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A SAMPLE AUGMENTATION:
PROOFS

In this section we give the proofs omitted in Section 2.

Proof of Lemma 7 First, suppose that £k = d, in
which case det(A"B) = det(A)det(B). Recall that
by definition the determinant can be written as:

det(C) = Y sgn(o) [] i
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where 7 is the set of all permutations of (1..d), and
sgn(o) = sgn ((1..d),o) € {—1,1} is the parity of the
number of swaps from (1..d) to o. Using this formula
and denoting ¢;; = (E [abT]) we can rewrite the ex-
pectation as:
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= d!det(E[ab"]),

which completes the proof for k = d. The case of k >
d follows by induction via a standard determinantal
formula:
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where (x) follows from the Cauchy-Binet formula and

A _; denotes matrix A with the ith row removed. H

Next, we state a formula which we used in the proof of
Theorem 2. This lemma is an immediate implication
of a result shown by [8].

Lemma 15 Given full rank X € R¥*? and y € RF,
we have:
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where w*(X,y) = XTy is the least squares solution
for (X,y), and X* is the pseudoinverse of X.

Proof Let I_; denote the identity matrix with ith
diagonal entry set to zero. Note that we can write

W*(szﬁyfi) =

theorem we have

det(XT,X_;)
det(XTX)

Thus, it suffices to show that

(I_,X)"y. Moreover, by Sylvester’s

=1-x; (X"X) 'x,.
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which is in fact precisely the formula shown in [8] (see
proof of Theorem 5). |

B VOLUME-RESCALED
GAUSSIAN: PROOFS

In this section we give the proofs omitted in Section 3.

Proof of Lemma 9 Since we are conditioning on
an event which may have probability 0, this requires
a careful limiting argument. Let A be any measurable
event over the random matrix X and let

Cs @ {BeR™ : B-3|| <¢)

be an e-neighborhood of ¥ w.r.t. the matrix 2-norm.
We write the conditional probability of X € A given
that X" X € Cf%; as:
Pr(XeA A XTXeCY)
Pr(XTXeCy)
E[1xealxmxecy det(XTX)]
E [I[XTXECE] det(XTX)]
E[1xerlxTxecy) det(2)(1+ )]
- E[I[XTXECE 1 det(2)(1 — €)?]
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We can obtain a lower-bound analogous to the above

upper-bound, namely Pr(X eA|X™X € C’g) (1+E)d7

which also converges to Pr(X e A|X7X =3). Thus,
we conclude that:

Pr(XcA|X'X=%) = lim Pr(XcA|X'X05)
€E—
=Pr(XeA|X'X=X),

completing the proof. |



Correcting the bias in least squares regression

C GENERAL ALGORITHM:
PROOFS

In this section we give proofs omitted in Section 4.

Proof of Lemma 12 The distribution Levg ., inte-
grates to one because for x ~ Dy:

E[XTE_IX} = E[tr(xxTi_l)} = tr(EDXZA)_l).

Next, we use the geometric-arithmetic mean inequality
for the eigenvalues of matrix 3 to show that:
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Next, we use the formula for the normalization con-
stant in Theorem 1 but with a modified random vec-
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tor. Specifically, let x; =
Ex;x;] = ¥p, and
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So, using Lemma 7 on the vectors X;, we have:
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Applying Bernoulli’s inequality concludes the proof. B

Proof of Lemma 13 Let X € R¥*? be the ma-
trix with rows x; and let ¢;(X) denote the sampling
probability in line 4 of Algorithm 2, given the set of
row vectors. We will show that if xy,...,x; ~ VSSX,
then after one step of the algorithm, the remaining
vectors are distributed according to VSS;l. Let A
denote a measurable event over the space (R¥)k—1
and let A’ = A x R? be that event marginalized over
the space (R%)*. We wish to compute the probability
Pr(A) over the sample returned by the algorithm given
input set {x1,...,x;} and sampling size k — 1. Note
that since the sample x1,...,x; is symmetric under

permutations, the probability of A should not depend
on which index i is selected in line 5 of Algorithm 2,
so we have

Pr(A) =k Pr(A | Alg. 2 selected i=k)
14 qx(X) det (XTX):|

det(XIkX,k)
det(XTX)

X ED;

o Epr | Las det (XTX)]

+
k ]-A’ det(X_kX_k)}
k—1
o VS5, (A),
where in the above we skipped constant factors, since

they fall into the normalization constant. The lemma
now follows by induction over increasing k. |



