< : 292 )) () .
2 (k) = 2 (k)
(]U 1 J 16jo0 P j
Then we use Jensen inequality to obtain
1 J
2
= (o (510 2o ) ) < 305 (o (st )
k=1
<1Zp:1[«: L2)) <22 winL 3
- exp | — — with Lemma 3.
=&\ 162 ) =
O

Using Lemma 4, we can derive the following bound which holds with high probability.
Lemma S We consider the assumptions and notations of Lemma 4. In addition, we define the coefficients
Aj = +/log(2p/j), j=1,... p. Then for$ (0, l), it holds with probability at least 1 — §:

sup { ()J\)} < 124/log(1/9).

Jj=1,....p J



Proof: Wefix § € (0,1) andj € {1,...,p}. We upper-bound g?2., by the average of all larger variables:
3 pp () oY g g

Applying Lemma 4 gives, for ¢ > 0:

9(2) 2 \ 1!
P 2)\2>t 229(k>t>\ <2p> :

We fix t = 144 log(1/6) and use an union bound to get:

9log(1/6)—1 P

1
IP’( sup A >12\/W> ( ) S jles(1/a)-1,
j=1

J=1,.p OAf

Since § < % it holds that 91og(1/6) — 1 > 9log(2) — 1 > 0, then the map ¢t > 0 — t9108(1/0)=1 jg
increasing. An integral comparison gives:

—_

p
1
nglog(l/é = (p_|_ 1)910g(1/§) _ 75—910g(p+1)'

2 2
7=1

In addition 9log(1/6) — 1 > 7log(1/) = —7log(d) and

9log(1/9)— —Tlog(d)
1 < 1 _ §Tlos(2p).
2p 2p

Finally, by assuming p > 2, then we have 7 log(2p) — 9log(p + 1) > 1, thus:

IP’( sup —= > 124/log(1/4) )

J=1,.. ,pUJ

which concludes the proof. O

B Proof of Theorem 2

We use the minimality of B and Lemma 4 to derive the cone condition.

Proof: We assume without loss of generality that |hy| > ... > |hy|. We define Sy = {1,...,k"} as the
set of the k* highest coefficients of h = B - G

[3 is the solution of Problem (2) hence:
§2 S (tme ) + MBI = 5 (e 87 + A 20
n g ’ ) )

Using the definition of A (3%, h) as introduced in Theorem 3, Equation (20) can be written in a compact
form as:

A(B*,h) < A8l = AlBlh-



Introducing the support S* of 3* we have

A (B, h) < MBIl = AMlBs-ll1 — M B(sye s
< Mhs«|l1 = Allh(seyellr 1)
< AR, It = AllR(sgye 1

where this last relation holds by definition of Sy. We now want to lower bound A (8%, h). Exploiting the
existence of a bounded sub-Gradient 0 f we obtain

A(B*h)> S (B Zaf i, B%); vi) (i, ).

In addition we have:

l e~
SR =~ > 0f (@ B):vi) ijhy

=1 j=1
p

%Z( )hjr-

Let us define the independent random variables g; = ﬁ S 0f (@4, 8%);yi) i, j=1,...,p.

Zaf x;, 8%); i) Lij

Assumption 3 guarantees that g1, . . ., gp are sub-Gaussian with variance L2?M?. A first upper-bound of the
quantity |S(h)| could be obtained by considering the maximum of the sequence {g;}. However Lemma 5
gives us a stronger result.

Indeed, since § < 1 we introduce a non-increasing rearrangement (g(1y, - - -, 9(p)) of (|g1],--.,[gpl). We

recall that Sp = {1,...,k"*} denotes the subset of indexes of the k* highest elements of h and we use
Lemma 5 to get, with probability at least 1 — g:

1S (B h

NG
3\

&M*@
M

1 0 | w
< — LMM; h
< ﬁ;;f?,,p{LMA }Z ey

[log(2/6) .
< 12LMy\| —————= Al th L
< - ]21 jlh ;)| with Lemma 5

P (22)
<12LM M Nilhi|since A\; > ... > Xy,and |hi| > ... > |h
VL, D P
n
=

log( 2/5 k u
<12LM > Ajlhsl + M D Ih
j=1 j=k*

k*
log(2/9)
_1orry 18! / Z ]+ e ||

(So)ellt



Cauchy-Schwartz inequality leads to:

k* k*
D Nilhsl <[ D0 A2 lhsyll2 < v/E* Tog(2pe/k*) | s |2,
i=1 j=1

where we have used the Stirling formula to get (%)n < n! and we have used:

k*

k*
D A=) log(2p/j) = k*log(2p) — log(k*!)
j=1 j=1

< k*log(2p) — k™ log(k*/e) = k™ log(2pe/k™).

In the statement of Theorem 2 we have defined A = 12a LM \/n~1log(2pe/k*) log(2/9).
Because \g+ < y/log(2pe/k*), Equation (22) leads to:

. 1
1587 h)| < A (VElIhsyllz + syl
Combined with Equation (21), it holds with probability at least 1 — g :

A
—= (VR lhsql2 + lsells) < Alhsy 1y = MlAsyyell,

which immediately leads to:

« VEk*
Irsoyells = —— lhsollr + —— lIhsyl2.
a VE* . .1 4
We conclude that b € A (S, 25, 777 ) with probability at least 1 — 5. ]

C Proof of Theorem 3:

Proof: Letk e {1,...,p}andS,...S;beapartitionof {1,...,p}suchthatqg = [p/k|and |S,| < k, VY.
We divide the proof of the theorem in 3 steps. We first upper-bound the inner supremum for a sequence of %
sparse vectors zg,, . . ., zg, satisfying ||z, [|1 < 3R,V{. We then extend this bound for the supremum over
the compact set of sequences considered through an e-net argument.

Step 1:  Let us fix a sequence zs,, ..., 25, € RP: Supp(zs,) C Sj,Vjand |[z5,[[1 < 3R, VL.
In particular, ||z, [|o < k,Vj. In the rest of the proof, we define z5, = 0 and:

Y4
wy=p0"+Y zs, Ve{l,....q}. (23)
j=1

In addition, we introduce Z;p, Vi € {1,...,n}, V0 € {1,...,q} as follows:

Ziv = f ((Zi, we); vi) — [ (@i, we-1);9i) = [ (@i, we1 + 25,)5vi) — f (Ti, we-1);9i) -



We fix £ € {1,...,q}. Let us note that:

A(wf—lv ZS@) = 7Zf T, Wy— 1+ZS€ yZ - Zf Ti, Wy—1 y’L)

=1

= %Z {f (i, we_1 + ZSg>§yz‘) —f (<$i,wg_1>;yi)} (24)
=1

1 n
13z
n -
=1
Assumption 1 guarantees that f(., y) is L-Lipschitz Vy then:
| Zie| < L ’<xivz5e>’ :

Then using Assumption 4.1(k) on the k sparse vector zg, it holds:

Lu(k
A (w1, 2s,) < — ;\Zw! <= ;L\ (i, 25,)] = HXzSéHl < \‘/%)stgul.
Hence, with Hoeffding’s lemma, the centered bounded random variable A (w1, zg,)—E (A (w¢—1, 2s,))
is sub-Gaussian with variance 2 “ Hz s,||3. Tt then hold, V¢ > 0,
A A fnt? 25
P (A (we-1, zg,) = E(A (w1, 25,))] = t]zg,]l1) < 2exp —W . (25)

Equation (25) holds for all values of ¢. Thus, an union bound immediately gives:

l=1,...,q k 2L2M(k)2
(26)

nit2
P ( sup {[A (w1, z5,) = E (A (w1, 2s,))| = t[zs, 1} > 0) <2 [q exp <—kt> .

Step 2:  We extend the result to any sequence of vectors zg,,...,2s, € R’ : Supp(zgs,) C S and
llzs,|l1 < 3R,V throught an e-net argument.

We recall that an e-net of a set Z is a subset A/ of Z such that each element of I is at a distance at most € of \V.

We know from Lemma 1.18 from Rigollet [2015], that for any € € (0,1), the ball {z € R?: ||z|; < R}

has an e-net of cardinality |N| < (2}%%1)01 — the e-net is defined in term for the L1 norm. In addition, by

following the proof of the lemma, we can create this set such that it contains 0.

Consequently, we use Equation (26) on a product of e-nets Ny, p = H N kR Each N k. 1 an e-net of
=1

the bounded set of k sparse vectors Zj, v.r = 1%s, € RP: Supp(zs,) C Se; ||zs,[l1 < 3R} which contains

Os,. Wenote Z, p = H Ik - It then holds:
=1

P sup { sup {[A (wp, z5,) —E (A (we-1, z5,)) = 25,1} = 0}

(zsl ..... qu)GNk R

1) o () =+ () (52 o).
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Step 3:  We now extend Equation (27) to control any vector in Zj, . For zg,, .. ., zs, € L, g, there exists
Zs,,...,25, € Ny such that |zg, — Zg, |1 < €, V. Similarly to Equation (23), we define:

14
:I@*+Z,§:Sj, VEE{l,...,q}.

For a given ¢, let us define

ft (wf—la ZSZ) = |A (w€—17 ZS@) - ]E(wf—la ZS@)| - tHZSZHl?ve'
We fix £o(t) such that £y(t) € argmax { fr: (ws—1, zg,)}. The choice of 7t will be justified later. We fix ¢

l=1,...,q
and will just note ¢y = ¢y(t) when no confusion can be made.

With Assumption 1 we obtain:

o > (o)

Wiy )3 Yi) Zf T, W) yl)"’Zf(@:ia'&’éofl);yi)_Zf“xi:w%*l);yi)

i=1 i=1

ﬁ .E;L ’<wi7w50 - ﬁ)fo>| + E z;L |<$i7w€0—1 - ﬁwo—lﬂ
1= 1=

1 n Lo
= ﬁ ZL Z(azi,z&z — 252
=1 /=1
2
EZZLKJ%ZSZ - zg,)|

i=1 ¢=1

IN

lo—1

Z Lij, 25, — 25@>

n

ZL
11

VAN

M=

1X(zs, — 25, )y

~
Il
-

pk) Nlzs, = 2s,lly

~
Il
-

v Sl Fe
L I
S g 9

€ €.

where n = 2L%k) and we have used Assumption 5.1(k). It then holds:

o 200) 2 Ao 200) |3 (s 70) = (11 55,)|
B (A (weo1, 25, ) = A (01, 283, ) )|~ thzsy, — 25, I
> fi (wzofh Zsé(]) — 2ne — te.

Case 1: Let us assume that [z, |1 > €/2 and that ¢ > 7, then we have:

fi (fverh isgo) > fi (’we(rh ngo) =220+ V)[lzs,, [ = fre (wzoq, zsgo) : (29)



Case 2: We now assume [|zg, [[1 < €/2. Since Og, € Ni.r we derive similarly to Equation (28):

Ly(k) HZS
vnk ‘o

i 20) - (o005,

1 )
which then implies that:

2Lu(k
frt (’weoq, ngo) < frt (weoq, 0%) + \/l%) steo

—7tHz5 ‘
1 folly’

and this quantity is smaller than fr (wzo,l, 0520> as long as 7t > M\/L:) The latter condition is satisfied

n.
ift >mn.

In this case, we can define a new !70 for the sequence zg,,..., z5£071,0350 s ZSpy 410 ZSg- After a fi-
nite number of iteration, by using the result in Equation (29) and the definition of ¢y, we finally get that
frt (’wgofl, ZS%) < f (ﬁ)gofl, 2550 for some zg,, ... ,E:Sq S Nkﬂ.

As a consequence of cases 1 and 2, we obtain: Vi > 1, Vzg,,..., 25, € Iy r, 325,,...,25, € N, R

,Sup fae(wer, z5,) = fu (w£0—1> ZSgo) < fi (111@0—1, 2520) < ,Sup fe (e, 2g,).
=1,....q =1,....q

This last relation is equivalent to saying that V¢ > 7n:

sup { sup fr (we_r, ZSZ)}S sup { sup fyy7 (dr-1, 5587)}- (30)

zslv"szquk,R =1,....q zslv"szquk,R =1,....q

As a consequence, we have V¢ > 7n:

P( sup { sup {|A (we-1, zs5,) = B (A (wp-1, 25,))| —tIIZSng}} > 0)

2515-284€Lk, R | £=1,...9

t
<P sw sup {\Acwe_l, 25,) — E (A (w1, zs@>>|—uza5||1} >0
_ 251525, ENg R | £=1,000 7 (31)
2 k 2
o (2 (SRE1\E (ki
k € 202 u(k)?

ap\? & knt?
(k:) 3" exp <_98LQM(I<:)2> by fixing € = 2R and since R > 1.

IN

IN

i 98L2u(k)?
Thus we select ¢ such that ¢ > 77 and that the condition ¢* > #U klog(3) + 2log (%) + log (%)]
holds !. To this end, we define:

T= 14LH(7€)\/ 10‘1(3) 18 5145 /) logr(;/ ) sm

We conclude that with probability at least 1 — %:

sup { sup {|A (w1, zs5,) — E (A (w1, zsg>>|—r<||zsz\1vn>}}so.

Zsl,...,quEIk’R l=1,...,q
U

' A somewhat faster proof would have consisted in fixing ¢ = 2R in the definition of the e-net — of size now bounded by 3* — and
in noting that because of the L1-constraint, each element z g, is at a distance at most R = ||z, ||1/2 of its closest neighborhood in
the e-net. However, we prefer the more general proof presented herein.




D Proof of Theorem 4:
Proof: The proof is divided in two steps. First, we lower-bound the quantity A (3", h) with Theorem

3. Second, we refine this lower-bound with the use of the cone condition derived in Theorem 2 and the
restricted eigenvalue condition presented in Assumption 4.2.

Step 1: Let us fix the partition of {1,...,p}: S1 ={1,...,k*}, S = {k* +1,...,2k*},..., 5, — with

q = [p/k*]. Recall that b = 3 — 3*. Then it holds | S;| < k* and ||hs, |1 < 3R. We thus can use Theorem
3 for the corresponding sequence hg,, ..., hg, of k* sparse vectors.

A(B*’h):*Zf wzvﬁ +h y’L Zf x;, 3 yz)
q
Z%Zf (@i, B+ hg,)ivi —*Zf ((xi, B%); vi)
‘ =

l n /-1
fl@B +> hg)iui —%Zf (@i, 8+ _hs)ivi (32)

i=1 j=1 i=1 §=0

Il
~
I MQ
—

where we have defined wy = 8" + 25:1 hg;,V¢and hg, = 0 as in the proof of Theorem 3. Consequently,
with Theorem 3, it holds with probability at least 1 — g:

|A (w€—17 th) - K (wﬁ—h th)‘ > THhSZHl,VE,

where 7 = 7(k*) = 14Lu(k*)\/l°gn(3)  loaln/k) | log(2/5) is fixed in the rest of the proof.

nk*

As a result, following Equation (32), we have with probability at least 1 — 5

q
A(B*,h Z (we—1,hs,) — 7|hs,|[1}
q a (33)
=K (ZA (wg_l, hSz)) - ZTHhSzHl
=1 =1

=E(A(B", h)) — 7R

In addition, since the samples are identical drawn:
1 n
E(A(B"h) =~ D E{f (w3, 87+ h)sys) — f (i, 8);w0)} = L(B* + h) — L(B7).
i=1

Consequently, we conclude that with probability at least 1 — g:
A(B*,h) > L(B" + h) — L(B") — 7||h]1. (34)



Step 2:  We now lower-bound the right-hand side of Equation (34). Since L is twice differentiable, a Taylor
development around 3 gives:

L(B° + h) — £(8%) = VLB R+ ShTVL(E) h + o ([A]2).

The optimality of 3* implies VL(3*) = 0. In addition, Theorem 2 states that h € A (Sp,y1,72) with
probability at least 1 — g. Consequently, we can use the restricted eigenvalue condition defined in Assump-
tion 4.2(k*, ). However we do not want to keep the term o (||h||2) as it can hide non trivial dependencies.
To overcome this difficulty, we use the convexity of £ and the maximum radius 7 (k*, ) introduced in the
growth condition Assumption 5.2.

Case 1: If ||h||2 < (k") — where (k™) is a shorthand for r(k*,~y) — then with Theorem 2 and Assumption
4.2(k, ), it holds with probability at least 1 — %:
* * 1 *
LB+ h) — £(8") > Lr(k) R}, 35)
Case 2: If now ||h|2 > r(k*), then using the convexity of £ thus of t — £ (8" + th), we similarly obtain
with same probability:

LB +h) — (3 > Il {L <[3* + ’”(k“*)h) _ c(g*)} by convexity

r(k*) 12
b e (e - ce)
— r(k*) 2 2eA(So,m ) (36)
lzllz=r (k")
hll2 1 1
> ﬂ(,jf) LR E)r (K7 = Ja(K)r (k)| [hl 2.

Combining Equations (34), (35) and (36), we conclude that with probability at least 1 — § the following
restricted strong convexity with L1 tolerance function holds:

A(B" ) = (k) [RIE A () () il = 7l 37
To derive the condition for the L2 tolerance function, we use our cone condition derived in Theoreme 2. We
recall that Sy has been defined as the subset of the £* highest elements of h. It thus holds:

[Rllr = llhsolls + [ se)elln

o Vk* )
< hsolls + ——7 Ihsolls + —— llhsollz since b € A (So,71,72)

200 — 1 Vk*
= h ——||lh
syl syl

20— 1 VE*
< a_ TV k*||hs, |2 + p— |lhs,||2 with Cauchy-Schwartz inequality on the k* sparse vector hg,
2
< VA
a—1
(38)
We thus conclude that it holds with probability at least 1 — § :
1 1 2a
A(Bh) Z r(E) R A pr(E)r(E) Rl = ——7VE*|h]2. 39)



E Proof of Theorem 1

Proof: We now prove our main Theorem 1. Following Equation (21) we have:
A (B h) < Mhsyllr = AllR(sgyells-

Thus using the restricted strong convexity derived in Theorem 4, it holds with probability at least 1 — 4:

N . 20
—k(k*) { [R5 Ar(k*)|hll2} < - 1T¢k7\|h!|2 + AR, [l1 = Allr(sy)elln

8]
SVl + AVE s, |2 (40)
2

< @ T+A> VE|| R

| A

With the definitions of 7 and A as in Theorem 2 and 3, Equation (40) leads to:

L) (Whlla 570 < 120200y M BT 155

28« L,u(k:*)\/bg(g) n log (4p/k*) N log (2/9) /k:*

a—1 n nk* nk*

_.I_

Exploiting Assumption 5.2(k*,~, §), and using that « > 2, we obtain with probability at least 1 — §:

2 1% 1o 1o o N2 1o o N .
I3 < (Z‘f;ff) Flos /1)) g@/%( ﬁg{f@) (3 +log (4p/8°)1° +log (2/0)&°

which concludes the proof. O]

F Proof of Corollary 1

Proof: In order to derive the bound in expectation, we define the bounded random variable:

K(k*)Q e * 12
Z = WHB—,@ [2-

Since Assumption 5(k*, vy, d) is satisfied for a small enough d¢, we can fix C' such that V6 € (0, 1), it holds
with probability at least 1 — §:

k" log(p/k")

*\2
Z < CM2Hlog(2/6) + C“(kn) log(2/6) where H =~

Then it holds V¢ > ¢y = log(4) :

*\ 2
P <Z/C’ > M2Ht + Mk)t) < 2.
n

Let o = M2Ht, —1—“( )to,thean>q0

n q
P(Z/Czq) < 2exp (_nMZH e ‘-’> <209 (~377)



Consequently, by integration we have:

+oo
E(Z) = ; CP(|Z]/C > q)dq

+oo
< CP(|Z|/C > q)dg + Cqo

q0

o0 q
< 2Ce m?Hdg + Cqo
/qo 41

< 9CM2He W25 + Cqp

< 2CM*H + CM?H log(4) + C“(:f) log(4)
*\ 2

< <M2H + Mk))

n

for C; = 2C + log(4). Hence we conclude:

B (13-018) 5 (o) {aeE el w1

G Proof of Theorem 5

Proof: We fix 7 > 0 and denote X = (X 1,...,X,) € R"*P the design matrix.
For 8 € RP, we define w” (3) € R" by:

1
w7 (8) = min (1, |zi|) sign(z1), Vi
2T

where z; = 1 — yiacZT,B, Vi. We easily check that

n

1 T
w’ = argmax — 2 wiz) — —|lw 2.
? e n;( i+ wizi) = 5wl

Then the gradient of the smooth hinge loss is
1 n
Vg'(B) =5~ > (1 +w](B))ysx; € RP.
i=1

For every couple 3, v € R? we have:

n

VgT(8) - V4T () = 5 (] (x) — w] () i “2)

i=1
For a, b € R" we define the vector @ x b = (a;b;);"_;. Then we can rewrite Equation (42) as:

1

Vg (B) = Vg (7) = 5K [y + (w” (v) = w(B))]. (43)



The operator norm associated to the Euclidean norm of the matrix X is [|X|| = max;,—; [|Xz[|2.

Let us recall that ||X||? = ||XT||2 = || XTX]|| = pmax(XTX) corresponds to the highest eigenvalue of the
matrix X7X.

Consequently, Equation (43) leads to:

IVE(8) = VI ()2 < 5 K] w7 () — w7 (8)]] @
In addition, the first order necessary conditions for optimality applied to w” (3) and w () give:
2 {2171(1 — vz B) - ;w?(ﬂ)} {wi (v) —wi (B)} <0, (45)
i=1
and .
Z{;n(l—yi:viT’Y)—;wf(fy)}{w{(ﬁ) —wl(y)} <0. 46)
i=1

Then by adding Equations (45) and (46) and rearranging the terms we have:

7w () - w"(B)II3

<53 el (8- ) ([ () - w](8)
i=1

< 51X (8 =) Il () w (B

1
< SIXNB = 7l2llw™(v) = w™(B)ll2,

where we have used Cauchy-Schwartz inequality. We then have:

1
lw” () = w"(B)]lz = 5 [IX[[1B = ~ll2- (47)

We conclude the proof by combining Equations (44) and (47):

IA

1
— X118 -
1o IXIE18 =7l

prmax (1 1XTX)

= a2 21— e

IVLT(B) = VLT (7)ll2

The case of Quantile Regression: For the quantile regression loss, the same smoothing method applies.
Let us simply note that:

pp(z) = max (0 — 1)z, 0z) = %((29 — e+ J2))

1
= ﬁég 5((29 — 1z + wz).

Hence we can immediately use the same steps than for the hinge loss — which is a particular case of the
quantile regression loss — and define the smooth quantile regression loss gj. Its gradient is:

1 n
Vo5 (B) = —5-> (20 =1+ w](B))yix; € R, 48)
=1

where we still have w] = min (1, %]2,\) sign(z;) but now z; = y; — & B, Vi. The Lipschitz constant of

Vg, is still given by Theorem 5. U



H Proof of Theorem 6
Proof: We still assume |h;| > ... > |h,|. Following Equation (21) it holds:
S(h) < A(h) < 1|B*[s — nlBls. (49)

We want to upper-bound the right-hand side of Equation (49). We define the permutation ¢ € S, such that
|1B%|s = 2?21 )\j\ﬁ(’;(j)\ and |By(k41)| = -+ = |Bg(p)| — ¢ is uniquely defined. Hence it holds:

k*
1
"7A ) < Z Al B = maxz Aj |ﬁ¢(j | by definition of Slope
7j=1
= ZAJ (1859 = 1Bsi!) - Z AilBoi)| since ¢ €S,
j=1 j=k*+1
=2 Ailhsl = D2 AilBe]
j=1 j=k*+1
k* p
<D Aol = D2 Alhgg
j=1 j=k*+1

Since A is monotonically non decreasing: Z?;l Ajlho)| < Z;’il jlhjl.
Because ‘h¢>(k*+1)’ > .2 ’h¢(p)’: Z?:k*+1 Ajlhjl < Z?:k*+1 )‘j‘h¢>(j)’-
In addition, Equation (22) from Appendix B leads to, with probability at least 1 — g:

log(2/6) < n
st < 14201y [PEEON S < png,
j=1

where 7 is defined in the statement of the theorem. Thus, combining this last equation with Equation (50),
it holds with probability at least 1 — J:

—*|hls<z>\ = 3 Alhl
j=k*+1
which is equivalent to saying that with probability at least 1 — %:

)3 A|h|<““2x|h| 5D

Jj=k*+1

thatish € I' (k* "‘H) O

P a—1

I Proof of Corollary 2

Proof: We follow the proof of Theorem 1. Theorem 3 still holds with L1 tolerance loss function — the
results for L2 is however no longer true. In addition,the restricted strong convexity derived in Lemma 4



applies for Slope. We consequently obtain with probability at least 1 — ¢:

k* P
1~ *
Z“( w){lth%M(k)Ilhllz}§T||h||1+nZAjlhj|—v7 Z Ajlhl
j=1 j=k*+1
k*
< 7llhsylli + 1> NIkl + TllRsell = 7 Z Ailhjl (52)
7j=1 j=k*+1
k*
STIIhSOIh+nZAj|hjl+(T—nAp)Hh<so)cHl-
j=1

We want 7 < nh,, that is 14Lp(k) (/250 4 lostip/l) | 10s/0) < 140107, /1052 1og(2/5), which is

satisfied since pu(k*) < M. Hence we obtain, similarly to Section E:

k*
w) {IRl5 A () IRll2} < Tlhsy i+ 1) Ajlhyl
j=1
< TV ||hsy ||z + 1v/k* log(2pe/k*) || s, 2
< 2n\/k* log(2pe/k*)||hs, |2 since T < A, < nAg=

WLOBCIIE) o /) o

R
—~

=

< 28aLM\/

This last equation is very similar to Equation (40) in the proof of Theorem 1. We conclude the proof
identically, and obtain a similar bound in expectation by following the proof of Corollary 1. g



