
On Euclidean k-Means Clustering with α-Center Proximity

Amit Deshpande
Microsoft Research, India
amitdesh@microsoft.com

Anand Louis
Indian Institute of Science

anandl@iisc.ac.in

Apoorv Singh
Indian Institute of Science

apoorvsingh@iisc.ac.in

Abstract

k-means clustering is NP-hard in the worst case but previous work has shown efficient algorithms assuming the
optimal k-means clusters are stable under additive or multiplicative perturbation of data. This has two caveats. First,
we do not know how to efficiently verify this property of optimal solutions that are NP-hard to compute in the first
place. Second, the stability assumptions required for polynomial time k-means algorithms are often unreasonable
when compared to the ground-truth clusters in real-world data. A consequence of multiplicative perturbation re-
silience is center proximity, that is, every point is closer to the center of its own cluster than the center of any other
cluster, by some multiplicative factor α > 1.

We study the problem of minimizing the Euclidean k-means objective only over clusterings that satisfy α-center
proximity. We give a simple algorithm to find the optimal α-center-proximal k-means clustering in running time
exponential in k and 1/(α− 1) but linear in the number of points and the dimension. We define an analogous α-center
proximity condition for outliers, and give similar algorithmic guarantees for k-means with outliers and α-center
proximity. On the hardness side we show that for any α′ > 1, there exists an α 6 α′, (α > 1), and an ε0 > 0 such that
minimizing the k-means objective over clusterings that satisfy α-center proximity is NP-hard to approximate within
a multiplicative (1 + ε0) factor.
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1 Introduction
Clustering is an important tool in any data science toolkit. Most popular clustering algorithms partition the given
data into disjoint clusters by optimizing a certain global objective such as the k-means. The implicit assumption in
doing so is that an optimal solution for this objective would recover the underlying ground truth clustering. However,
many such objectives are NP-hard to optimize in the worst case, e.g., k-center, k-median, k-means. Moreover, an
optimal solution need not satisfy certain properties desired from the ground truth clustering, e.g., balance, stability.
We highlight this problem using the example of k-means.

Given a set of n points X = {x1, x2, . . . , xn} in a metric space with the underlying metric dist(·, ·), and a positive
integer k, the k-means objective is to find centers µ1, µ2, . . . , µk in the given metric space so as to minimize the sum
of squared distances of all the points to their nearest centers, respectively, i.e., minimize

∑n
i=1 min16 j6k dist(xi, µ j)2.

This results in clusters C1,C2, . . . ,Ck, where the cluster C j consists of all the points xi whose nearest center is µ j.
Optimization of the k-means objective is NP-hard in the worst case, even when for Euclidean k-means with k = 2
[ADHP09, DF09] or d = 2 [MNV12]. There are known worst-case instances where the popular Lloyd’s algorithm
for k-means takes exponentially many iterations for convergence to a local optimum [Vat11]. On the algorithmic side,
k-means++ initialization gives O(log k)-approximation, and there are known O(1)-approximations in time poly(n, k, d)
[JV01] and (1 + ε)-approximations for the Euclidean k-means in time O(2poly(k/ε) · nd) [KSS04, Che09]. Euclidean
k-means is known to be NP-hard to approximate within some fixed constant c > 1 [ACKS15], hence, the exponential
dependence on k is necessary for (1 + ε)-approximation.

In practice, however, Lloyd’s algorithm, k-means++, and their variants perform well on most real-world data sets.
This dichotomy between theoretical intractability and empirically observed efficiency has lead to the CDNM thesis
[Ben15]: Clustering is difficult only when it does not matter! In most real-world data sets, the underlying ground-truth
clustering is unambiguous and stable under small perturbations of data. As a consequence, the ground-truth clustering
satisfies center proximity, that is, every point is closer to the center of its own cluster than the center of any other cluster,
by some multiplicative factor α > 1. Thus, center proximity is a desirable property for the output of any clustering
algorithm used in practice. Balanced clusters of size Ω(n/k) is another desirable property to avoid small, meaningless
clusters. Motivated by this, we study the problem of minimizing the k-means objective, where the minimization is
only over clusterings that satisfy α-center proximity and are balanced.

Definition 1.1 (α-Center Proximity). Let C1,C2, . . . ,Ck be a clustering of X with the centers µ1, µ2, . . . , µk and the
underlying metric dist(·, ·). We say that the clustering C1,C2, . . . ,Ck of X satisfies α-center proximity if for all i , j
and x ∈ Ci, we have dist(x, µ j) > α dist(x, µi). We say that a k-clustering is α-center proximal if it satisfies the α-center
proximity property.

Unlike previous work, we do not assume that an optimal solution for the k-means objective on the given input
satisfies α-center proximity. There is no easy way to algorithmically verify this promise. In fact, as we show later
in this paper, there are instances where the optimal k-means solutions satisfy α-center proximity, for a small constant
α > 1, but the k-means problem still remains NP-hard. Therefore, we define our problem as finding a clustering of the
smallest k-means cost among all the clusterings that satisfy α-center proximity.

Given any set of cluster centers, the outliers are the last few points when we order all the points in non-decreasing
order of their distances to the nearest centers, respectively. For the set of outliers to be unambiguous and stable under
small perturbations to the input data, intuitively one needs a multiplicative gap between the distances of inliers and
outliers to their respective centers. So we define an analogous center proximity property for clustering with outliers as
follows.

Definition 1.2 (α-Center Proximity with Outliers). Consider a k-means instance on the set of points X with underlying
metric dist(·, ·), and an integer parameter z. We define the distance of a point x to a set or a tuple (µ1, . . . , µn) as
mini ‖x − µi‖. Given any centers µ1, µ2, . . . , µk, let Z ⊆ X be the subset of the farthest z points in X based on their
distances to the nearest center, and let C1,C2, . . . ,Ck be the clustering of X \ Z where C j consists of the points in
X \ Z that have µ j as their nearest center. Such a clustering C1,C2, . . . ,Ck of X \ Z with Z as outliers satisfies α-center
proximity, if for all i , j and x ∈ Ci, we have dist(x, µ j) > α dist(x, µi), and moreover, for all i, j ∈ [k], x ∈ Ci and
y ∈ Z we have dist(y, µ j) > α dist(x, µi).
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1.1 Our results
We show that there exists a constant c > 1 such that k-means remains NP-hard to approximate within a multiplicative
factor c, even on the instances where an optimal k-means solution satisfies α-center proximity and is balanced, i.e.,
each optimal cluster has size Ω(n/k). Moreover, for α close to 1, there may not be a unique optimal k-means solution
that satisfies α-center proximity and is balanced. In fact, given any α > 1, there exists an instance with 2Ω(k/(α−1)) such
optimal k-means solutions that satisfy α-center proximity and are balanced.

For any α > 1, we show an interesting geometric property (Proposition 2.3) for clusterings that satisfy α-center
proximity, namely, any pair of disjoint clusters must lie inside two disjoint balls. The centers of these balls need not be
at the means of the clusters, allowing the clusters to be arbitrarily large (see Figure 1). The degenerate case for α = 1
is two balls of infinite radii touching at their separating hyperplane.

We show the following algorithmic result for minimizing the k-means objective over the clusterings that are bal-
anced and satisfy α-center proximity.

Theorem 1.3. For any α > 1, a balance parameter ω > 0, and given any set of n points in �d , we can exactly
find a clustering of the least k-means cost among all solutions that satisfy α-center proximity and are balanced, i.e.,
each cluster has size at least ωn/k. Our algorithm finds such an optimal clustering in time O(2poly(k/ω(α−1)) nd), with
constant probability.

Remark 1.4. We remark that our algorithm requires α as an input. However, in practice, the value of α might
not be available in general. For an input α, our algorithm can also be used to check whether an instance has an
α-center proximal clustering. On invoking our algorithm with a certain value of α, if the instance has an α-center
proximal clustering, then our algorithm will output the optimal α-center proximal clustering with constant probability.
Therefore, the user can invoke our algorithm with sequence of decreasing values of α till a “satisfactory” clustering is
found.

Since k-means is hard to approximate within some fixed constant c > 1, even on instances where the optimal
solutions are balanced and satisfy α-center proximity, the exponential running time in our algorithm is unavoidable.
We show the following hardness result:

Theorem 1.5. For any 2 > α′ > 1 there exists an α 6 α′, (α > 1), constants ε > 0, and ω > 0, such that it is NP-hard
to approximate the optimal α-center proximal Euclidean k-means, where the size of each cluster is at least ωn/k, to a
factor better than (1 + ε).

The running time of our algorithm is exponential only in the number of clusters k, the balance parameter ω and the
center proximity parameter α but it is linear in the number of points n and the dimension d.

We show a similar exact algorithm for minimizing the k-means objective with z outliers, where the minimization
is only over clusterings that satisfy the α-center proximity with outliers and are balanced.

Theorem 1.6. For any 2 > α > 1, a balance parameter ω > 0, given any set of n points in �d and an outlier
parameter z ∈ [n], we can exactly find a clustering of the least k-means cost among all solutions that satisfy α-center
proximity with z outliers and are balanced, i.e., each cluster has size at least ωn/k. Our algorithm finds such an
optimal clustering in time O(2poly(k/ω(α−1)) nd), with constant probability.

In the case when most points satisfy α-center proximity and form balanced clusters, we show an algorithm which
outputs a list of clusterings, such that one of the clusterings corresponds to the case where the points which satisfy
α-perturbation resilience are correctly clustered.

Theorem 1.7. For any α > 1, a balance parameter ω > 0, given any set of n points in �d and a parameter β ∈ [n], we
can output a list, of k-means clustering, of size O

(
2poly(k/ω(α−1))

)
such that one of them is the minimum cost clustering

among all solutions that satisfy α-center proximity without β points and are balanced, i.e., each cluster has size at
least ωn/k. Our algorithm finds such an optimal clustering in time O(2poly(k/ω(α−1)) nd), with constant probability.

In fact, Theorem 1.3 and Theorem 1.6 hold for any clustering objective as long as the centers used to define
α-center proximity are the means or centroids of the clusters.
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We also show exact algorithm for minimizing the k-means objective over clustering that satisfy α-center proximity
but no balance requirement. However, the running time of our algorithm depends exponentially on the ratio of the
distances between the farthest and the closest pair of means.

γ∗ =
maxi, j ‖µi − µ j‖

mini, j ‖µi − µ j‖
.

Theorem 1.8. For any α > 1 and given any set of n points in �d, and a parameter γ, where

γ >
maxi, j ‖µi − µ j‖

mini, j ‖µi − µ j‖
,

for the means µ1, µ2, . . . , µk of the optimal solution, we can exactly find a clustering of the least k-means cost among all
solutions that satisfy α-center proximity. Our algorithm finds such an optimal clustering in time O(2poly(kγ/(α−1)) nd),
with constant probability.

We also show that the optimal α-center proximal clustering with balanced cluster need not be unique. In fact, the
number of possible optimal α-center proximal clustering with balanced cluster can be exponential in k and 1/(α − 1).
We show the following result:

Proposition 1.9. For any 2 > α′ > 1, and any k ∈ �, there exists α 6 α′ (and α > 1), n, d and a set of points X ∈ �d

such that such that the number of possible optimal α-center proximal clusterings, where the size of each cluster is n/k
(ω = 1) is 2Ω̃(k/(α2−1)).

1.2 Related Work
Metric Perturbation Resilience Bilu and Linial [BL12] introduced the notion of multiplicative perturbation re-
silience for discrete optimization problems. They showed results on Max-Cut problems, that if the instance is roughly
O (n) stable then they can retrieve the optimal Max-Cut in polynomial time. Later Makarychev et al. [MMV14] gave
an algorithm which required only (c

√
log n log log n)- multiplicative perturbation resilience for some constant c > 0 to

retrieve the optimal Max-Cut in polynomial time. Bilu and Linial [BL12] had conjectured that there is some constant
γ∗ such that, γ∗-perturbation resilient instances can be solved in polynomial time. They had also asked the question if
it can be proved that Max-Cut is NP-hard even for γ-perturbation resilient instances, for some constant γ. Awasthi et
al. [ABS12] showed that their conjecture in the case of “well-behaved” center based objective functions like k-means,
and k-median is true, by giving a polynomial time algorithm for 3-perturbation resilient instances. They proposed the
definition of center-based clustering objective and α- center proximity (weaker notion than α-multiplicative pertur-
bation resilience). They showed that solving k-median instances with Steiner points over general metrics that satisfy
α-center proximity is NP-hard for α < 3. Ben-David and Reyzin [BR14] showed that for every ε > 0, k-median
instances with no Steiner points that satisfy (2 − ε)-center proximity are NP-hard. Balcan et al. [BHW16] showed
that symmetric k-center under (2 − ε)-multiplicative perturbation resilience is hard unless NP=RP. They also show an
algorithm for solving symmetric and asymmetric k-center for α > 2. Balcan and Liang [BL16] improved upon the
results of [ABS12] and showed that center based objective can be optimally clustered for α > 1 +

√
2 factor pertur-

bation resilience. They showed in their Lemma 3.3 that for a pair of cluster optimal clusters Ci,C j, and α > 1 +
√

2,
the clusters are contained in disjoint balls around their centers µi and µ j respectively. We show in Proposition 2.2 that
for any α > 1, and for a pair of optimal clusters Ci,C j, the points in the clusters are contained in disjoint balls, cen-
tered around a point different from the mean of the clusters. We note that a similar geometric property was observed
by Telgarsky and Vattani [TV10]. Telgarsky and Vattani [TV10] defined a version of Harting’s method, which does
updates based on the value α. The value of α in their case is defined in terms of the size of the clusters. Although
in a different context, the geometric insight they achieved is the same as in Proposition 2.2. Recently Angelidakis et
al. [AMM17] gave a more general definition of center based objective functions and of metric perturbation resilience
compared to the one given by [ABS12]. They improved the previous results [BL16], giving an algorithm for center
based clustering under 2-multiplicative perturbation resilience.

Independent and concurrent to this work, Friggstad et al. [FKS18] showed that for any fixed d > 1 and α > 1,
α-multiplicative perturbation resilient instances of discrete k-means and k-median (where the centers must be from
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the data-points themselves) in metrics with doubling dimension d can be solved in time O
(
ndO(d)(α−1)−O(d/(α−1))

k
)
. They

also showed that when the dimension d is a part of the input, there is a fixed ε0 > 0 such there is not even a PTAS
for (1 + ε0)-multiplicative perturbation resilient instances of k-means in �d unless NP=RP. We note that our hardness
result does not subsume their hardness of approximation result as multiplicative perturbation resilient instances are a
subset of center-proximal instances (that is, the optimal k-means solution satisfies center-proximity [AMM17]). Our
problem is different from theirs; we look for center proximal instances which is a more general class of instances than
perturbation resilient instances [AMM17]. Moreover, we do not assume that the optimal solution k-means solution is
center proximal, unlike Friggstad et al. [FKS18], where they assume that the optimal k-means instance is perturbation
resilient. Note that it is not known (to the best of our knowledge) whether there is an efficient algorithm to check
whether an instance satisfies α-metric perturbation resilience.

Approximation Algorithms for Euclidean k-means Kanungo et al. [KMN+04] proposed a (9 + ε)-approximation
algorithm with running time O

(
n3ε−d

)
. Arthur and Vassilvitskii [AV07] showed an approximation ratio of O

(
log k

)
,

with running time O (ndk), much superior to [KMN+04]. Recently Ahmadian et al. [ANFSW17] improved the ap-
proximation ratio given by [KMN+04] to (6.357 + ε). There have been works to get a PTAS for Euclidean k-means
objective. In order to obtain the PTAS, many have focused on cases where k or d or both are assumed to be fixed.
Inaba et al. [IKI94] gave a PTAS when both k and d is fixed. There have been a series of work in the case when only
k is assumed to be fixed [VKKR03, HPM04, HPK05, FMS07, KSS04, Che09]. Recently there has been works which
give a PTAS for Euclidean k-means where only d is assumed to be a constant [CAKM16, FRS16].

Sampling Based Methods As mentioned before that our results use sampling techniques often used in (1 + ε)-
approximation for k-means [KSS04, Che09, ABS10]. The first ever linear (in n and d) running time for obtaining
PTAS (assuming k to be a constant) given by [KSS04] is O

(
nd2poly(k/ε)

)
. Feldman et al. [FMS07] gave a new al-

gorithm (using efficient coreset construction) with a better running time than that of [KSS04] from O
(
nd2poly(k/ε)

)
to O

(
nkd + d.poly(k/ε) + 2Õ(k/ε)

)
. There have been other works which also show similar results using D2 sampling

method [JKS14, BJK18]. Ding and Xu [DX15] gave a sampling based procedure to cluster other variants of k-means
objective, which they called the constrained k-means clustering. These clustering objectives need not satisfy the lo-
cality property in Euclidean space. Their algorithm is based on uniform sampling and some stand alone geometric
technique which they call the ‘simplex lemma’. The running time of their algorithm is O

(
2poly(k/ε)n(log n)k+1d

)
. Bhat-

tacharya et al. [BJK18] later gave a more efficient algorithm based on D2 sampling for the same class of constrained
k-means problem and gave an algorithm with running time O

(
2Õ(k/ε)nd

)
. Deshpande et al.[DLS18] also use the D2

sampling method to solve the min-max k-means problem, wherein, one has to find a clustering such that the maximum
cost of the cluster is minimized. All the work related to sampling based methods above estimate the means/centers of
the clusters, and use them to recover a clustering.

Clustering with Outliers For the problem of k-median with outliers, Charikar et al. [CKMN01] gave an algorithm
that removes (1 + ε) times the number of outliers, and has a cost at most 4(1 + 1/ε) times the optimal cost. Later, Chen
[Che08] gave a O (1) approximation for the k-median with outliers problem. However, the unspecified approximation
factor of their algorithm is large. For the problem of k-means with outliers, Gupta et al. [GKL+17] gave a O (1)
approximation by removing O

(
z k log n

)
number of outliers (where z is the number of outliers). Friggstad et al.

[FKRS18] gave an algorithms that open k(1 + ε) facilities, and have an approximation factor of (1 + ε) on Euclidean
and doubling metrics, and 25 + ε on general metrics. Recently, Krishnaswamy et al. [KLS18] gave a (53.002 + ε)
factor approximation for the k-means with outliers problem, and a (7.081 + ε) approximation factor for the k-median
with outliers problem, without violating any constraint. Chekuri et al. [CG18] defined a new model of perturbation
resilience for clustering with outliers, and exactly solve the clustering with outliers problem for several common center
based objectives (like k-center, k-means, k-median) when the instances is 2- multiplicative perturbation resilient. We
note that our definition of outliers is inspired by Chekuri et al. [CG18].

Other Notions of Stability Ackerman and Ben-David [ABD09] studied various deterministic assumptions to obtain
solutions with small objective costs, one of them being additive perturbation resilience. We refer the reader to [ABD09]
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for a more detailed survey of various notions of stability and their implications. Vijayraghavan et al. [VDW17] gave a
more general definition of ε-additive perturbation resilience, where the points in the instance even after being moved
by at most ε ·maxi, j

∥∥∥µi − µ j

∥∥∥ (where ε ∈ (0, 1) is a parameter) reamin in the same optimal clusters. Vijayaraghavan et
al. [VDW17] showed a geometric property of ε-additive perturbation resilient instances implies an angular separation
between points from any pair of clusters. Using this observation, they showed that a modification of the perceptron
algorithm (from supervised learning) can optimally solve any ε-additive perturbation resilient instance of 2-means in
time dnpoly(1/ε). We make an observation (Proposition 2.3) that α-metric perturbation resilient instances of k-means in
the Euclidean space also satisfy angular separation similar to [VDW17]. For k-means their running time is dnk2/ε8

.
To get a faster algorithm, they defined a stronger notion of stability than ε-additive perturbation resilience called
(ρ,∆, ε)-separation, a natural strengthening of additive perturbation stability where there is an additional margin of
ρ between any pair of clusters. They give an algorithm based on the k-largest connected components in a graph
that can optimal solve any (ρ,∆, ε)-separated instance of k-means with β-balanced clusters in time Õ(n2kd) whenever
ρ = Ω(∆/ε2 + β∆/ε). They also showed that their algorithm is robust to outliers as long as the fraction η of outliers
satisfies the following equation

ρ = Ω

(
∆

ε2

(
wmax + η

wmin − η

))
,

where wmax and wmin are the fraction of points in the largest and the smallest optimal cluster, respectively. Balcan
et al. [BBG13] explored the (c, ε)-approximation stability which assumes that every c-approximation to the cost is
ε-close (in normalized set difference) to the target clustering . Balcan and Liang [BL16] showed that when the target
clustering is the optimal clustering then the (c, ε)-approximation stability implies (c, ε)-perturbation resilience, that
is, the optimum after perturbation of up to a multiplicative factor c is ε-close (in normalized set difference) to the
original clustering. Kumar and Kannan [KK10] also gave deterministic conditions (read stability) under which their
algorithm finds the optimal clusters. The analysis of Kumar and Kannan [KK10] was tightened by [AS12] which
basically needed that the cluster centers must be pair-wise separated by a margin of Ω(

√
kσ) along the line joining the

mean of the clusters, where σ denotes the “spectral radius” of the data-set.

1.3 Notation
We use d ∈ � to denote the dimension of the ambient space. For a vector v ∈ �d, we use ‖v‖ to denote its Euclidean
norm. We use x1, . . . , xn ∈ �

d to denote the points in the instance, and we use X to denote the set of these points. For
any set of points S , we define its diameter as diam (S ) def

= maxu,v∈S ‖u − v‖.

2 Geometric Properties of α-Center Proximal Instances
We will assume Euclidean metric throughout the paper.

Definition 2.1. Suppose there exists a clustering C1, ...,Ck of X that is α-center proximal. Let Ci and C j be two clusters

with µi and µ j as their respective means. We define the vector µ̂i, j
def
=

α2µi−µ j

α2−1 and ri, j
def
= α

α2−1

∥∥∥µi − µ j

∥∥∥. Let Ci, j denote

the ball centered at µ̂i, j with radius ri, j. Let pi, j
def
= (µ̂i, j + µ̂ j,i)/2 and Di, j

def
=

∥∥∥µ̂i, j − µ̂ j,i

∥∥∥. Let u def
=

(µ̂i, j−µ̂ j,i)

‖µ̂i, j−µ̂ j,i‖
denote the

unit vector along the line joining µ̂i, j and µ̂ j,i, and let di, j denote the distance between the closest points in Ci, j and C j,i.

We note that Balcan and Liang [BL16] show in their Lemma 3.3 that for a pair of clusters Ci,C j in a α-center
proximal clustering, and α > 1 +

√
2, the clusters are contained in disjoint balls around their centers µi and µ j

respectively. We show in the following proposition that for any α > 1, and for a pair of clusters Ci,C j in a α-center
proximal clustering, the points in the clusters are contained in disjoint balls, centered around µ̂i, j and µ̂ j,i.

Proposition 2.2 (Geometric implication of α-center proximity property). Let X satisfy the α-center proximity property
(for any α > 1) and let Ci and C j be two clusters in its optimal solution. Any point x ∈ Ci, satisfies

∀x ∈ Ci,
∥∥∥x − µ̂i, j

∥∥∥ < ri, j . (1)
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Proof. The proof proceeds simply by using the α-center proximity property for Euclidean metric and squaring both
the sides, we get

α2 ‖x − µi‖
2 <

∥∥∥x − µ j

∥∥∥2
,

α2 ‖x‖2 + α2 ‖µi‖
2 − 2α2 〈x, µi〉 < ‖x‖2 +

∥∥∥µ j

∥∥∥2
− 2

〈
x, µ j

〉
,

‖x‖2 − 2
〈
x,
α2µi − µ j

(α2 − 1)

〉
<

∥∥∥µ j

∥∥∥2
− α2 ‖µi‖

2

(α2 − 1)
.

Completing the square on LHS and adding the appropriate term on RHS

‖x‖2 − 2
〈
x,
α2µi − µ j

(α2 − 1)

〉
+

∥∥∥∥∥∥α2µi − µ j

(α2 − 1)

∥∥∥∥∥∥
2

<

∥∥∥µ j

∥∥∥2
− α2 ‖µi‖

2

(α2 − 1)
+

∥∥∥∥∥∥α2µi − µ j

(α2 − 1)

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥x −
α2µi − µ j

(α2 − 1)

∥∥∥∥∥∥
2

<
α2

∥∥∥µi − µ j

∥∥∥2

(α2 − 1)2 .

Therefore using the terms in Definition 2.1 we get the proposition.
�

Di, j =
(
α2+1
α2−1

) ∥∥∥µi − µ j

∥∥∥

µ̂i, j µi
µ̂ j,iµ j

Di, j

α2+1

(
αDi, j

α2+1

)
= ri, j

θ

θ = tan−1
(

2α
α2−1

)
u

di, j =
(α−1)2

α2+1 Di, j

pi, j =
µi+µ j

2
Ci, j C j,i

Figure 1: Geometric implication of α-center proximity property.

Proposition 2.3. Suppose there exists a clustering C1, ...,Ck of X that is α-center proximal (for any α > 1). From
Proposition 2.2 we know that for any two clusters Ci and C j, the clusters (i , j) lie inside disjoint balls centered at
µ̂i, j and µ̂ j,i with radius ri j and r ji, respectively. The following structural properties for α-center proximal clustering
holds:

(a) Distance between the respective centers of the balls is Di, j =
∥∥∥µ̂i, j − µ̂ j,i

∥∥∥ = α2+1
α2−1

∥∥∥µi − µ j

∥∥∥.

(b) The mid-point of the line joining the respective centers of the two balls is pi, j =
µ̂i, j+µ̂ j,i

2 =
µi+µ j

2 .

(c) The distance between the closest points in the two balls is greater than di, j = α−1
α+1

∥∥∥µi − µ j

∥∥∥ =
(α−1)2

α2+1 Di, j.
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(d) The radius of the ball Ci, j is ri, j = α
α2−1

∥∥∥µi − µ j

∥∥∥ = α
(α−1)2 di, j = α

α2+1 Di, j.

(e) Distance between the mean of the cluster and the center of the ball corresponding to the cluster is
∥∥∥µ̂i, j − µi

∥∥∥ =
1

α2−1

∥∥∥µi − µ j

∥∥∥ = 1
(α−1)2 di, j = 1

α2+1 Di, j.

(f) The two clusters lie inside a cone with apex at pi, j whose axis is along the line joining (µ̂i, j− µ̂ j,i) with half-angle
tan−1

(
2α
α2−1

)
.

(g) The diameter of the cluster Ci can be bounded by the radius of the ball Ci, j, diam (Ci) 6 2α
α2−1

∥∥∥µi − µ j

∥∥∥ =
2α
α2+1 Di, j.

(h) For any x ∈ Ci,
∥∥∥x − µ j

∥∥∥ > α
α+1

∥∥∥µi − µ j

∥∥∥.

Proof. (a) Di, j =
∥∥∥µ̂i, j − µ̂ j,i

∥∥∥.

Di, j =

∥∥∥∥∥∥α2µi − µ j

α2 − 1
−
α2µ j − µi

α2 − 1

∥∥∥∥∥∥ =

(
α2 + 1
α2 − 1

) ∥∥∥µi − µ j

∥∥∥ .
(b)

pi, j =
µ̂i, j + µ̂ j,i

2
=

1
2

(
α2µi − µ j

α2 − 1
+
α2µ j − µi

α2 − 1

)
=
µi + µ j

2
.

Note that pi, j is also the mid-point of the line joining the means of the two clusters.

(c) The distance between the closest points in the two balls is greater than di, j = Di, j − 2ri, j. Putting in the value of
Di, j from part (a) of the proposition, and ri, j from the previous proposition, we get that

di, j >

(
α2 + 1
α2 − 1

−
2α

α2 − 1

) ∥∥∥µi − µ j

∥∥∥ =
(α − 1)2

α2 − 1

∥∥∥µi − µ j

∥∥∥ =
(α − 1)2

α2 + 1
Di, j .

(d) The proof follows from the definition of ri, j and part (c) of the proposition.

(e) ∥∥∥µ̂i, j − µi

∥∥∥ =

∥∥∥∥∥∥α2µi − µ j

α2 − 1
− µi

∥∥∥∥∥∥ =
1

α2 − 1

∥∥∥µi − µ j

∥∥∥ .
The proof follows using the part (c) of the proposition.

(f) Let the apex of the cone (with its axis along u) be at pi, j. Draw the tangent from pi, j to Ci, j. Using the fact that
the tangent is perpendicular to radius drawn on the point of contact of the ball and the tangent line, we get for
the half-angle θ that sin θ =

ri, j

Di, j/2
=

α/(α2+1)
1/2 . Therefore tan θ = 2α

α2−1 .

(g) The equation 1 implies that all the points belonging to the cluster Ci must lie inside the ball Ci, j of radius ri, j.
Therefore the proof follows using part (d) of the proposition.

(h) The smallest distance between any point in Ci and µ j is greater than ri, j + di, j −
∥∥∥µ̂ j,i − µ j

∥∥∥. Using part (d) and
(e) of the proposition, we get

ri, j + di, j −
∥∥∥µ̂ j,i − µ j

∥∥∥ =

(
α

α2 − 1
+

(α − 1)2

α2 − 1
−

1
α2 − 1

) ∥∥∥µi − µ j

∥∥∥ =
α

α + 1

∥∥∥µi − µ j

∥∥∥ .
�

Remark 2.4. The line joining the respective centers of the ball passes through the mean of the clusters as well. Refer
to the Figure 1 for getting an insight into the geometric structure defined by the equation 1. We refer the reader to
figure 1a of [VDW17] for insight into the geometry of ε-additive perturbation resilient instance, and to notice the
similarity between the geometric structures of instances satisfying the two stability properties.
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Algorithm 1: α-center proximal k-means clustering with balanced clusters
Input: a list L of k-tuples, where there exists at least one tuple (µ̃1, . . . , µ̃k) such that for any i ∈ [k],
‖µ̃i − µi‖ 6 2δri, j for all j ∈ [k], a number α > 1, ω > 0

Output: An α-center proximal clustering of minimum cost where the size of each cluster is at least ωn/k.
1: Initialize (µ̃(p)

1 , µ̃
(p)
2 , . . . , µ̃

(p)
k )← (0̄, 0̄, . . . , 0̄)

2: cost←
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(0)
j

∥∥∥∥2

3: for a tuple µ̃(q) ∈ L do
4: for j = 1 to k do
5: C(q)

j = {xi : µ̃(q)
j is the nearest center to xi}

6: end for
7: if

∑n
i=1 min16 j6k

∥∥∥∥xi − µ̃
(q)
j

∥∥∥∥2
< cost then

8: if C(q)
1 , . . . ,C(q)

k all have size at least ωn
k and satisfy α-center proximity then

9: (µ̃(p)
1 , µ̃

(p)
2 , . . . , µ̃

(p)
k )← (µ̃(q)

1 , µ̃
(q)
2 , . . . , µ̃

(q)
k )

10: cost =
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(q)
j

∥∥∥∥2

11: end if
12: end if
13: end for
14: for i = 1 to n do
15: Label(i)← argmin

16 j6k

∥∥∥∥xi − µ̃
(p)
j

∥∥∥∥
16: end for

2.1 Estimating Means Suffices for Cluster Recovery
In this section we assume that we can get access to a set of points {µ̃1, . . . , µ̃k} such that, ‖µ̃i − µi‖ 6 2δri, j for all

j ∈ [k] and for each i ∈ [k], with probability some constant probability. We will show how to obtain such points in
Section 3.

The following proposition shows that to cluster a point to their desired cluster, an additive approximation to the
center also works (deciding based on the proximity of the data points to the approximate center).

Proposition 2.5. Suppose we have a set of points {µ̃1, . . . , µ̃k} such that for any i ∈ [k], ‖µ̃i − µi‖ 6 2δri, j for all j ∈ [k],
then we can find the optimal clustering C1, . . . ,Ck.

Proof. We will break the proof of the proposition into the following lemmas.

Lemma 2.6. For any j ∈ [k], for all i ∈ [k], and for any point x, we have∣∣∣∥∥∥x − µ̃ j

∥∥∥ − ∥∥∥x − µ j

∥∥∥∣∣∣ 6 2δri, j .

Proof. For any two vectors u, v ∈ �d, the triangle inequality implies that |‖u‖ − ‖v‖| 6 ‖u − v‖. Therefore,∣∣∣∥∥∥x − µ̃ j

∥∥∥ − ∥∥∥x − µ j

∥∥∥∣∣∣ 6 ∥∥∥µ̃ j − µ j

∥∥∥ 6 2δri, j .

�

Lemma 2.7. Fix any i ∈ [k]. For any point x ∈ Ci, we have

‖x − µ̃i‖ <
∥∥∥x − µ̃ j

∥∥∥ for each j ∈ [k] \ {i} .

Proof. By our choice of parameters in Algorithm 4, we have

δ 6
(α − 1)2

8α
. (2)
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Algorithm 2: α-center proximal k-means clustering where the distance between the means is bounded
Input: a list L of k-tuples, where there exists at least one tuple (µ̃1, . . . , µ̃k) such that for any i ∈ [k],
‖µ̃i − µi‖ 6 2δri, j for all j ∈ [k], a number α > 1, γ > 1

Output: An α-center proximal clustering of minimum cost where γ 6
maxi, j

∥∥∥µi − µ j

∥∥∥
mini, j

∥∥∥µi − µ j

∥∥∥
1: Initialize (µ̃(p)

1 , µ̃
(p)
2 , . . . , µ̃

(p)
k )← (0̄, 0̄, . . . , 0̄)

2: cost←
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(0)
j

∥∥∥∥2

3: for a tuple µ̃(q) ∈ L do
4: for j = 1 to k do
5: C(q)

j = {xi : µ̃(q)
j is the nearest center to xi}

6: end for
7: Find the actual means (µ(q)

1 , . . . , µ
(q)
k ) of C(q)

1 , . . . ,C(q)
k

8: if
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(q)
j

∥∥∥∥2
< cost then

9: if C(q)
1 , . . . ,C(q)

k satisfy α-center proximity and γ >
maxi, j

∥∥∥∥µ(p)
i − µ

(p)
j

∥∥∥∥
mini, j

∥∥∥∥µ(p)
i − µ

(p)
j

∥∥∥∥ then

10: (µ̃(p)
1 , µ̃

(p)
2 , . . . , µ̃

(p)
k )← (µ̃(q)

1 , µ̃
(q)
2 , . . . , µ̃

(q)
k )

11: cost =
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(q)
j

∥∥∥∥2

12: end if
13: end if
14: end for
15: for i = 1 to n do
16: Label(i)← argmin

16 j6k

∥∥∥∥xi − µ̃
(p)
j

∥∥∥∥
17: end for

9



Fix any j ∈ [k] \ {i}. Using Definition 1.1, we get

‖x − µi‖ <
1
α

∥∥∥x − µ j

∥∥∥ . (3)

‖x − µ̃i‖ 6 ‖x − µi‖ + 2δri, j (Lemma 2.6)

<
1
α

∥∥∥x − µ j

∥∥∥ + 2δri, j
(
Using (3)

)
=

(∥∥∥x − µ j

∥∥∥ − 2δri, j

)
+

(
1
α
− 1

) ∥∥∥x − µ j

∥∥∥
+ 2δri, j + 2δri, j

6
∥∥∥x − µ̃ j

∥∥∥ + 4δri, j −
α − 1
α

(α − 1) ri, j
(
Using Lemma 2.6 and Proposition 2.3

)
6

∥∥∥x − µ̃ j

∥∥∥ + ri, j

(
4δ −

(α − 1)2

α

)
6

∥∥∥x − µ̃ j

∥∥∥ + ri, j ·

(
−

(α − 1)2

2α

)
<

∥∥∥x − µ̃ j

∥∥∥ . (
Using (2)

)
�

The next lemma shows that the clustering obtained by approximate centers corresponds to the optimal clustering,
ignoring the outliers.

Lemma 2.8. For any i ∈ [k], C̃i ∩ (X \ Z) = Ci.

Proof. Lemma 2.7 implies that each x ∈ Ci is closest to µ̃i out of {µ̃1, . . . , µ̃k}. Therefore, x ∈ C̃i, and hence

Ci ⊆ C̃i ∩ (X \ Z) for each i ∈ [k] . (4)

By construction, each x ∈ X belongs to exactly one out of
{
C̃1, . . . , C̃k

}
. Therefore,(

C̃i ∩ (X \ Z)
)
∩

(
C̃ j ∩ (X \ Z)

)
= ∅ for each i, j ∈ [k], i , j , (5)

and,
∪i∈[k]

(
C̃i ∩ (X \ Z)

)
= X ∩ (X \ Z) = ∪i∈[k]Ci . (6)

(4), (5) and (6) imply the lemma. �

Therefore the Lemma 2.8 implies the statement of the proposition, as in this setting, since X \ Z = X, Lemma 2.8
implies that C̃i = Ci. �

We are now ready to prove Theorem 1.3 and Theorem 1.8

Proof of Theorem 1.3. Using Proposition 3.1 for a desired clustering C1, . . . ,Ck, we get a set of points {µ̃1, . . . , µ̃k},
such that

�
[
‖µ̃i − µi‖ 6 δ diam (Ci) for each i ∈ [k]

]
> 1 − β1 .

Using Proposition 2.2, we get that for each i ∈ [k] diam (Ci) 6 2ri, j for all j ∈ [k]. Therefore this implies that

�
[
‖µ̃i − µi‖ 6 2δri, j for all j ∈ [k] , for each i ∈ [k]

]
> 1 − β1 .

This can be achieved by Algorithm 4
Now, using Proposition 2.5 we get that we can get an exact clustering. This step is achieved by Algorithm 1. �
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Proof of Theorem 1.8. Using Proposition 3.5 for a desired clustering C1, . . . ,Ck, we get a set of points {µ̃1, . . . , µ̃k},
such that

‖µ̃i − µi‖ 6 2δri, j for all j ∈ [k] and for each i ∈ [k] .

with constant probability. This step is achieved by Algorithm 5.
Now, using Proposition 2.5 we get that we can get an exact clustering. This step is achieved by Algorithm 2.
The running time of the algorithm is O

(
2poly(k/ε)nd

)
, and from equation (14) and (2) we get that

ε 6

(
2(α − 1)2

8αkγ

)2

.

Therefore, we get a running time of O
(
2poly(kγ/(α−1))nd

)
. �

2.2 α-Outliers Center Proximity
In this section we assume that we can get access to a set of points {µ̃1, . . . , µ̃k} such that, ‖µ̃i − µi‖ 6 δ diam (Ci) for all
i ∈ [k], with probability some constant probability. We will show how to obtain such points in Section 3.1

Algorithm 3: α-center proximal k-means clustering with balanced clusters and outliers
Input: a list L of k-tuples, where there exists at least one tuple (µ̃1, . . . , µ̃k) such that for any i ∈ [k],
‖µ̃i − µi‖ 6 δ diam (Ci) for all j ∈ [k], a number α > 1, ω > 0, and z > 0

Output: An α-center proximal clustering where the size of each cluster is at least ωn/k.
1: Initialize (µ̃(p)

1 , µ̃
(p)
2 , . . . , µ̃

(p)
k )← (0̄, 0̄, . . . , 0̄)

2: cost←
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(0)
j

∥∥∥∥2

3: for a tuple µ̃(q) ∈ L do
4: for j = 1 to k do
5: C(q)

j = {xi : µ̃(q)
j is the nearest center to xi}

6: end for
7: Remove the z farthest points with respect to (µ̃(p)

1 , µ̃
(p)
2 , . . . , µ̃

(p)
k )

8: if
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(q)
j

∥∥∥∥2
< cost then

9: if C(q)
1 , . . . ,C(q)

k all have size at least ωn
k and satisfy α-center proximity then

10: (µ̃(p)
1 , µ̃

(p)
2 , . . . , µ̃

(p)
k )← (µ̃(q)

1 , µ̃
(q)
2 , . . . , µ̃

(q)
k )

11: cost =
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(q)
j

∥∥∥∥2

12: end if
13: end if
14: end for
15: for i = 1 to n do
16: Label(i)← argmin

16 j6k

∥∥∥∥xi − µ̃
(p)
j

∥∥∥∥
17: end for

We first note that, by our Definition 1.2, outliers are the farthest most points in the data-set, where distance is
measured from the set of optimal centers µ1, . . . , µk.

Lemma 2.9. The Definition 1.2 implies that for any q ∈ Z

∥∥∥q − µ j

∥∥∥ > α diam (Ci) + diam
(
C j

)
4

, ( for all i, j ∈ [k]) , (7)
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Proof. From the Definition 1.2 we get that for any pi ∈ Ci, p j ∈ C j and q ∈ Z, we get that α ‖pi − µi‖ 6
∥∥∥q − µ j

∥∥∥ and
α
∥∥∥p j − µ j

∥∥∥ 6 ∥∥∥q − µ j

∥∥∥. There exists at least one point pi1 ∈ Ci such that
∥∥∥pi1 − µi

∥∥∥ > diam (Ci) /2, this is because the
diameter is defined as maxpi1 ,pi2∈Ci

∥∥∥pi1 − pi2
∥∥∥. We will prove this by contradiction. Suppose ‖p1 − p2‖ = diam (Ci),

and
∥∥∥pi1 − µi

∥∥∥ < diam (Ci) /2, and
∥∥∥pi2 − µi

∥∥∥ < diam (Ci) /2, then this contradicts the triangle inequality, as ‖p1 − p2‖ >∥∥∥pi1 − µi

∥∥∥ +
∥∥∥pi2 − µi

∥∥∥.
Therefore we get that

∥∥∥q − µ j

∥∥∥ > α diam (Ci) /2 and
∥∥∥q − µ j

∥∥∥ > α diam
(
C j

)
/2. Therefore the statement of the

lemma follows. �

Lemma 2.10. For any q ∈ Z and x ∈ Ci, we have that ‖x − µ̃i‖ <
∥∥∥q − µ̃ j

∥∥∥, for i, j ∈ [k].

Proof.

‖x − µ̃i‖ 6 ‖x − µi‖ + δ diam (Ci) (Lemma 2.6)

<
1
α

∥∥∥q − µ j

∥∥∥ + δ diam (Ci) (Definition 1.2)

=
(∥∥∥q − µ j

∥∥∥ − δ diam
(
C j

))
+

(
1
α
− 1

) ∥∥∥q − µ j

∥∥∥
+ δ diam (Ci) + δ diam

(
C j

)
6

∥∥∥q − µ̃ j

∥∥∥ + δ
(

diam (Ci) + diam
(
C j

))
−
α − 1
α

∥∥∥q − µ j

∥∥∥ (Lemma 2.6)

6
∥∥∥q − µ̃ j

∥∥∥ +

(
δ −

(α − 1)
4

) (
diam (Ci) + diam

(
C j

)) (
Using (7)

)
<

∥∥∥q − µ̃ j

∥∥∥ . (
Using (2)

)
�

Proof of Theorem 1.6. Using Proposition 3.5 for a desired clustering C1, . . . ,Ck, we get a set of points {µ̃1, . . . , µ̃k},
such that

‖µ̃i − µi‖ 6 δ diam (Ci) for all i ∈ [k] .

Using the Lemma 2.8 we get that all the points are closer to their approximate means than other approximate means.
This step is achieved by Algorithm 4. Using the Lemma 2.10 we get that even with respect to the approximate means,
the outlier points are the farthest points of the data-set. Therefore we can remove the farthest |Z| points, and get the
desired clustering. This step is achieved by Algorithm 3. �

Proof of Theorem 1.7. The proof immediately follows from the Proposition 3.5. We think of β points as outliers for
the Algorithm 4. With a constant probability, we get that one of the clusterings in the list produced by the algorithm
corresponds to (n − β) points being α-center proximal. �

3 Sampling

3.1 Balanced Cluster Assumption
The following proposition works for general A1, . . . , Ak,Z. For our case, Ai corresponds to cluster Ci, and Z

corresponds to the set of outliers.

Proposition 3.1. Fix δ, β1 ∈ (0, 1). Let X be a set of points in �d, partitioned into k + 1 sets A1, . . . , Ak,Z such that
for each i, |Ai| > ω |X| /k. Let µi denote the mean of Ai, i.e., µi

def
=

(∑
v∈Ai

v
)
/ |Ai|. There exists a randomized algorithm

which outputs the set
{
(µ̃(p)

1 , . . . , µ̃
(p)
k ) : p ∈ [T ]

}
satisfying

�

[
∃p ∈ [T ] such that

∥∥∥∥µ̃(p)
i − µi

∥∥∥∥ 6 δ diam (Ai) for each i ∈ [k]
]
> 1 − β1 ,
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Algorithm 4: List of α-center proximal k-means with balanced clusters with outliers

Input: a set of points X = {x1, x2, . . . , xn} ⊆ �
d, a positive integer k ∈ �>0 , a number α > 1, ω > 0, and z > 0

Output: A list L of k-tuples, where each k-tuple k-mean points of a clustering.
1: δ← (α − 1)2/8α
2: Initialize (µ̃(0)

1 , µ̃(0)
2 , . . . , µ̃(0)

k )← (0̄, 0̄, . . . , 0̄)
3: m← (12/ω) (128k2α2/(α − 1)4β1) log(2k/β1)
4: L ← ∅
5: Pick an i.i.d. and uniform sample Y of size m from X.
6: if z = 0 then
7: for enumeration p ∈ [T ] over the set T of all k disjoint partitions Y = Y (p)

1 ∪ Y (p)
2 . . . ∪ Y (p)

k do
8: for j = 1 to k do
9: µ̃

(p)
j ←

1∣∣∣∣Y (p)
j

∣∣∣∣
∑

xi∈Y
(p)
j

xi

10: end for
11: L = L ∪

{(
µ̃

(p)
1 , . . . , µ̃

(p)
k

)}
12: end for
13: end if
14: if z > 0 then
15: for enumeration p ∈ [T ] over the set T of all k + 1 disjoint partitions Y = Y (p)

1 ∪ Y (p)
2 . . . ∪ Y (p)

k+1 do
16: for j = 1 to k do
17: µ̃

(p)
j ←

1∣∣∣∣Y (p)
j

∣∣∣∣
∑

xi∈Y
(p)
j

xi

18: end for
19: L = L ∪

{(
µ̃

(p)
1 , . . . , µ̃

(p)
k

)}
20: end for
21: end if
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in O (T ) iterations where T < (k + 1)
16k2

δ2β1
log

(
2k
β1

)
.

We begin by recalling the following lemma, which is implicit in Theorem 2 of [Bar15], which says that with
constant probability, one can get close to the mean of a set of points with bounded diameter, by randomly sampling a
constant number of points.

Lemma 3.2. Fix a set of elements A and a set of parameters δ, β3 ∈ (0, 1), and let l0 = 1/
(
δ2β3

)
. Let l ∈ � be any

number such that l > l0, and let y1, . . . yl be l independent and uniformly random samples from A. Then,

�


∥∥∥∥∥∥∥1

l

l∑
i=1

yi −
1
|A|

∑
a∈A

a

∥∥∥∥∥∥∥ 6 δ diam (A)

 > 1 − β3 .

Claim 3.3.

�

∥∥∥∥∥∥∥1
l

l∑
i=1

yi −
1
|A|

∑
a∈A

a

∥∥∥∥∥∥∥
2

6 diam (A)2 /l

Proof. (We are reproducing the proof of [Bar15] for the sake of completeness.)

�

∥∥∥∥∥∥∥1
l

l∑
i=1

yi −
1
|A|

∑
a∈A

a

∥∥∥∥∥∥∥
2

=
1
l2
�

∥∥∥∥∥∥∥
l∑

i=1

 1
|A|

∑
a∈A

a − yi


∥∥∥∥∥∥∥

2

=
1
l2
�

〈 l∑
i=1

 1
|A|

∑
a∈A

a − yi

 , l∑
j=1

 1
|A|

∑
a∈A

a − y j

〉

=
1
l2

l∑
i, j=1

�

〈 1
|A|

∑
a∈A

a − yi

 ,  1
|A|

∑
a∈A

a − y j

〉

=
1
l2

l∑
i=1

�

〈 1
|A|

∑
a∈A

a − yi

 ,  1
|A|

∑
a∈A

a − yi

〉 (
Since yi and y j are independent

)
=

1
l2

l∑
i=1


∥∥∥∥∥∥∥ 1
|A|

∑
a∈A

a

∥∥∥∥∥∥∥
2

− 2

∥∥∥∥∥∥∥ 1
|A|

∑
a∈A

a

∥∥∥∥∥∥∥
2

+ � ‖yi‖
2


� yi =

1
|A|

∑
a∈A

a


6

1
l2

l diam (A)2
(
� ‖yi‖

2 − ‖x‖2 6 diam (A)2
)

=
diam (A)2

l

�

Proof of Lemma 3.2. Let the random variable Z def
=

∥∥∥∥ 1
l
∑l

i=1 yi −
1
|A|

∑
a∈A a

∥∥∥∥2
. We know from the Claim 3.3 that �(Z) 6

diam(A)2

l . Therefore using Markov’s inequality, we get

�

[
Z >

diam (A)2

lβ3

]
6
�Z

diam(A)2

lβ3

6
diam(A)2

l
diam(A)2

lβ3

= β3

�

∣∣∣∣√Z
∣∣∣∣ > diam (A)

√
l
√
β3

 6 β3

Therefore choosing δ = 1
√
β3
√

l
, we get the statement of Lemma 3.2. �
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The above lemma helps us determine the number of points to be taken from each of the clusters to get close to the
mean. The next helps us determine the number of points to sample uniformly at random from the data-set, such that
we get at least some fixed number of points from each balanced clusters (with a balance parameter ω), with constant
probability.

Lemma 3.4. Fix l0 ∈ � and β2 ∈ (0, 1/2]. Let X = {x1, . . . , xn} be a set of n distinct items partitioned into k + 1 sets
A1, . . . , Ak,Z such that |Ai| > ωn/k for each i ∈ [k]. Let m = (8/ω)kl0 log (k/β2), and let Y = {y1, . . . , ym} be a set of m
independently and uniformly randomly chosen elements from X (with repetition). Then,

�
[
|Y ∩ Ai| > l0 for each i ∈ [k]

]
> 1 − β2 .

Proof. Let pi
def
= |Ai| /n and let Yi

def
= |Y ∩ Ai|. For our choice of parameters, we get that

pim
2
>
ωm
2k
> l0 and

pim
8
> log

k
β2
.

Therefore, using the Chernoff bound on Yi, we get that

� [Yi > l0] > �
[
Yi > pim/2

]
> 1 − e−pim/8 > 1 −

β2

k
.

Using a union bound over each i ∈ [k], we get

� [|Y ∩ Ai| > l0 for each i ∈ [k]] > 1 − k
β2

k
= 1 − β2 .

�

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Set β2 = β1/2, β3 = β1/(2k), set l0 from the guarantee in Lemma 3.2, and set m from the
guarantee in Lemma 3.4. Let Y = {y1, . . . , ym} be a set of m independently and uniformly randomly chosen elements
from X (with repetition) It is easy to verify that the points in Y ∩ Ai are a uniformly random sample from Ai.

�
[
y j = a

∣∣∣ y j ∈ Ai

]
=

1
|Ai|

for any i ∈ [k], a ∈ Ai and j ∈ [m] (8)

Let µ̃(∗)
i

def
=

(∑
j∈Y∩Ai

y j

)
/|Y ∩ Ai|. If we enumerate all the k + 1 partitions on Y , then one of the partitions will be

{Y ∩ A1, . . . ,Y ∩ Ak,Y ∩ Z}. For a fixed index i ∈ [k], using Lemma 3.4 and (8) with A = Ai and Y ∩ Ai as the set of
random samples from Ai, we get that

� [|Y ∩ Ai| > l0 for each i ∈ [k]] > 1 − β2 = 1 −
β1

2
.

In this case, using Lemma 3.2, we get that

�
[∥∥∥µ̃(∗)

i − µi

∥∥∥ 6 δ diam (Ai) for each i ∈ [k]
]
> 1 − kβ3 = 1 −

β1

2
.

Using a union bound over these two events, we get that

�
[∥∥∥µ̃(∗)

i − µi

∥∥∥ 6 δ diam (Ai) for each i ∈ [k]
]
> 1 −

β1

2
−
β1

2
= 1 − β1 .

The running time of this algorithm is dominated by the time required to enumerate all the k + 1 partitions of set of
cardinality m, and computing the means of those partitions. �
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3.2 Balanced Mean Distance Assumption
Assume that the unknown α-center proximal k-means clustering of lowest cost is {C1, . . . ,Ck}, with means {µ1, . . . , µk}

respectively. In this section we assume that the ratio of the maximum pairwise distance between the means to the
minimum pairwise distance between the means is bounded by a factor γ∗. We assume that we are given an upper
bound γ on γ∗. More formally, we are given a γ, such that

γ >
maxi, j

∥∥∥µi − µ j

∥∥∥
mini, j

∥∥∥µi − µ j

∥∥∥ .
Proposition 3.5. Fix δ ∈ (0, 1). Let X be a set of points in �d, partitioned into k sets C1, . . . ,Ck, and let µi denote

the mean of Ci, i.e., µi
def
=

(∑
v∈Ci

v
)
/ |Ci|, such that γ = maxi, j

∥∥∥µi − µ j

∥∥∥/mini, j

∥∥∥µi − µ j

∥∥∥. Let ε =
(

2δk
γ(1+k)

)2
. The

Algorithm 5 constructs O
(
2poly( k

ε )
)

k-tuples. With constant probability, there exists at least one k-tuple (µ̃1, . . . , µ̃k)
satisfying

‖µ̃i − µi‖ 6 2δri, j for all j ∈ [k] and for each i ∈ [k] .

Moreover, the algorithm runs in time O
(
2poly( k

ε )nd
)
.

. The proof of the Proposition 3.5 is similar to the proof of Lemma 3.3 of [DX15], with minor modifications,
keeping our application in mind.

Using Proposition 2.3 we define radmin (X) def
= α

α2−1 mini, j

∥∥∥µi − µ j

∥∥∥. The proposition implies that the radius of the
largest Ci, j ball (for some i, j ∈ [k]) is at most γ radmin (X), ie.,

ri, j

γ
6 radmin (X) 6 ri, j for i, j ∈ [k] . (9)

Proposition 3.6. Let R def
= maxi, j∈[n]

∥∥∥xi − x j

∥∥∥, and let radmin (X) def
= α

α2−1 mini, j

∥∥∥µi − µ j

∥∥∥. Then,

radmin (X) ∈
[(

α

(α + 1)2

)
R
γ
,
(

α

α2 − 1

) R
γ

]
. (10)

Proof. It is easy to see that
R > max

i, j

∥∥∥µi − µ j

∥∥∥ , for i, j ∈ [k] ,

and from Proposition 2.3 that (points lie in two balls of radius ri, j which are at a distance di, j apart)

R 6 max
i, j

(
4ri, j + di, j

)
=

(
α + 1
α − 1

)
max

i, j

∥∥∥µi − µ j

∥∥∥ , for i, j ∈ [k] .

Using the above two equations and the fact that γ = maxi, j

∥∥∥µi − µ j

∥∥∥/mini, j

∥∥∥µi − µ j

∥∥∥, we get that

min
i, j

∥∥∥µi − µ j

∥∥∥ ∈ [(
α − 1
α + 1

)
R
γ
,

R
γ

]
, for i, j ∈ [k] ,

which implies that (using Proposition 2.3)

radmin (X) ∈
[(

α

(α + 1)2

)
R
γ
,
(

α

α2 − 1

) R
γ

]
.

�

The Algorithm 6 is almost same as the Algorithm Peeling-and-Enclosing-Tree of [DX15], with a minor variation
in step 2(b).

We note a set of preliminary lemmas and definition which we will need for the proof of Proposition 3.5.
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Algorithm 5: Algorithm Peeling-and-Enclosing

Input: X = {x1, . . . , xn} in �d, k > 2, α, γ.
Output: A list L containing k-tuples, where a k-tuple contains k mean points.

1. Set ε =
(

(α−1)2k
4αγ(1+k)

)2
.

2. For i = 0 to log(1+ε)

(
α+1
α−1

)
do

(a) ζ = (1 + ε)i
(

α
(α+1)2

)
R
γ

.

(b) Run Algorithm Peeling-and-Enclosing-Tree.

(c) Let Ti be the output tree.

3. For each root-to-leaf path of every Ti, build a k-tuple candidate using the k points associated with the path.

4. Append the k-tuple to the list L.

Algorithm 6: Algorithm Peeling-and-Enclosing-Tree
Input: ζ and an instance of k-means X.
Output: A tree T .

1. Initialize T as a single root node v associated with no point.

2. Recursively grow each node v in the following way

(a) If the height of v is already k, then it is a leaf.

(b) Otherwise, let j be the height of v. Build the radius candidate set R =

{
1+l ε2

2(1+ε) j
√

2
√
εζγ

∣∣∣∣0 6 l 6 4 + 2
ε

}
For each r ∈ R, do

i. Let
{
pv1 , . . . , pv j

}
be the j points associated with nodes on the root-to-v path.

ii. For each pvl , 1 6 l 6 j, construct a ball B j+1,l centered at pvl and with radius r.

iii. Take a random sample from
(
X \ ∪ j

l=1B j+1,l

)
of size s = 8k3

ε9 ln k2

ε6 . Compute the mean points of all
subset of the sample, and denote them by Π = {π1, . . . , π2s−1}.

iv. For each πi ∈ Π, construct a simplex using
{
pv1 , . . . , pv j , πi

}
as its vertices. Also construct another

simplex using
{
pv1 , . . . , pv j

}
as its vertices. For each simplex, build a grid with size O

(
(32 j/ε) j

)
inside itself and each of its 2 j possible degenerated sub-simplices.

v. In total, there are 2s+ j (32 j/ε) j grid points inside the 2s simplices. For each grid point, add one
child to v, and associate it with the grid point.

3. Output T .
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Definition 3.7 (Simplex). A k-simplex is a k-dimensional polytope which is the convex hull of its k + 1 vertices. More
formally, suppose the k + 1 points u0, . . . , uk ∈ �

k are affinely independent, Then, the simplex determined by them is
the set of points

V =

θ0u0 + · · · + θkuk

∣∣∣∣∣ k∑
i=0

θi = 1 and θi > 0 for all i ∈ [k]

 .

Lemma 3.8 (Lemma 1, [IKI94]). Let S be a set of n points in �d, T be a randomly selected subset of size t from
S , and µ(S ), µ(T ) be the mean points of S and T respectively. With probability 1 − η, ‖µ(S ) − µ(T )‖2 6 1

ηtσ
2, where

σ2 = 1
n
∑

s∈S ‖s − µ(s)‖2 and 0 6 η 6 1.

Lemma 3.9 (Lemma 4, [DX14]). Let Γ be a set of elements, and S be a subset of Γ with |S |
|Γ|

= ρ for some ρ ∈ (0, 1). If

we randomly select
t ln t

η

ln(1+ρ) = O
(

t
ρ

ln t
η

)
elements from Γ, then with probability at least 1 − η, the sample contains t or

more elements from S for 0 < η < 1 and t ∈ �+.

Lemma 3.10 (Lemma 2.3 (Simplex Lemma II), [DX15]). Let Q be a set of points in�d with a partition of Q = ∪
j
l=1Ql

and Ql1 ∩ Ql2 = ∅ for any l1 , l2. Let o be the mean point of Q, and ol be the mean point of Ql for 1 6 l 6 j. Let
σ2 = 1

|Q|
∑

q∈Q ‖q − o‖2. Let {o′1, . . . , o
′
j} be j points in �d such that

∥∥∥ol − o′l
∥∥∥ 6 L for 1 6 l 6 j, L > 0, and V′ be the

simplex determined by {o′1, . . . , o
′
j}. Then for any 0 < ε 6 1, it is possible to construct a grid of size O

(
(8 j/ε) j

)
inside

V′ such that at least one grid point τ satisfies the inequality ‖τ − o‖ 6
√
εσ + (1 + ε)L.

Lemma 3.11 (Lemma 2.2, [DX15]). Let Q be a set of points in �d, and Q1 be its subset containing ρ |Q| points

for some 0 < ρ 6 1. Let o and o1 be the mean points of � and Q1, respectively. Then ‖o − o1‖ 6
√

1−ρ
ρ
σ, where

σ2 = 1
|Q|

∑
q∈Q ‖q − o‖2.

Notations: Let OPT = {C1, . . . ,Ck} be the k unknown optimal clusters for the lowest cost α-center proximal k-
means objective, with means µ j. W.l.o.g. we assume that |C1| > . . . > |Ck |. We define σ2

j
def
= 1
|C j|

∑
p∈C j

∥∥∥p − µ j

∥∥∥2
. Let

λ j
def
= |C j|/n.
The following lemma is similar to the Lemma 3.3 of [DX15] with minor modifications.

Lemma 3.12. Among all the points generated by the Algorithm 6, with constant probability, there exists at least one
tree, Ti, which has a root-to-leaf path with each of its nodes v j at level j, (1 6 j 6 k) associating with a point pv j and
satisfying the inequality ∥∥∥pv j − µ j

∥∥∥ 6 εγ radmin (X) + (1 + ε) j
√
εγ radmin (X) . (11)

Algorithm and Proof Overview: We will give a high level idea of the algorithm and the proof. At each searching
step, the algorithm performs a ‘sphere peeling’ and ‘simplex enclosing’ step, to generate k approximate mean points
for the clusters. Initially the algorithm uses a random sampling technique to find an approximate mean pv1 for C1. This
can be done as |C1 |

n > 1/k, and hence we can sample.For some j > 1, suppose that at the ( j+1)th iteration, the algorithm
already has approximate mean points mean points pv1 , . . . , pv j for C1, . . . ,C j. It is not clear how to distinguish points
which belong to C1, . . . ,C j from those which belong to C j+1. Also, the number of points in the cluster C j+1 could be
small, it is tough to obtain a significant fraction of such points using random sampling. Therefore, the idea used is
to seperate the points in C j+1 using j peeling spheres, B j+1,1, . . . ,B j+1, j, centered at the j approximate mean points
respectively and with radius approximately being radmin (X). Note that B j+1,1, . . . ,B j+1, j can have some points from
C j+1. Let P j+1 be the set of unknown points in C j+1 \

(
∪

j
l=1B j+1,l

)
. The algorithm considers two cases, a)

∣∣∣P j+1
∣∣∣ is large

and b)
∣∣∣P j+1

∣∣∣ is small. For the case a) when
∣∣∣P j+1

∣∣∣ is large, we can sample points from P j+1 using random sampling,
and get an approximate mean π of P j+1, and then construct a simplex determined by π, pv1 , . . . , pv j to contain the
( j + 1)th mean point, using Lemma 3.10. This is because, C j+1 ∩B j+1,l, l ∈ [ j] can be seen as a partition of C j+1 whose
approximate mean is pvl , thus the simplex lemma II applies. For case b) where

∣∣∣P j+1
∣∣∣ is small, it directly constructs

the simplex determined by pv1 , . . . , pv j , and searches for the approximate mean point of C j+1 in the grid. This follows
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because it can be shown that C j+1 ∩ B j+1,l, l ∈ [ j] can be seen as a partition of C j+1 whose approximate mean is pvl ,
and from the Lemma 3.11. The Lemma 3.11 roughly says that even if we remove a small number of points from a
cluster, its new mean remains close to the original mean.

Proof of Lemma 3.12: Let Ti be the tree generated by the Algorithm 6 when

ζ ∈ [ radmin (X) , (1 + ε) radmin (X)] .

We will prove this lemma by induction.
Base Case: For j = 1, we have λ1 >

1
k . Therefore through random sampling (Lemma 3.9), we can find a point pv1 ,

which is close to µ1 (Lemma 3.8). We get that
∥∥∥pv1 − µ1

∥∥∥ 6 εσ1 6 ε radmin (X) + (1 + ε)γ
√
ε radmin (X). Hence the

base case holds.
Induction Step: We assume that there is a path in Ti from root to the ( j−1)-level, such that for each 1 6 l 6 ( j−1),

the level-l node vl on the path associated with a point pvl satisfying the inequality∥∥∥pvl − µl

∥∥∥ 6 εγ radmin (X) + (1 + ε)l
√
εγ radmin (X) .

Now we need to show this for the j-level, i.e., we need to show that there exists at least one child v j of v j−1, such that
the associated point pv j satisfies the inequality∥∥∥pv j − µ j

∥∥∥ 6 εγ radmin (X) + (1 + ε) j
√
εγ radmin (X) .

First we make the following claim. The claim is a slight modification of Claim 2 of [DX15]. We will prove it in
Section 3.2.1.

Claim 3.13. In the set of radius candidates in the algorithm, there exists one value r j ∈ R, such that

r j ∈

[
j
√
εγ radmin (X) ,

(
1 +

ε

2

)
j
√
εγ radmin (X)

]
.

Now we construct ( j − 1) peeling spheres
{
B j,1, . . . ,B j, j−1

}
. For each 1 6 l 6 j − 1, B j,l is centered at pvl with

radius r j. Next we make the following claim. The proof claim is similar to the proof of Claim 3 of [DX15], adapted to
our setting. We will prove it in Section 3.2.1.

Claim 3.14. For each 1 6 l 6 j − 1,
∣∣∣∣Cl \

(
∪

j−1
w=1B j,w

)∣∣∣∣ 6 4λ jn
ε

.

Claim 3.14 shows that
∣∣∣∣Cl \

(
∪

j−1
w=1B j,w

)∣∣∣∣ is bounded for 1 6 l 6 j − 1, which helps us to find the approximate mean

of C j. C j is divided into j subsets, (C j ∩ B j,1), . . . , (C j ∩ B j, j−1), and C j \
(
∪

j−1
w=1B j,w

)
. Let Pl denote C j ∩ B j,l for

1 6 l 6 j − 1, and P j denote C j \
(
∪

j−1
w=1B j,w

)
, and τl denote mean point of Pl for 1 6 l 6 j. We can assume that

{Pl|1 6 l 6 j} are pairwise disjoint. If not, then arbitrarily assign points to either of the peeling spheres which intersect
in C j.

We now have two cases: (a)
∣∣∣P j

∣∣∣ > ε3 λ j

j n, and (b)
∣∣∣P j

∣∣∣ < ε3 λ j

j n. We show that Algorithm 6 can obtain an
approximate mean for C j by using the Lemma 3.10, for both the cases.

Case (a): By Claim 3.14, and using that fact that λl 6 λ j for l > j, we know that∣∣∣P j

∣∣∣∑
16l6k

∣∣∣∣Cl \
(
∪

j−1
w=1B j,w

)∣∣∣∣ >
ε3

j λ j

4( j−1)λ j

ε
+ λ j + (k − j)λ j

,

>
ε4

8k j
,

>
ε4

8k2 .
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This means that P j is large enough, compared to the points outside the peeling spheres. Hence we can use random
sampling technique to obtain an approximate mean point π for P j in the following way. First we set t = k

ε5 , η = ε
k , and

take sample of size 8k3

ε9 ln k2

ε6 . By Lemma 3.9 we know that with probability 1 − ε
k , the sample contains k

ε5 points from
P j. Let π be the mean of the k

ε5 points sampled from P j, and let a2 be the variance of P j. By Lemma 3.8 we know that

with probability 1 − ε
k ,

∥∥∥π − τ j

∥∥∥2
6 ε4a2. Also, since |P j|

|C j|
=
|P j|
λ jn
> ε3

j , we have a2 6 |
C j|
|P j|

σ2
j 6

1
ε3σ

2
j . This upper bound

on a2 follows because P j ⊂ C j. We are summing the distance square over all the elements in C j, and then dividing by∣∣∣P j

∣∣∣. Thus,
∥∥∥π − τ j

∥∥∥2
6 ε jσ2

j 6 ε jγ2 radmin (X)2.
After obtaining the point π, we can use the Lemma 3.10 to find a point pv j satisfying the condition of

∥∥∥pv j − µ j

∥∥∥ 6
εγ radmin (X) + (1 + ε) j

√
εγ radmin (X). This is true because of the following. First we construct the simplexV′(a) with

vertices
{
pv1 , . . . , pv j−1 , π

}
, which is o′1, ...o

′
j−1, o

′
j in the lemma. Note that C j which is Q in the lemma is partitioned by

the peeling spheres into j disjoint subsets P1, . . . , P j, which is Q1, . . . ,Q j in the lemma. Each Pl (1 6 l 6 j−1) locates
inside B j,l, which implies that τl (mean of Pl), which is ol in the lemma, is also inside B j,l. Further by Claim 3.13 we
have for 1 6 l 6 j − 1:

j
√
εγ radmin (X) 6 r j 6

(
1 +

ε

2

)
j
√
εγ radmin (X) . (12)

We also have from above that (recall that τl is the mean of Pl)∥∥∥π − τ j

∥∥∥ 6 √
ε jγ radmin (X) . (13)

By (12) and (13) we know that if we set the value of L and ε (in Lemma 3.10) to be L =
(
1 + ε

2

)
j
√
εγ radmin (X) and

ε to be ε0 = ε2/4, by Lemma 3.10 we can construct a grid inside the simplex V′(a) with size O
(
(8 j/ε0) j

)
to ensure

existence of one grid point τ satisfying that inequality∥∥∥τ − µ j

∥∥∥ 6 √ε0σ j + (1 + ε0)L 6 εγ radmin (X) + (1 + ε) j
√
εγ radmin (X) .

Hence we can use τ as pv j , and the induction step holds.
Case (b): We can use the Lemma 3.10 to find an approximate mean point. This is true because of the following.

We construct a simplexV′(b) with vertices
{
pv1 , . . . , pv j−1

}
. Since

∣∣∣P j

∣∣∣ is small, the mean points of C j \P j and C j are very
close to each other (Lemma 3.11). Thus we can ignore P j and consider only C j\P j. Here the value of ρ in Lemma 3.11
is (1 − ε3/ j). Thus, the ( j − 1) dimensional simplex will approximate the mean of P j well (by Lemma 3.10). Here the
value of L and ε is same as in the case (a). Therefore, the induction step holds for this case as well.

Since Algorithm 6 executes every step in the above discussion, the induction step, as well as the lemma, is true.
�

Proof of Proposition 3.5. From the Lemma 3.12 we know that with constant probability our algorithm can find a point
µ̃ j, 1 6 j 6 k such that ∥∥∥µ̃ j − µ j

∥∥∥ 6 εγ radmin (X) + (1 + ε) j
√
εγ radmin (X) .

Therefore we now calculate the value of ε, the success probability and the running time.

ε Value: From (11) (which implies that
∥∥∥µ̃ j − µ j

∥∥∥ 6 εγ radmin (X) + (1 + ε)k
√
εγ radmin (X) ) and (9) (which gives

a bound on radmin (X)). From proof of Claim 3.14 we know that ε 6 1
4k2 . We want to show that

∥∥∥µ̃ j − µ j

∥∥∥ 6 2δri, j.
Therefore, we get that for i, j ∈ [k]

(ε + (1 + ε)k
√
ε)γri, j 6 2δri, j ,

√
ε(
√
ε + (1 + ε)k) 6

2δ
γ
,

ε 6

(
2δk

γ(1 + k)

)2 (
Since ε 6

1
4k2

)
. (14)

Therefore setting ε 6
(

2δk
γ(1+k)

)2
we get statement of the proposition.
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Success Probability: From the above analysis, we know that only in the case (a) in the analysis of Lemma 3.12
needs sampling. We took a sample of size s = 8k3

ε9 ln k2

ε6 . With probability 1 − ε
k , it contains k

ε5 points from P j.

Meanwhile, with probability, 1 − ε
k ,

∥∥∥π − τ j

∥∥∥2
6 ε4a2. Hence the success probability in the jth iteration is

(
1 − ε

k

)2
.

Therefore the success probability in k iterations is
(
1 − ε

k

)2k
> 1 − 2ε.

Runtime Analysis: Each node in the returned tree by Algorithm 6 has |R| 2s+ j
(

32 j
ε2

) j
children, where |R| = O (1/ε),

and s = 8k3

ε9 ln k2

ε6 . Since the tree has height k, the number of candidate points for the means are O
(
2poly( k

ε )
)
. Since

each node takes O
(
|R| 2s+ j

(
32 j
ε2

) j
nd

)
time, the time complexity of the Algorithm 6 is O

(
2poly( k

ε )nd
)
. The Algo-

rithm 6 is called by the Algorithm 5 O
(
log(1+ε)

(
α+1
α−1

))
times. Therefore, the total running time of the Algorithm 5

is O
(
2poly( k

ε )nd
)
. �

3.2.1 Proof of Claims

Proof of Claim 3.13. We know that

2−1/2 √εγ radmin (X) 6
√
εγ radmin (X) 6 21/2 √εγ radmin (X) .

Together with the fact that ζ ∈ [ radmin (X) , (1 + ε) radmin (X)], we get that
√

2
2
√
ε

ζγ

(1 + ε)
6
√
εγ radmin (X) 6

√
2
√
ε ζγ .

Let r̂ j =
√

2
√
ε ζγ, we get that

√
εγ radmin (X) 6 r̂ j 6 2(1 + ε)

√
εγ radmin (X) .

Let z =
j r̂ j

j
√
εγ radmin(X) . Then we have 1 6 z 6 2(1 + ε). We build a grid in the interval

[
z

2(1+ε) , z
]

with grid length ε
4(1+ε) z,

and obtain a number set N =

{
1+l ε2

2(1+ε) z
∣∣∣∣0 6 l 6 4 + 2

ε

}
. We prove that there must exist one number in N and is between

1 and 1 + ε/2. First, we know that z
2(1+ε) 6 1 6 z. If z 6 1 + ε/2, we find the desired number in N . Otherwise, the

whole interval [1, 1 + ε/2] is inside
[

z
2(1+ε) , z

]
. Since each grid has length ε

4(1+ε) z 6
ε

4(1+ε) 2(1 + ε) = ε/2, there must
exist one grid point located inside [1, 1 + ε/2]. Thus the desired number exists in N .

R =

{
1+l ε2

2(1+ε) j r̂ j

∣∣∣∣0 6 l 6 4 + 2
ε

}
, and from the above analysis we know that there exists one value r j ∈ R such that

j
√
εγ radmin (X) 6 r j 6

(
1 +

ε

2

)
j
√
εγ radmin (X) .

Note that �

Proof of Claim 3.14. For each 1 6 l 6 j − 1, we have that
∣∣∣∣Cl \

(
∪

j−1
w=1B j,w

)∣∣∣∣ 6 ∣∣∣Cl \ B j,l

∣∣∣. By Markov’s inequality we
have ∣∣∣Cl \ B j,l

∣∣∣ 6 σ2
l(

r j −
∥∥∥pvl − µl

∥∥∥)2 |Cl| .

The above inequality is true because suppose we take a random variable Y to be ‖x − µ‖. We know that �Y = σ2
l .

Therefore using Markov’s inequality for some r0 > 0 we get that

� [Y > r0] 6
σ2

l

r0
.
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Multiplying the above equation by |Cl|, we get that the expected number of points outside the radius r0 from center
is less than σ2

l mod Cl/r0. Note that σ2
l 6 γ2 radmin (X)2. Together with r j > j

√
εγ radmin (X) and

∥∥∥pvl − µl

∥∥∥ 6
εγ radmin (X) + (1 + ε)l

√
εγ radmin (X), we get

r j −
∥∥∥pvl − ml

∥∥∥ > j
√
εγ radmin (X) −

(
εγ radmin (X) + ( j − 1)(1 + ε)

√
εγ radmin (X)

)
,

= (1 − ( j − 1)ε −
√
ε)
√
εγ radmin (X) .

Thus we have∣∣∣Cl \ B j,l

∣∣∣ 6 σ2
l

(1 − ( j − 1)ε −
√
ε)2εγ2 radmin (X)2 |Cl| ,

6
|Cl|

(1 − ( j − 1)ε −
√
ε)2ε

,
(
σ2

l 6 γ
2 radmin (X)2

)
,

6
λ j n

(1 − j
√
ε)2ε

.

Note that we can assume ε is small enough such that ε 6 1
4k2 , which implies λ jn

(1− j
√
ε)2ε
6

4λ jn
ε

, since k > j. Otherwise,
we can just replace ε by ε

4k2 as part of input at the beginning of the algorithm. Thus we have that

∣∣∣Cl \ B j,l

∣∣∣ 6 4λ jn
ε

.

�

4 Lower Bound

4.1 Hardness Result
Our hardness result immediately follows from Awasthi et al. [ACKS15]. We will show a reduction from Vertex-Cover
problem to the α-center proximal k-means clustering with balanced clusters. The Vertex-Cover problem can be stated
as follows: Given an undirected graph G = (V, E), choose a subset S of vertices with minimum |S |, such that S is
incident on every edge of the graph. Awasthi et al. [ACKS15] showed the following lemma:

Lemma 4.1 (Corollary 5.3, [ACKS15]). Given any unweighted triangle-free graph G with bounded degrees, it is
NP-hard to approximate Vertex-Cover within any factor smaller than 1.36.

Theorem 4.2. There exists constants α > 1, ω > 0, ε > 0, such that there is an efficient reduction from instances of
Vertex-Cover on triangle-free graphs of bounded degree to those of α-center proximal instances of Euclidean k-means
clustering, where the size of each cluster is at least ωn/k, that satisfies the following properties:

(i) if the Vertex-Cover instance has value k, the optimal α-center proximal k-means clustering where the size of
each cluster is at least ωn/k, has cost at most m − k.

(ii) if the Vertex-Cover instance has value at least k(1 + ε), then the optimal α-center proximal k-means clustering,
where the size of each cluster is at least ωn/k, has a cost at least m − (1 −Ω(ε))k.

Proof. The construction of the k-means instance is same as that of [ACKS15]. Let G = (V, E) denote the graph in the
Vertex Cover instance I, with parameter k denoting the number of vertices we can select. We assume that the graph
G is triangle free and with a maximum degree ∆ = Ω(1). Let n be the number of vertices in the graph and m be the
number of edges. We construct the k-means instance Ikm as follows: for each vertex i ∈ [n], we have a unit vector
xi = (0, . . . , 0, 1, 0, . . . , 0) which has 1 in the ith coordinate and 0 elsewhere. For each edge e ≡ (i, j), we have a vector
xe = xi + x j. Our data points are {xe : e ∈ E}.
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Completeness: suppose I is such that there exists a vertex cover S ∗ = {v1, . . . , vk} of k vertices. We will show that
we can recover an α-center proximal k-means clustering (where the size of each cluster is at least ωn/k), of low cost.

Let Evl denote the set of edges covered by vl for 1 6 l 6 k. If an edge is covered by two vertices, we will assume
that only one of them covers it (arbitrarily). As a result each Evl is pairwise disjoint and their union is E.

We now do the clustering as follows. Consider a clusterFv
def
= {xe : e ∈ Ev}, which consists of data-points associated

with edges covered by a single vertex v. Let mFv denote the number of edges v cover in the vertex cover, and let µFv
denote the mean of Fv. The mean µFv has a 1 in one of the coordinates (corresponding to xv),

(
1/

∣∣∣mFv ∣∣∣) in mFv
coordinates (corresponding to the edges), and 0 in the remaining.

Claim 4.3. There exists an α-center proximal k-means clustering (where the size of each cluster is at least ωn/k) of
Ikm with cost at most m − k, where m is the number of edges in the graph G = (V, E) associated with the vertex cover
instance I, and k is the size of the optimal vertex cover.

Proof. The cost of the cluster Fv is
∑

x∈Fv

∥∥∥x − µFv
∥∥∥2

. We note that for any x , x′ ∈ Fv,
∥∥∥x − µFv

∥∥∥2
=

∥∥∥x′ − µFv
∥∥∥2

.
Therefore we get that the cost of the cluster Fv is:

mFv

(mFv − 1)
(

1
mFv

)2

+

(
1 −

1
mFv

)2 = mFv − 1 .

Summing this over the k cluster gives us the cost m − k.
Next, we bound the value of alpha for which this cluster is alpha stable. We note that the points closest to some

other cluster center is the edge which was covered by two vertices. Let xe be covered by v1 and v2. W.l.o.g. we assume
thatxe ∈ Fv1 . Let the number of edges in the cluster Fv1 be mv1 and Fv2 be mv2 , and let their respective means be µv1

and µv2 . The distance of xe to mean of Fv1 is

∥∥∥xe − µv1

∥∥∥2
= (mv1 − 1)

(
1

mv1

)2

+

(
1 −

1
mv1

)2

=
mv1 − 1

mv1

,

and the distance of xe to mean of Fv2 is

∥∥∥xe − µv2

∥∥∥2
= (mv2 )

(
1

mv2

)2

+ 1 =
1 + mv2

mv2

.

Note that the maximum degree of the graph is ∆. Therefore the value of α is

α =

√
mv1 (mv2 + 1)
mv2 (mv1 − 1)

>

√
∆ + 1
∆ − 1

.

In the case where clusters do not share an edge, say xe ∈ Fv1 we get that that (as per previous calculation)∥∥∥xe − µv1

∥∥∥2
=

mv1 − 1
mv1

,

and the distance of xe to µv2 is ∥∥∥xe − µv1

∥∥∥2
= 3 + (mv2 )

(
1

mv2

)2

Therefore, we get that the value of α in this case is

α =

√√√√3 + 1
mv2

1 − 1
mv1

>

√
∆ + 3
∆ − 1

>

√
∆ + 1
∆ − 1

.

Next we bound the value of ω. The size of a cluster is bounded by the degree of the graph, ie., ∆, and the minimum
size of a vertex cover for a graph with bounded degree ∆ is |S ∗| > n/∆. Therefore we get that the value of ω is ωn

k > 1,
ω > k

n >
1
∆

. �
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Soundness: Next we show that if there is an α-center proximal k-means clustering, where the size of each cluster is
at least ωn/k, which has a low k-means cost, then there is a very good vertex cover for the corresponding graph. The
proof for the soundness follows directly from Theorem 4.7 of [ACKS15].

Lemma 4.4 (Theorem 4.7, [ACKS15]). If the k-means instanceIkm has a clustering Γ = {F1, . . . ,Fk}
∑
F ∈Γ Cost(F ) 6

m − (1 − ξ)k, then there exists a (1 + O (δ))k-vertex cover of G in the instance I.

The proof for our case follows from the above lemma because the statement holds for any k-means clustering of
low cost, and hence it also holds for α-center proximal k-means clustering, where the size of each cluster is at least
ωn/k.

Combining Claim 4.3 and Lemma 4.4 we get the proof of Theorem 4.2. �

Proof of Theorem 1.5. From Theorem 4.2 we get that for some constant α > 1, ω > 0, ε > 0 if the vertex cover has
value k > m/∆, then the α-center proximal k-means clustering, where the size of each cluster is at least ωn/k, has cost
at most m

(
1 − 1

∆

)
, and if the vertex cover is at least k(1 + ε), then optimal α-center proximal k means cost is at least

m
(
1 − 1−Ω(ε)

∆

)
. The vertex cover hardness Lemma 4.1 says that it is NP-hard to distinguish if the resulting α-center

proximal k-means clustering, where the size of each cluster is at least ωn/k, has cost at most m
(
1 − 1

∆

)
or cost more

than m
(
1 − 1−Ω(ε)

∆

)
. Since ∆ is a constant, this implies that it is NP-hard to approximate α-center proximal k-means

problem to within some factor (1 + Ω(ε)), thereby proving the Theorem 1.5 �

4.2 On the Size of Possible Clustering
Proof of Proposition 1.9. Our construction is similar to the instance constructed by [BJK18] in their Theorem 2. We

first construct the set of points X for which we fix an integer m such that α =

√
1 + 2

m−1 6 α′. From this we get

that m = 2
α2−1 + 1. The points in X belongs to �d, where d = km. The set X will have n = d points : the standard

basis vectors of �d, denoted by e1, . . . , ed. Now, we define the set of α-center proximal clusterings �. The set � will
consist of clusterings C = {C1, . . . ,Ck}, for which each of the clusters has exactly m points. We will now show that
such a clustering is α-center proximal. Consider any two clusters, say C1 and C2. The mean µ1 of C1 has the value
1/m in its m coordinates and 0 in other coordinates. The µ2 of C2 has the value 1/m in its m coordinates and 0 in other
coordinates, and for a non-zero coordinate of µ1, µ2 has 0 in the respective coordinate, since the clusters are disjoint
by definition. Therefore, consider a point xi ∈ C1, we get that

‖x1 − µ1‖
2 =

(
1 −

1
m

)2

+ (m − 1)
(

1
m

)2

= 1 −
1
m
.

and

‖x1 − µ2‖
2 = 1 + m

(
1
m

)2

= 1 +
1
m
.

Therefore the value of α is

α =

√√
1 + 1

m

1 − 1
m

=

√
m + 1
m − 1

.

The number of such possible clusterings are

|�| =
(km)!
(m!)k ≈ k(km) .

Therefore we get that the total possible number of such clusterings are

kk
(

2
α2−1

)
+1

= 2Ω̃
(

k
α2−1

)
.

�
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Rolim, and David Steurer, eds.), Leibniz International Proceedings in Informatics (LIPIcs), vol. 116,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp. 9:1–9:16. 4

[Che08] Ke Chen, A constant factor approximation algorithm for k-median clustering with outliers, Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA),
SODA ’08, Society for Industrial and Applied Mathematics, 2008, pp. 826–835. 4

[Che09] Ke Chen, On coresets for k-median and k-means clustering in metric and euclidean spaces and their
applications, SIAM J. Comput. 39 (2009), no. 3, 923–947. 1, 4

[CKMN01] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan, Algorithms for facility location
problems with outliers, Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (Philadelphia, PA, USA), SODA ’01, Society for Industrial and Applied Mathematics, 2001,
pp. 642–651. 4

[DF09] S. Dasgupta and Y. Freund, Random projection trees for vector quantization, IEEE Transactions on
Information Theory 55 (2009), no. 7, 3229–3242. 1

[DLS18] Amit Deshpande, Anand Louis, and Apoorv Vikram Singh, (1 + ε)-approximation for min-max k-means
clustering, Manuscript (2018). 4

[DX14] Hu Ding and Jinhui Xu, Sub-linear time hybrid approximations for least trimmed squares estimator and
related problems, Proceedings of the Thirtieth Annual Symposium on Computational Geometry (New
York, NY, USA), SOCG’14, ACM, 2014, pp. 110:110–110:119. 18

[DX15] , A unified framework for clustering constrained data without locality property, Proceedings of
the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA),
SODA ’15, Society for Industrial and Applied Mathematics, 2015, pp. 1471–1490. 4, 16, 18, 19

[FKRS18] Zachary Friggstad, Kamyar Khodamoradi, Mohsen Rezapour, and Mohammad R. Salavatipour, Approx-
imation schemes for clustering with outliers, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (Philadelphia, PA, USA), SODA ’18, Society for Industrial and
Applied Mathematics, 2018, pp. 398–414. 4

[FKS18] Zachary Friggstad, Kamyar Khodamoradi, and Mohammad R. Salavatipour, Exact algorithms and lower
bounds for stable instances of euclidean k-means, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2018, pp. 2958–2972. 3, 4

26



[FMS07] Dan Feldman, Morteza Monemizadeh, and Christian Sohler, A ptas for k-means clustering based on
weak coresets, Proceedings of the Twenty-third Annual Symposium on Computational Geometry, SCG
’07, ACM, 2007, pp. 11–18. 4

[FRS16] Z. Friggstad, M. Rezapour, and M. R. Salavatipour, Local search yields a ptas for k-means in doubling
metrics, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), Oct 2016,
pp. 365–374. 4

[GKL+17] Shalmoli Gupta, Ravi Kumar, Kefu Lu, Benjamin Moseley, and Sergei Vassilvitskii, Local search meth-
ods for k-means with outliers, Proc. VLDB Endow. 10 (2017), no. 7, 757–768. 4

[HPK05] Sariel Har-Peled and Akash Kushal, Smaller coresets for k-median and k-means clustering, Proceedings
of the Twenty-first Annual Symposium on Computational Geometry, SCG ’05, ACM, 2005, pp. 126–
134. 4

[HPM04] Sariel Har-Peled and Soham Mazumdar, On coresets for k-means and k-median clustering, Proceedings
of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC ’04, ACM, 2004, pp. 291–
300. 4

[IKI94] Mary Inaba, Naoki Katoh, and Hiroshi Imai, Applications of weighted voronoi diagrams and randomiza-
tion to variance-based k-clustering: (extended abstract), Proceedings of the Tenth Annual Symposium
on Computational Geometry, SCG ’94, ACM, 1994, pp. 332–339. 4, 18

[JKS14] Ragesh Jaiswal, Amit Kumar, and Sandeep Sen, A simple d2-sampling based ptas for k-means and other
clustering problems, Algorithmica 70 (2014), no. 1, 22–46. 4

[JV01] Kamal Jain and Vijay V. Vazirani, Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and lagrangian relaxation, J. ACM 48 (2001), no. 2, 274–296.
1

[KK10] Amit Kumar and Ravindran Kannan, Clustering with spectral norm and the k-means algorithm, 51th
Annual IEEE Symposium on Foundations of Computer Science (FOCS) 2010, October 23-26, 2010,
2010, pp. 299–308. 5

[KLS18] Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep, Constant approximation for k-median and k-
means with outliers via iterative rounding, Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing (New York, NY, USA), STOC 2018, ACM, 2018, pp. 646–659. 4

[KMN+04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and An-
gela Y. Wu, A local search approximation algorithm for k-means clustering, Computational Geometry
28 (2004), no. 2, 89 – 112, Special Issue on the 18th Annual Symposium on Computational Geometry -
SoCG2002. 4

[KSS04] Amit Kumar, Yogish Sabharwal, and Sandeep Sen, A simple linear time (1+ε)-approximation algorithm
for k-means clustering in any dimensions, 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings, 2004, pp. 454–462. 1, 4

[MMV14] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan, Bilulinial stable instances
of max cut and minimum multiway cut, Proceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2014, pp. 890–906. 3

[MNV12] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan, The planar k-means problem is np-
hard, Theoretical Computer Science 442 (2012), 13 – 21, Special Issue on the Workshop on Algorithms
and Computation (WALCOM 2009). 1

27



[TV10] Matus Telgarsky and Andrea Vattani, Hartigan’s method: k-means clustering without voronoi, Proceed-
ings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Proceedings of
Machine Learning Research, vol. 9, PMLR, 13–15 May 2010, pp. 820–827. 3

[Vat11] Andrea Vattani, K-means requires exponentially many iterations even in the plane, Discrete Comput.
Geom. 45 (2011), no. 4, 596–616. 1

[VDW17] Aravindan Vijayaraghavan, Abhratanu Dutta, and Alex Wang, Clustering stable instances of euclidean
k-means., Advances in Neural Information Processing Systems 30, Curran Associates, Inc., 2017,
pp. 6503–6512. 5, 7

[VKKR03] W. Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani, Approximation schemes
for clustering problems, Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Com-
puting, STOC ’03, ACM, 2003, pp. 50–58. 4

28


	Introduction
	Our results
	Related Work
	Notation

	Geometric Properties of -Center Proximal Instances
	Estimating Means Suffices for Cluster Recovery
	-Outliers Center Proximity

	Sampling
	Balanced Cluster Assumption
	Balanced Mean Distance Assumption
	Proof of Claims


	Lower Bound
	Hardness Result
	On the Size of Possible Clustering


