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A Overview

This document contains supplementary material for
the paper “Deep Switch Networks for Generating Dis-
crete Data and Language” accepted to the AISTATS
2019 conference.

B Approximate Gradient Calculation
for the Two-Layer Network

In this section, we propose an approximate method
to compute the gradients of the empirical likelihood
of the two-layer switch network with respect to the
model parameters. Recall from the main paper that
in the two layer setup, the empirical log-likelihood has
the following form
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B.1 Likelihood Gradient

Differentiating L(k) with respect to θ
(k)
1 , the parame-

ters of the first layer, we get
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Note that for each 1 ≤ i ≤ I, the inner summation over

f
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[1:l] could be written as an expectation with respect

to the distribution pi on F
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with the normalizing constant
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Using this, we may write (2) as
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where in the expectation, on the right hand side, F
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has the distribution pi defined above. Similar calcula-
tion shows that
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B.2 Metropolis-Hastings Algorithm

Now, we may use the Metropolis–Hastings algo-
rithm to approximate the expectation for each
i. The reason is that the ratio of probabilities
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cisely, for 1 ≤ i ≤ I, we design a Markov Chain Monte
Carlo (MCMC) algorithm with the proposal distribu-
tion
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With the current sample f
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[1:l] and the new sample
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[1:l], the acceptance ratio takes the following form
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We can interpret this procedure as generating sam-
ples given the previous k symbols, and then re–weight
based on the likelihood of the symbol k + 1.

With this setup, we iterate the above Markov chain
for t steps, and repeat this procedure for r rounds.
Finally, we take the average of these independent r
outcomes, where each of them is the result of a Markov
chain after t iterations, to approximate each term in
the gradients of (3) and (4). Figure 1 illustrates the
performance of this approach for one bit in the MNIST

dataset and for different values of the parameters r
and t. As we can see, by increasing the values of r and
t, the approximate gradient converges to the actual
gradient. a
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Figure 1: The performance of the MCMC algorithm
for the two-layer switch network for bit index 629 of
the MNIST data. The size of the switch network in
this example is (m1, l,m2) = (8, 8, 4). We run the
Markov chain t steps for r independent runs and take
the average to approximate the gradients. By increas-
ing the values of r and t, the likelihood performance
approaches that of the exact gradient computation.
The performance of the single-layer switch network
with m = 8 is illustrated for reference.
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