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A SAMPLE AUGMENTATION:
PROOFS

In this section we give the proofs omitted in Section 2.

Proof of Lemma 7 First, suppose that k = d, in
which case det(A>

B) = det(A) det(B). Recall that
by definition the determinant can be written as:
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where Sd is the set of all permutations of (1..d), and
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�
2 {�1, 1} is the parity of the

number of swaps from (1..d) to �. Using this formula
and denoting cij =
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which completes the proof for k = d. The case of k >
d follows by induction via a standard determinantal
formula:
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where (⇤) follows from the Cauchy-Binet formula and
A�i denotes matrix A with the ith row removed.

Next, we state a formula which we used in the proof of
Theorem 2. This lemma is an immediate implication
of a result shown by [8].

Lemma 15 Given full rank X 2 Rk⇥d
and y 2 Rk

,

we have:

w
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where w
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+
y is the least squares solution

for (X,y), and X
+

is the pseudoinverse of X.

Proof Let I�i denote the identity matrix with ith
diagonal entry set to zero. Note that we can write

w
⇤(X�i,y�i) = (I�iX)+y. Moreover, by Sylvester’s

theorem we have
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which is in fact precisely the formula shown in [8] (see
proof of Theorem 5).

B VOLUME-RESCALED
GAUSSIAN: PROOFS

In this section we give the proofs omitted in Section 3.

Proof of Lemma 9 Since we are conditioning on
an event which may have probability 0, this requires
a careful limiting argument. Let A be any measurable
event over the random matrix eX and let
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be an ✏-neighborhood of ⌃ w.r.t. the matrix 2-norm.
We write the conditional probability of eX 2 A given
that eX> eX 2 C✏

⌃ as:

Pr
� eX2A | eX> eX2C✏

⌃

�
=

Pr
� eX2A ^ eX> eX2C✏

⌃

�

Pr
� eX> eX2C✏

⌃

�

=
E
⇥
1[X2A]1[X>X2C✏

⌃] det(X
>
X)

⇤

E
⇥
1[X>X2C✏

⌃] det(X>X)
⇤


E
⇥
1[X2E]1[X>X2C✏

⌃] det(⌃)(1 + ✏)d
⇤

E
⇥
1[X>X2C✏

⌃] det(⌃)(1� ✏)d
⇤

=
E
⇥
1[X2A]1[X>X2C✏

⌃]

⇤

E
⇥
1[X>X2C✏

⌃]

⇤
✓
1 + ✏

1� ✏

◆d

= Pr
�
X2A |X>

X2C✏
⌃

�✓1 + ✏

1� ✏

◆d

✏!0�! Pr
�
X2A |X>

X=⌃
�
.

We can obtain a lower-bound analogous to the above
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completing the proof.



Correcting the bias in least squares regression

C GENERAL ALGORITHM:
PROOFS

In this section we give proofs omitted in Section 4.

Proof of Lemma 12 The distribution Levb⌃,X inte-
grates to one because for x ⇠ DX :
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Next, we use the geometric-arithmetic mean inequality
for the eigenvalues of matrix e⌃ to show that:
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Next, we use the formula for the normalization con-
stant in Theorem 1 but with a modified random vec-
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So, using Lemma 7 on the vectors exi, we have:
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Applying Bernoulli’s inequality concludes the proof.

Proof of Lemma 13 Let X 2 Rk⇥d be the ma-
trix with rows x

>
i and let qi(X) denote the sampling

probability in line 4 of Algorithm 2, given the set of
row vectors. We will show that if x1, . . . ,xk ⇠ VSkDX ,
then after one step of the algorithm, the remaining
vectors are distributed according to VSk�1

DX
. Let A

denote a measurable event over the space (Rd)k�1,
and let A0 = A ⇥ Rd be that event marginalized over
the space (Rd)k. We wish to compute the probability
Pr(A) over the sample returned by the algorithm given
input set {x1, . . . ,xk} and sampling size k � 1. Note
that since the sample x1, . . . ,xk is symmetric under

permutations, the probability of A should not depend
on which index i is selected in line 5 of Algorithm 2,
so we have
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where in the above we skipped constant factors, since
they fall into the normalization constant. The lemma
now follows by induction over increasing k.


