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A  Overview

This document contains supplementary material for
the paper “Deep Switch Networks for Generating Dis-
crete Data and Language” accepted to the AISTATS
2019 conference.

B Approximate Gradient Calculation
for the Two-Layer Network

In this section, we propose an approximate method
to compute the gradients of the empirical likelihood
of the two-layer switch network with respect to the
model parameters. Recall from the main paper that
in the two layer setup, the empirical log-likelihood has
the following form

I
1 i @)
L(k) = f E 10gp(Xk+1 = x’(CJ)rl|xE1:k-]; Q(k)>

1
_ *Zlogz f[(1k3] 1k]’0(k)) (1)

1 *
= fi

k), (k
p(XkH = xk-&-l‘f[(l l)]’a( ))

B.1 Likelihood Gradient

Differentiating L(*) with respect to ng), the parame-
ters of the first layer, we get
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Note that for each 1 < ¢ < I, the inner summation over
f[(llf?] could be written as an expectation with respect

to the distribution p; on F[1 by defined as
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Using this, we may write (2) as
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where in the expectation, on the right hand side, F[(1 l)]
has the distribution p; defined above. Similar calcula-
tion shows that
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B.2 Metropolis-Hastings Algorithm

Now, we may use the Metropolis—Hastings algo-
rithm to approximate the expectation for each
i.  The reason is that the ratio of probabilities
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and f does not depend on the normalizing constant

(9(")) and can be computed efficiently. More pre-

cisely, for 1 < i < I, we design a Markov Chain Monte

Carlo (MCMC) algorithm with the proposal distribu-
tion (k) - "
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With the current sample f[(lk:l)] and the new sample

f[(lkgl the acceptance ratio takes the following form
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We can interpret this procedure as generating sam-
ples given the previous k symbols, and then re—weight
based on the likelihood of the symbol & + 1.

With this setup, we iterate the above Markov chain
for t steps, and repeat this procedure for r rounds.
Finally, we take the average of these independent r
outcomes, where each of them is the result of a Markov
chain after t iterations, to approximate each term in
the gradients of (3) and (4). Figure 1 illustrates the
performance of this approach for one bit in the MNIST
dataset and for different values of the parameters r
and t. As we can see, by increasing the values of r and
t, the approximate gradient converges to the actual
gradient.
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Figure 1: The performance of the MCMC algorithm
for the two-layer switch network for bit index 629 of
the MNIST data. The size of the switch network in
this example is (mq,l,m2) = (8,8,4). We run the
Markov chain ¢ steps for r independent runs and take
the average to approximate the gradients. By increas-
ing the values of r and ¢, the likelihood performance
approaches that of the exact gradient computation.
The performance of the single-layer switch network
with m = 8 is illustrated for reference.
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