
Bridging the gap between regret minimization and best arm identification, with application to A/B tests

A Concentration Inequalities

We provide here required results of anytime bounds that hold in the i.i.d. setting for the interested reader.

Hoeffding on intervals

Lemma 8. Let Zt be a �2
-subGaussian martingale difference sequence then for every � > 0 and every integers T1  T2 2 N
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this yields the result.

Anytime Hoeffding

Lemma 9. Let Zt be a �2
-sub-Gaussian martingale difference sequence. Then, for any ↵ > 0 and � > 0 satisfying
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so that c2 ⇡ 1.62 and log2(·) is the natural logarithm in basis 2, with the extra assumption that log2(1) = 1.
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so that c02 ⇡ 7.11.

Proof. We are going to use the fact that with probability at least 1� �, for all s 2 [T1, T2],
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We can now apply Lemma 8. And this gives, assuming �  2 (i.e., ⌘ < 1) for the moment,
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The choice of ⌘2 = 8↵/ log(log(2)/�), which ensure that ⌘ < 1 as long as ↵ < 1
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We now consider the case where � might be bigger than 2, but let us assume for now that � < 5 (i.e., ⌘  4) and the exact
same argument with the choice of ⌘2 = 8↵/ log(1/�) gives
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Corollary 10. Let Zt be a �2
-sub-Gaussian martingale difference sequence. Then for � > 0 small enough
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In the first case, e� is of the order of �
q
log( 1� ) and, in the second case, of the order of � log( 1� ).

The following concentration inequality will be useful for the non-iid case. In that framework, at some stage t, the total
number of users in the population is random, denoted by nt. We recall that rn denotes the mean of the n-th user of the
population and "n,s is the random white noise for that user after he is in the population for s stages. In the remaining, we
assume that the expectation of ru is equal to r and that this random variable is �2

r -subGaussian, On the other hand, the
expectation of " is naturally 0 and this random variable is �2

" -subGaussian. An algorithm is therefore a sampling policy A
that indicates after seeing the first n values of ru plus some empirical average noise "u,t at time t 2 N whether to add a new
user or not. We denote by At 2 {0, 1} the decision to include a new user or not at stage t. We denote by Tn 2 N the time
where the n-th user is added, by ⌧n = Tn+1 � Tn the number of stages with exactly n users and by ⌧m:n =

Pn�1
s=m ⌧s the
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P
n
91  s  ⌧n, rn +

"1,s+⌧1:n + . . .+ "n,s
n

 r �

vuut2
⇣
�2
r +

�2
" log(en)

n

⌘

n
log

⇣36n4

�
max{1, n�

2
r

�2
"

}
⌘o

 1

3

e�
n3/2

.



Rémy Degenne, Thomas Nedelec, Clément Calauzènes, Vianney Perchet

The exponent 3/2 will come from the fact that e� is of the order of � log 1
� (and not �). We will even prove the following
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As usual, take ⌘ > 0 and let us try to upper bound
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We now focus on the stages where s > 6n2 max{1, n�2
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B UCB↵ and ETC: proofs.

Our exact theorems are the two following.
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We first prove a generic lemma, which will also be useful in the non-IID case.

Lemma 14. Consider the two arms problem where A is the best arm.

Let � 2 (0, 1] and ("n)n2N be a sequence such that with probability 1� �, for all nA, nB 2 N⇤
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Let an algorithm be such that it pulls each arm n0 times, then pulls argmaxi2(A,B) r̂
i(ni) + ↵"ni for ↵ > 1, and takes
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Proof. We prove that the number of pulls of the best arm A is bounded by a function of the number of pulls of B, which is
itself bounded since it is the worse arm.

Relation between A and B when A is pulled.
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Proof of Theorem 12. We apply Lemma 14 with "n =
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(↵�1)2 }+ 1 and C2 = (↵+1)2

(↵�1)2C1 + 1. At the time of decision,

nB  C1

✓
log

2

�
+ 2 log log(2C1 max{log 2

�
, 2 log(2C1)})

◆

nA  C2

✓
log

2

�
+ 2 log log(2C2 max{log 2

�
, 2 log(2C2)})

◆

t = nA + nB  (C1 + C2) log
1

�
+ L ,

where L regroups the doubly logarithmic terms.

The regret is �nB . Thus with probability greater than 1� �̃,

Rtd 
✓
2�2

�
min{(↵+ 1)2,

16↵2

(↵� 1)2
}+�

◆✓
log

2

�
+2 log log(2C1 max{log 2

�
, 2 log(2C1)})

◆

Proof of Theorem 13. Let n = t/2. We consider only even stages t. Let "0n =
q

4�2

n log( log
2 n
� ). As long as no decision is

taken we have r̂A(n)� r̂B(n)  "0n .

With probability 1� �̃, for all n � 1, we have the concentration inequality r̂A(n)� r̂B(n) � �� "0n .

Combining the two inequalities we obtain that as long as no decision is taken, "0n  �
2 . That is,

n

log( log
2 n
� )

 16�2

�2
) n  16�2

�2
(log

1

�
+ 2 log log(

32�2

�2
max{log 1

�
, 2 log(

32�2

�2
)})) .

This bound on n gives both a bound on the regret (�n) and on the decision time (2n).

Lemma 15. Let a, b > e and a � b. If t � a+ b log log(max{2a, 2b log(2b)}), then t � a+ b log log(t).

Proof. For t � b, the function t ! t� b log log(t) is increasing. Let x be the solution of x� b log log x = a. We will show
that the proposed t is bigger than x.

Case 1: a � b log log(x). Then x = a+ b log log(x)  2a and 2a � a+ b log log(2a), such that

a+ b log log(2a) � a+ b log log(a+ b log log(2a)) ,

from which we conclude that x  a+ b log log(2a). Since t is bigger than the latter, it is bigger than x.

Case 2: a  b log log(x). Then x  2b log log x. If x > 2b log 2b then x
log log x > 2b log 2b

log log(2b log 2b) � 2b. We obtain that
x  2b log 2b. This implies that

a+ b log log(2b log(2b)) � a+ b log log(a+ b log log(2b log(2b))) ,

hence x  a+ b log log(2b log(2b)).

In both cases, the proposed t is bigger than x, hence it verifies the wanted inequality.
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C UCB-MM↵ and ETC-MM: proofs.

Lemma 16. Assume that �r � �p
2

and � > 4, and let n be defined by the following equation

2
⇣
�2
r +

�2
" log(en)

n

⌘

n
log

⇣36n4

�
max{1, n�

2
r

�2
"

}
⌘
=

�2

�
(3)

then

n  2��2
r

�2
log(

1

�
)(1 + O�(1)) +

�2
"

�2
r

log log(
1

�
)(1 + O�(1))

Proof. Consider first the following equation
2⌃2

n
log(

n5

�
) = C

and denote by n0 its solution. It follows from straightforward computations that,

n0  2⌃2

C

✓
log(

1

�
) + 5 log(

2⌃2

C
) + 10log

⇣
log(

1

�
) + 5 log

2⌃2

C

⌘◆
=

2⌃2

C
log(

1

�
) (1 + O�(1)) ,

where log(X) = max{5, log(X)}. We now go back to Equation (3), and assume for the moment that the solution n⇤ is
such that n⇤ �2

r
�2
"
� 1. Moreover, it is clear that

n⇤ � 2��2
r

�2
log

 
36
e�
�2
r

�2
"

✓
2��2

r

�2

◆5
!

=: n

As a consequence, if we denote by ⌃2 = �2
r +

�2
" log(n)

n , then n⇤ is such that

2⌃2

n⇤ log

✓
(n⇤)5

�

◆
 �2

�
, where � =

36�2
r

e��2
"

.

So at the end, we have proved that

n⇤ =
2�⌃2

�2
log(

1

�
)(1 + O�(1)) =

2��2
r

�2
log(

1

�
)(1 + O�(1)) +

�2
"

�2
r

log log(
1

�
)(1 + O�(1))

which gives the result.

Corollary 17. The decision time of UCB and ETC corresponds respectively to the solution of Equation (3) with � = 4 for

UCB and � = 8 for ETC (and � = 16 for ETC’).

Theorem 18. Given � > 0 and ↵ � 1, the decision time of UCB-MM↵ is such that, with probability at least 1� e�,

td  2�2
r

�2

⇣
2

↵2 + 1

(↵� 1)2
�
min

�
(↵+ 1)2,

16↵2

(↵� 1)2
 
+�2

�
+�2

⌘
log(

1

�
)(1 + O�(1)) + 2

�2
r

�2
"

log log(
1

�
)(1 + O�(1))

Moreover, on the same event, the regret of UCB-MM↵ at decision time satisfies

Rtd 
⇣8�r

�2
min

� (↵+ 1)2

4
,

4↵2

(↵� 1)2
 
+�

⌘
log(

1

�
)(1 + O�(1)) +

�2
r

�2
"

� log log(
1

�
)(1 + O�(1))

Proof. The proof is almost identical to the iid case. The main difference is the change in error terms. Indeed, for n 2 N⇤,
we define

"n =

vuut2
⇣
�2
r +

�2
" log(en)

n

⌘

n
log

⇣36n4

e�
max{1, n�

2
r

�2
"

}
⌘
.
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We apply Lemma 14 with this "n, n0 = 0 and C = 1. It yields that for all stages prior to the decision,

1

"2nB

 1

�2
min{(↵+ 1)2,

16↵2

(↵� 1)2
}+ 1 ,

1

"2nA

 (↵+ 1)2

(↵� 1)2

✓
1

�2
min{(↵+ 1)2,

16↵2

(↵� 1)2
}+ 1

◆
+ 1 .

We now introduce the notations �1 = min{(↵+ 1)2, 16↵2

(↵�1)2 }+�2 and �2 = (↵+1)2

(↵�1)2 �1 +�2. At the time of decision,

nB =
2�1�2

r

�2
log(

1

�
)(1 + O�(1)) +

�2
r

�2
"

log log(
1

�
)(1 + O�(1))

nA =
2�2�2

r

�2
log(

1

�
)(1 + O�(1)) +

�2
r

�2
"

log log(
1

�
)(1 + O�(1))

td = nA + nB =
2(�2 + �1)�2

r

�2
log(

1

�
)(1 + O�(1)) + 2

�2
r

�2
"

log log(
1

�
)(1 + O�(1))

=
2�2

r

�2

⇣
2

↵2 + 1

(↵� 1)2
�
min

�
(↵+ 1)2,

16↵2

(↵� 1)2
 
+�2

�
+�2

⌘
log(

1

�
)(1 + O�(1))

+ 2
�2
r

�2
"

log log(
1

�
)(1 + O�(1))

As a consequence, on the same event,

Rtd 
⇣8�r

�2
min

� (↵+ 1)2

4
,

4↵2

(↵� 1)2
 
+�

⌘
log(

1

�
)(1 + O�(1)) +

�2
r

�2
"

� log log(
1

�
)(1 + O�(1))

D Static population

In the static setting, all users are allocated to populations A and B from the beginning of the test, and we only consider
the case where the size of both populations are equal, even though the generalization to different population size is almost
straightforwaed.

Finite fixed horizon: The first baseline is to wait until some horizon T and perform a statistical test based on a confidence
bound on the uplift �.

Proposition 19. In the static setting, the following holds with probability at least 1� �,

�� (r̂A � r̂BT ) 

vuut8
⇣
�2
r +

�2
"
T

⌘
log 1

�

n
.

Therefore, the procedure waiting until the horizon T to select the B if �̂T is greater than the r.h.s. term has a linear regret

of R(T ) = n�/2 and is guaranteed to be (�, T )-PAC

n �
32(�2

r +
�2
"
T )

�2
log

1

�
.

The proof is a direct consequence of standard concentration inequalities.

Adaptive decision time Instead of waiting for a fixed arbitrary horizon T , the decision can often be taken before, at the
cost of using maximal concentration inequalities, that are valid at all stages.
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Theorem 20. In the static setting, it holds that, for all t 2 N and with probability at least 1� e�,

�� (r̂At � r̂Bt ) 

s
8�2

r log
2
�

n
+

s
8�2

" log
3 log2(t)

�

tn
.

As a consequence, ETC can take a correct decision with probability at least 1� � if the number of users n is greater than
32�2

r
�2 log 2

� and then, if we denote by ⌘ := ��
q

32�2
r

n log( 1� ), the decision will be taken before the time step

32�2
"

⌘2
log

�1
�

�
(1 + O�(1)).
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