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Abstract

k-means clustering is NP-hard in the worst case
but previous work has shown efficient algorithms
assuming the optimal k-means clusters are stable
under additive or multiplicative perturbation of
data. This has two caveats. First, we do not know
how to efficiently verify this property of optimal
solutions that are NP-hard to compute in the first
place. Second, the stability assumptions required
for polynomial time k-means algorithms are of-
ten unreasonable when compared to the ground-
truth clusters in real-world data. A consequence
of multiplicative perturbation resilience is center
proximity, that is, every point is closer to the cen-
ter of its own cluster than the center of any other
cluster, by some multiplicative factor α > 1.

We study the problem of minimizing the Eu-
clidean k-means objective only over clusterings
that satisfy α-center proximity. We give a simple
algorithm to find the optimal α-center-proximal
k-means clustering in running time exponential
in k and 1/(α − 1) but linear in the number of
points and the dimension. We define an analo-
gous α-center proximity condition for outliers,
and give similar algorithmic guarantees for k-
means with outliers and α-center proximity. On
the hardness side we show that for any α′ > 1,
there exists an α 6 α′, (α > 1), and an ε0 >
0 such that minimizing the k-means objective
over clusterings that satisfy α-center proximity is
NP-hard to approximate within a multiplicative
(1 + ε0) factor.

1 INTRODUCTION

Popular clustering algorithms optimize objectives such as
k-means, k-median, k-center etc. under the implicit as-
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sumption that this optimization would recover the ground
truth clustering. However, the exact optimization of these
objectives is NP-hard, and the optimal clusters need not
be balanced in size or stable under small additive or mul-
tiplicative perturbation of distances between input points.
Previous work by Balcan and Liang (2016), Kumar and
Kannan (2010) has shown that assuming the optimal so-
lutions are balanced and stable, such NP-hard objectives
can be optimized exactly in polynomial time . However,
there are two caveats. First, when the assumption is about
the optimal solution of an NP-hard objective, we do not
know how to test this property efficiently for an input in-
stance. Second, the stability assumptions like that of Bal-
can and Liang (2016), required to get these exact poly-
nomial time clustering algorithms are often unreasonable,
when compared to the ground truth in practice, but at the
same time, these assumptions cannot be relaxed due to
almost-matching NP-hardness results as shown by Ben-
David and Reyzin (2014).

Given a set of n points X = {x1, x2, . . . , xn} in a metric space
with the underlying metric dist(·, ·), and a positive integer k,
the k-means objective is to find centers µ1, µ2, . . . , µk in the
given metric space so as to minimize the sum of squared
distances of all the points to their nearest centers, respec-
tively, i.e., minimize

∑n
i=1 min16 j6k dist(xi, µ j)2. This re-

sults in clusters C1,C2, . . . ,Ck, where the cluster C j con-
sists of all the points xi whose nearest center is µ j. Aloise
et al. (2009); Dasgupta and Freund (2009); Mahajan et al.
(2012) showed that optimization of the k-means objective
is NP-hard in the worst case, even for Euclidean k-means
with k = 2 or d = 2 . Euclidean k-means is also known
to be NP-hard to approximate within some fixed constant
c > 1, shown by Awasthi et al. (2015). Therefore, it dif-
ficult to efficiently verify any non-trivial property such as
stability of the optimal k-means solution.

For a given α > 1, an instance of k-means clustering is
called α-multiplicative perturbation resilient, if perturbing
the inter-point distances within a multiplicative factor of
α does not change the optimal k-means clusters. Awasthi
et al. (2012) showed that for center-based objectives like k-
means and k-median, 3-multiplicative perturbation resilient
instances can be solved exactly in polynomial time. Angel-
idakis et al. (2017) improved this result to 2-multiplicative
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perturbation resilient instances. Angelidakis et al. (2017)
show that α-multiplicative perturbation resilience implies a
geometric property called α-center proximity, which they
exploit in their algorithm. Independently, recent work by
Friggstad et al. (2018) gives a local-search algorithm for
solving α-multiplicative perturbation resilient instances of
discrete k-means; in these instances, the optimal k-means
solution satisfies α-center-proximity. The algorithm due
to Friggstad et al. has running time O

(
ndO(d)(α−1)−O(d/(α−1))

k
)
,

where the polynomial in n has a large exponent that is itself
exponential in the dimension d.
Definition 1.1 (α-Center Proximity). Let C1,C2, . . . ,Ck

be a clustering of X with the centers µ1, µ2, . . . , µk and
the underlying metric dist(·, ·). We say that the clustering
C1,C2, . . . ,Ck of X satisfies α-center proximity if for all
i , j and x ∈ Ci, we have dist(x, µ j) > α dist(x, µi). We say
that a clustering with its corresponding centers is α-center
proximal if it satisfies the α-center proximity property.

Ben-David and Reyzin (2014) point out that when α is
not close to 1, α-multiplicative perturbation resilience is an
unreasonable assumption compared to the ground truth in
practice. At the same time, hardness results shown by Ben-
David and Reyzin (2014); Balcan et al. (2016) are a barrier
in obtaining polynomial time algorithms even for α < 2.
Ackerman and Ben-David (2009) introduce the notion of
additive perturbation resilience. Assuming that the optimal
k-means clusters do not change when the inter-point dis-
tances are perturbed within an additive ε diam (X), their al-
gorithm computes the optimal k-means solution in nO(k/ε2)

time. The dependence on diameter is undesirable because it
can grow arbitrarily even in the presence of a single outlier.

To avoid any dependence on diameter, Vijayaraghavan
et al. (2017) extend the definition of ε-additive perturba-
tion resilience to assume that the optimal k-means clus-
ters do not change if we move the points by at most ε ·
maxi, j

∥∥∥µi − µ j

∥∥∥. For these instances, they show a geomet-
ric property called angular separation between the optimal
clusters, and use a modified perceptron algorithm to solve
2-means optimally on these instances in time dnpoly(1/ε).
We observe (Section 2 and Figure 1) that α-multiplicative
perturbation resilience for Euclidean k-means instances
implies a similar angular separation. For k-means on
these instances, the running time of Vijayaraghavan et al.
(2017) is dnO(k2/ε8). To get a faster algorithm, they de-
fine a stronger notion of stability called (ρ,∆, ε)-separation,
where in addition to the angular separation there is a mar-
gin of ρ between any pair of clusters. Their algorithm op-
timally solves any (ρ,∆, ε)-separated instance of Euclidean
k-means with β-balanced clusters in time Õ(n2kd), when-
ever ρ = Ω(∆/ε2 + β∆/ε). They also show that their al-
gorithm is robust to outliers as long as the fraction η of
outliers satisfies the following equation

ρ = Ω

(
∆

ε2

(
wmax + η

wmin − η

))
,

where wmax and wmin are the fraction of points in the largest
and the smallest optimal cluster, respectively.

Given any set of cluster centers, the outliers are the last few
points when we order all the points in non-decreasing or-
der of their distances to the nearest centers, respectively.
For the set of outliers to be unambiguous and stable under
small perturbations to the input data, intuitively one needs
a multiplicative gap between the distances of inliers and
outliers to their respective centers. So we define an analo-
gous center proximity property for clustering with outliers
as follows.

Definition 1.2 (α-Center Proximity with Outliers). Con-
sider a k-means instance on the set of points X with under-
lying metric dist(·, ·), and an integer parameter z. We define
the distance of a point x to a set or a tuple (µ1, . . . , µn) as
mini ‖x − µi‖. Given any centers µ1, µ2, . . . , µk, let Z ⊆ X
be the subset of the farthest z points in X based on their
distances to the nearest center, and let C1,C2, . . . ,Ck be
the clustering of X \ Z where C j consists of the points in
X \ Z that have µ j as their nearest center. Such a clus-
tering C1,C2, . . . ,Ck of X \ Z with Z as outliers satisfies
α-center proximity, if for all i , j and x ∈ Ci, we have
dist(x, µ j) > α dist(x, µi), and moreover, for all i, j ∈ [k],
x ∈ Ci and y ∈ Z we have dist(y, µ j) > α dist(x, µi).

Center proximity is a desirable property for the output of
any clustering algorithm used in practice. Balanced clus-
ters of size Ω(n/k) is another desirable property to avoid
small, meaningless clusters. Motivated by this, we study
the problem of minimizing the k-means objective for given
center-proximity and balance parameters.

There are many relevant work on stability including Ben-
David (2015) that we discuss in the supplementary material
due to the space constraints.

1.1 Our results

Unlike previous work, we do not assume that an optimal
solution for the k-means objective on the given input satis-
fies α-center proximity. There is no easy way to algorith-
mically verify this promise. In fact, as we show later in this
paper, there are instances where the optimal k-means solu-
tions satisfy α-center proximity, for a small constant α > 1,
but the k-means problem still remains NP-hard. Therefore,
we define our problem as finding a clustering of the small-
est k-means cost among all the clusterings that satisfy α-
center proximity.

We show that there exists a constant c > 1 such that k-
means remains NP-hard to approximate within a multi-
plicative factor c, even on the instances where an optimal
k-means solution satisfies α-center proximity and is bal-
anced, i.e., each optimal cluster has size Ω(n/k). More-
over, for α close to 1, there may not be a unique optimal
k-means solution that satisfies α-center proximity and is
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balanced. In fact, given any α > 1, there exists an instance
with 2Ω(k/(α−1)) such optimal k-means solutions that satisfy
α-center proximity and are balanced.

For any α > 1, we show an interesting geometric property
(Proposition 2.2 and Figure 1) for clusterings that satisfy α-
center proximity, namely, any pair of disjoint clusters must
lie inside two disjoint balls. The centers of these balls need
not be at the means of the clusters, allowing the clusters
to be arbitrarily large (see Figure 1). The degenerate case
for α = 1 is two balls of infinite radii touching at their
separating hyperplane. We note that a similar geometric
property in a different context was observed by Telgarsky
and Vattani (2010). Telgarsky and Vattani (2010) defined
a version of Harting’s method, which does updates based
on the value α. The value of α in their case is defined in
terms of the size of the clusters. Although in a different
context, the geometric insight they achieved is the same as
in Proposition 2.2.

We show the following algorithmic result for minimizing
the k-means objective over the clusterings that are balanced
and satisfy α-center proximity.
Theorem 1.3. For any α > 1, a balance parameter ω > 0,
and given any set of n points in �d , we can exactly find
a clustering of the least k-means cost among all solutions
that satisfy α-center proximity and are balanced, i.e., each
cluster has size at least ωn/k. Our algorithm finds such an
optimal clustering in time O(2poly(k/ω(α−1)) nd), with con-
stant probability.
Remark 1.4. Our algorithm as stated requires α as an in-
put. In practice, when the value of α is not available, we can
invoke our algorithm with a sequence of decreasing values
of α till a “satisfactory” clustering is found.

Since k-means is hard to approximate within some fixed
constant c > 1, even on instances where the optimal solu-
tions are balanced and satisfy α-center proximity, the expo-
nential running time in our algorithm is unavoidable. We
show the following hardness result:
Theorem 1.5. For any 2 > α′ > 1 there exists an α 6 α′,
(α > 1), constants ε > 0, and ω > 0, such that it is NP-hard
to approximate the optimal α-center proximal Euclidean k-
means, where the size of each cluster is at least ωn/k, to a
factor better than (1 + ε).

The running time of our algorithm is exponential only in
the number of clusters k, the balance parameter ω and the
center proximity parameter α but it is linear in the number
of points n and the dimension d.

We show a similar exact algorithm for minimizing the k-
means objective with z outliers, where the minimization
is only over clusterings that satisfy the α-center proximity
with outliers and are balanced.
Theorem 1.6. For any α > 1, a balance parameter ω > 0,
given any set of n points in �d and an outlier parameter

z ∈ [n], we can exactly find a clustering of the least k-
means cost among all solutions that satisfy α-center prox-
imity with z outliers and are balanced, i.e., each cluster
has size at least ωn/k. Our algorithm finds such an op-
timal clustering in time O(2poly(k/ω(α−1)) nd), with constant
probability.

In fact, Theorem 1.3 and Theorem 1.6 hold for any cluster-
ing objective as long as the centers used to define α-center
proximity are the means or centroids of the clusters.

In the case when most points satisfy α-center proximity and
form balanced clusters, we show an algorithm which out-
puts a list of clusterings, such that one of the clusterings
corresponds to the case where the points which satisfy α-
perturbation resilience are correctly clustered.
Theorem 1.7. For any α > 1, a balance parameter
ω > 0, given any set of n points in �d and a parameter
β ∈ [n], we can output a list, of k-means clustering, of size
O

(
2poly(k/ω(α−1))

)
such that one of them is the minimum cost

clustering among all solutions that satisfy α-center prox-
imity without β points and are balanced, i.e., each cluster
has size at least ωn/k. Our algorithm finds such an op-
timal clustering in time O(2poly(k/ω(α−1)) nd), with constant
probability.

We also show exact algorithm for minimizing the k-means
objective over clustering that satisfy α-center proximity but
no balance requirement. However, the running time of our
algorithm depends exponentially on the ratio of the dis-
tances between the farthest and the closest pair of means.
Theorem 1.8. For any α > 1 and given any set of n points
in �d, and a parameter γ, where

γ >
maxi, j ‖µi − µ j‖

mini, j ‖µi − µ j‖
,

for the means µ1, µ2, . . . , µk of the optimal solution, we can
exactly find a clustering of the least k-means cost among
all solutions that satisfy α-center proximity. Our algorithm
finds such an optimal clustering in time O(2poly(kγ/(α−1)) nd),
with constant probability.

We also show that the optimal α-center proximal clustering
with balanced cluster need not be unique. In fact, the num-
ber of possible optimal α-center proximal clustering with
balanced cluster can be exponential in k and 1/(α − 1). We
show the following result:
Proposition 1.9. For any 2 > α′ > 1, and any k ∈ �, there
exists α 6 α′ (and α > 1), n, d and a set of points X ∈ �d

such that such that the number of possible optimal α-center
proximal clusterings, where the size of each cluster is n/k
(ω = 1) is 2Ω̃(k/(α2−1)).

1.2 Notation

We use d ∈ � to denote the dimension of the ambient space.
For a vector v ∈ �d, we use ‖v‖ to denote its Euclidean
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norm. We use x1, . . . , xn ∈ �
d to denote the points in the

instance, and we use X to denote the set of these points. For
any set of points S , we define its diameter as diam (S ) def

=

maxu,v∈S ‖u − v‖.

2 GEOMETRIC PROPERTIES OF
α-CENTER PROXIMAL INSTANCES

We will assume Euclidean metric throughout the paper.

Definition 2.1. Suppose there exists a clustering C1, ...,Ck

of X that is α-center proximal. Let Ci and C j be two clusters
with µi and µ j as their respective means. We define the

vector µ̂i, j
def
=

α2µi−µ j

α2−1 and ri, j
def
= α

α2−1

∥∥∥µi − µ j

∥∥∥. Let Ci, j

denote the ball centered at µ̂i, j with radius ri, j. Let pi, j
def
=

(µ̂i, j + µ̂ j,i)/2 and Di, j
def
=

∥∥∥µ̂i, j − µ̂ j,i

∥∥∥. Let u def
=

(µ̂i, j−µ̂ j,i)

‖µ̂i, j−µ̂ j,i‖
denote the unit vector along the line joining µ̂i, j and µ̂ j,i,
and let di, j denote the distance between the closest points
in Ci, j and C j,i.

We note that Balcan and Liang (2016) show in their Lemma
3.3 that for a pair of clusters Ci,C j in a α-center proximal
clustering, and α > 1 +

√
2, the clusters are contained in

disjoint balls around their centers µi and µ j respectively.
We show in the following proposition that for any α > 1,
and for a pair of clusters Ci,C j in a α-center proximal clus-
tering, the points in the clusters are contained in disjoint
balls of radius ri j and r ji centered around µ̂i, j and µ̂ j,i re-
spectively. See Figure 1 and the supplementary material
for more details.

Proposition 2.2 (Geometric implication of α-center prox-
imity property). Let X satisfy the α-center proximity prop-
erty (for any α > 1) and let Ci and C j be two clusters in its
optimal solution. Any point x ∈ Ci, satisfies

∀x ∈ Ci,
∥∥∥x − µ̂i, j

∥∥∥ < ri, j . (1)

Remark 2.3. The line joining the respective centers of the
ball passes through the mean of the clusters as well. Refer
to the Figure 1 for getting an insight into the geometric
structure defined by the equation 1. We refer the reader to
figure 1a of Vijayaraghavan et al. (2017) for insight into the
geometry of ε-additive perturbation resilient instance, and
to notice the similarity between the geometric structures of
instances satisfying the two stability properties.

2.1 Estimating Means Suffices for Cluster Recovery

In this section we assume that we can get access to a set
of points {µ̃1, . . . , µ̃k} such that, ‖µ̃i − µi‖ 6 2δri, j for all
j ∈ [k] and for each i ∈ [k], with probability some constant
probability. We will show how to obtain such points in
Section 3.

Algorithm 1: α-center proximal k-means clustering with
balanced clusters
Input: a list L of k-tuples, where there exists at least one

tuple (µ̃1, . . . , µ̃k) such that for any i ∈ [k],
‖µ̃i − µi‖ 6 2δri, j for all j ∈ [k], a number α > 1,
ω > 0

Output: An α-center proximal clustering of minimum
cost where the size of each cluster is at least ωn/k.

1: Initialize (µ̃(p)
1 , µ̃

(p)
2 , . . . , µ̃

(p)
k )← (0̄, 0̄, . . . , 0̄)

2: cost←
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(0)
j

∥∥∥∥2

3: for a tuple µ̃(q) ∈ L do
4: for j = 1 to k do
5: C(q)

j = {xi : µ̃(q)
j is the nearest center to xi}

6: end for
7: if

∑n
i=1 min16 j6k

∥∥∥∥xi − µ̃
(q)
j

∥∥∥∥2
< cost then

8: if C(q)
1 , . . . ,C(q)

k all have size at least ωn
k

and satisfy α-center proximity then
9: (µ̃(p)

1 , µ̃
(p)
2 , . . . , µ̃

(p)
k )← (µ̃(q)

1 , µ̃
(q)
2 , . . . , µ̃

(q)
k )

10: cost =
∑n

i=1 min16 j6k

∥∥∥∥xi − µ̃
(q)
j

∥∥∥∥2

11: end if
12: end if
13: end for
14: for i = 1 to n do
15: Label(i)← argmin

16 j6k

∥∥∥∥xi − µ̃
(p)
j

∥∥∥∥
16: end for

The following proposition shows that to cluster a point to
their desired cluster, an additive approximation to the cen-
ter also works (deciding based on the proximity of the data
points to the approximate center).

Proposition 2.4. Suppose we have a set of points
{µ̃1, . . . , µ̃k} such that for any i ∈ [k], ‖µ̃i − µi‖ 6 2δri, j

for all j ∈ [k], then we can find the optimal clustering
C1, . . . ,Ck.

For appropriate values of δ, i.e., δ 6 (α−1)2

8α , we show in the
supplementary material that a point belonging to a cluster is
closer to its approximate mean than the approximate mean
of some other cluster. This observation follows from the
Figure 1.

The proof of Theorem 1.3 and Theorem 1.8 follows from
the above observation combined with the fact that we can
indeed get {µ̃1, . . . , µ̃k} as above, which we show in the Sec-
tion 3. For the complete details of the proof, refer to the
supplementary material.

2.2 α-Outliers Center Proximity

In this section we assume that we can get access to a set of
points {µ̃1, . . . , µ̃k} such that, ‖µ̃i − µi‖ 6 δ diam (Ci) for all
i ∈ [k], with probability some constant probability. We will
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Di, j =
(
α2+1
α2−1

) ∥∥∥µi − µ j

∥∥∥

µ̂i, j µi
µ̂ j,iµ j

Di, j

α2+1

(
αDi, j

α2+1

)
= ri, j

θ

θ = tan−1
(

2α
α2−1

)
u

di, j =
(α−1)2

α2+1 Di, j

pi, j =
µi+µ j

2
Ci, j C j,i

Figure 1: Geometric implication of α-center proximity property.

show how to obtain such points in Section 3.1

We first note that, by our Definition 1.2, outliers are the
farthest most points in the data-set, where distance is mea-
sured from the set of optimal centers µ1, . . . , µk.

Lemma 2.5. The Definition 1.2 implies that for any q ∈ Z

∥∥∥q − µ j

∥∥∥ > α diam (Ci) + diam
(
C j

)
4

, (∀i, j ∈ [k]) .
(2)

We show that with respect to the approximate means as
well, the outliers are the farthest set of points for values of
δ as in the previous subsection.

Lemma 2.6. For any q ∈ Z and x ∈ Ci, we have that
‖x − µ̃i‖ <

∥∥∥q − µ̃ j

∥∥∥, for i, j ∈ [k].

Therefore the proof of the Theorem 1.6 is similar to the
proof of Theorem 1.3 and Theorem 1.8 combined with
the above observation. The case where most points sat-
isfy α-center proximity and form balanced clusters, Propo-
sition 3.1 suggests an algorithm which outputs a list of
clusterings, such that one of the clusterings corresponds to
the case where the points which satisfy α-perturbation re-
silience are correctly clustered. From this observation the
proof of Theorem 1.7 follow. See the supplementary mate-
rial for full details of the proof.

3 SAMPLING

3.1 Balanced Cluster Assumption

The following proposition works for general A1, . . . , Ak,Z.
For our case, Ai corresponds to cluster Ci, and Z corre-
sponds to the set of outliers.

Proposition 3.1. Fix δ, β1 ∈ (0, 1). Let X be a set of points
in �d, partitioned into k + 1 sets A1, . . . , Ak,Z such that for
each i, |Ai| > ω |X| /k. Let µi denote the mean of Ai, i.e.,
µi

def
=

(∑
v∈Ai

v
)
/ |Ai|. There exists a randomized algorithm

which outputs the set
{
(µ̃(p)

1 , . . . , µ̃
(p)
k ) : p ∈ [T ]

}
satisfying

�

[
∃p ∈ [T ] s.t.

∥∥∥∥µ̃(p)
i − µi

∥∥∥∥ 6 δ diam (Ai)∀i ∈ [k]
]
> 1−β1 ,

in O (T ) iterations where T < (k + 1)
16k2

δ2β1
log

(
2k
β1

)
.

The proof of the above proposition proceeds using the ob-
servation from Barman (2015), which says that with con-
stant probability, one can get close to the mean of a set
of points with bounded diameter, by randomly sampling
a constant number of points. Since we assume that the de-
sired clustering is balanced (with the balance parameter ω),
we can uniformly sample a constant number of points and
with a constant probability we will get some points from
all the clusters. Using this, we can get close to the actual
means, thus proving the above proposition. The proposi-
tion directly gives us an algorithm for obtaining such point
in time O(2poly(k/ω(α−1)) nd). We pick a constant number of
points, and go over all k partitions of those points (k + 1
partitions in case of outliers) and one of the partitions is the
desired clustering. For the complete details of the proof,
see the supplementary material.

3.2 Balanced Mean Distance Assumption

Assume that the unknown α-center proximal k-means
clustering of lowest cost is {C1, . . . ,Ck}, with means
{µ1, . . . , µk} respectively. In this section we assume that the
ratio of the maximum pairwise distance between the means
to the minimum pairwise distance between the means is
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bounded by a factor γ∗. We assume that we are given an
upper bound γ on γ∗. More formally, we are given a γ,
such that

γ >
maxi, j

∥∥∥µi − µ j

∥∥∥
mini, j

∥∥∥µi − µ j

∥∥∥ .
Proposition 3.2. Fix δ ∈ (0, 1). Let X be a set of points
in �d, partitioned into k sets C1, . . . ,Ck, and let µi de-
note the mean of Ci, i.e., µi

def
=

(∑
v∈Ci

v
)
/ |Ci|, such that

γ = maxi, j

∥∥∥µi − µ j

∥∥∥/mini, j

∥∥∥µi − µ j

∥∥∥. Let ε 6
(

2δ
γk

)2
. The

Algorithm 2 constructs O
(
2poly( k

ε )
)

k-tuples. With constant
probability, there exists at least one k-tuple (µ̃1, . . . , µ̃k) sat-
isfying

‖µ̃i − µi‖ 6 2δri, j for all j ∈ [k] and for each i ∈ [k] .

Moreover, the algorithm runs in time O
(
2poly( k

ε )nd
)
.

The proof of the Proposition 3.2 is similar to the proof of
Lemma 3.3 of Ding and Xu (2015), with minor modifica-
tions, keeping our application in mind.

Using the geometric properties of α-center proxi-
mal instances (Figure 1) we define radmin (X) def

=
α

α2−1 mini, j

∥∥∥µi − µ j

∥∥∥. The proposition implies that the ra-
dius of the largest Ci, j ball (for some i, j ∈ [k]) is at most
γ radmin (X), ie.,

ri, j

γ
6 radmin (X) 6 ri, j for i, j ∈ [k] . (3)

Proposition 3.3. Let R def
= maxi, j∈[n]

∥∥∥xi − x j

∥∥∥, and let

radmin (X) def
= α

α2−1 mini, j

∥∥∥µi − µ j

∥∥∥. Then,

radmin (X) ∈
[(

α

(α + 1)2

)
R
γ
,
(

α

α2 − 1

) R
γ

]
. (4)

The proof of the proposition follows from the Figure 1. Re-
fer to the supplementary material for complete details.

The Algorithm 3 is almost same as the Algorithm Peeling-
and-Enclosing-Tree of Ding and Xu (2015), with a minor
variation in step 2(b).

We note a set of preliminary lemmas and definition which
we will need for the proof of Proposition 3.2.

Definition 3.4 (Simplex). A k-simplex is a k-dimensional
polytope which is the convex hull of its k + 1 vertices.
More formally, suppose the k + 1 points u0, . . . , uk ∈ �

k

are affinely independent, Then, the simplex determined by
them is the set of points

V =

θ0u0 + · · · + θkuk

∣∣∣∣∣ k∑
i=0

θi = 1, θi > 0 ∀i ∈ [k]

 .

Lemma 3.5 (Lemma 1, Inaba et al. (1994)). Let S be a
set of n points in �d, T be a randomly selected subset of

Algorithm 2: Algorithm Peeling-and-Enclosing

Input: X = {x1, . . . , xn} in �d, k > 2, α, γ.
Output: A list L containing k-tuples, where a k-tuple

contains k mean points.

1: Set ε =
(

(α−1)2k
4αγ(k+1)

)2
.

2: for i = 0 to log(1+ε)

(
α+1
α−1

)
do

3:
3: ζ = (1 + ε)i

(
α

(α+1)2

)
R
γ

.
4: Run Algorithm Peeling-and-Enclosing-Tree.
5: Let Ti be the output tree.
6: end for
7: For each root-to-leaf path of every Ti, build a k-tuple

candidate using the k points associated with the path.
8: Append the k-tuple to the list L.

size t from S , and µ(S ), µ(T ) be the mean points of S and T
respectively. With probability 1−η, ‖µ(S ) − µ(T )‖2 6 1

ηtσ
2,

where σ2 = 1
n
∑

s∈S ‖s − µ(s)‖2 and 0 6 η 6 1.

Lemma 3.6 (Lemma 4, Ding and Xu (2014)). Let Γ be a
set of elements, and S be a subset of Γ with |S |

|Γ|
= α for

some α ∈ (0, 1). If we randomly select
t ln t

η

ln(1+α) = O
(

t
α

ln t
η

)
elements from Γ, then with probability at least 1 − η, the
sample contains t or more elements from S for 0 < η < 1
and t ∈ �+.

Lemma 3.7 (Lemma 2.3 (Simplex Lemma II), Ding and
Xu (2015)). Let Q be a set of points in �d with a partition
of Q = ∪

j
l=1Ql and Ql1 ∩ Ql2 = ∅ for any l1 , l2. Let o

be the mean point of Q, and ol be the mean point of Ql for
1 6 l 6 j. Let σ2 = 1

|Q|
∑

q∈Q ‖q − o‖2. Let {o′1, . . . , o
′
j} be j

points in �d such that
∥∥∥ol − o′l

∥∥∥ 6 L for 1 6 l 6 j, L > 0,
andV′ be the simplex determined by {o′1, . . . , o

′
j}. Then for

any 0 < ε 6 1, it is possible to construct a grid of size
O

(
(8 j/ε) j

)
inside V′ such that at least one grid point τ

satisfies the inequality ‖τ − o‖ 6
√
εσ + (1 + ε)L.

Lemma 3.8 (Lemma 2.2, Ding and Xu (2015)). Let Q be
a set of points in �d, and Q1 be its subset containing α |Q|
points for some 0 < α 6 1. Let o and o1 be the mean points

of � and Q1, respectively. Then ‖o − o1‖ 6
√

1−α
α
σ, where

σ2 = 1
|Q|

∑
q∈Q ‖q − o‖2.

Notations: Let OPT = {C1, . . . ,Ck} be the k unknown
optimal clusters for the lowest cost α-center proximal k-
means objective, with means µ j. W.l.o.g. we assume that
|C1| > . . . > |Ck |.

The following lemma is similar to the Lemma 3.3 of Ding
and Xu (2015) with minor modifications.

Lemma 3.9. Among all the points generated by the Algo-
rithm 3, with constant probability, there exists at least one
tree, Ti, which has a root-to-leaf path with each of its nodes
v j at level j, (1 6 j 6 k) associating with a point pv j and
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Algorithm 3: Algorithm Peeling-and-Enclosing-Tree
Input: ζ and an instance of k-means X.
Output: a tree T .

1: Initialize T as a single root node v associated with no
point.

2: Recursively grow each node v in the following way
3: if the height of v is already k then
4: v is a leaf.
5: else
6: Let j be the height of v. Build the radius candidate

set R =

{
1+l ε2

2(1+ε) j21/2 √εζγ
∣∣∣∣0 6 l 6 4 + 2

ε

}
.

7: for each r ∈ R do
8: Let

{
pv1 , . . . , pv j

}
be the j points associated with

nodes on the root-to-v path.
9: For each pvl , 1 6 l 6 j, construct a ball B j+1,l

centered at pvl and with radius r.
10: Sample s = 8k3

ε9 ln k2

ε6 points uniformly from(
X \ ∪ j

l=1B j+1,l

)
. Compute the means of all

subsets of this sample, denote them by
Π = {π1, . . . , π2s−1}.

11: For each πi ∈ Π, construct two simplices with
vertices

{
pv1 , . . . , pv j , πi

}
and

{
pv1 , . . . , pv j

}
,

respectively. For each simplex, build a grid with
size O

(
(32 j/ε) j

)
inside it and each of its 2 j

possibly-degenerated sub-simplices.
12: Take all the above 2s+ j (32 j/ε) j grid points inside

2s simplices. For each grid point, add one child
to v, associate it with the grid point.

13: end for
14: end if
15: Output T .

satisfying the inequality∥∥∥pv j − µ j

∥∥∥ 6 εγ radmin (X) + (1 + ε) j
√
εγ radmin (X) . (5)

Algorithm and Proof Overview: We will give a high
level idea of the algorithm and the proof. At each search-
ing step, the algorithm performs a ‘sphere peeling’ and
‘simplex enclosing’ step, to generate k approximate mean
points for the clusters. Initially the algorithm uses a ran-
dom sampling technique to find an approximate mean pv1

for C1. This can be done as |C1 |

n > 1/k, and hence we can
sample. Suppose we have found the j approximate means
for some j ∈ {1, 2, ..., k − 1}. Therefore, at the ( j + 1)th iter-
ation, the algorithm already has approximate mean points
mean points pv1 , . . . , pv j for C1, . . . ,C j. It is not clear how
to distinguish points which belong to C1, . . . ,C j from those
which belong to C j+1. Also, the number of points in the
cluster C j+1 could be small, it is tough to obtain a signifi-
cant fraction of such points using random sampling. There-
fore, the idea used is to seperate the points in C j+1 us-
ing j peeling spheres, B j+1,1, . . . ,B j+1, j, centered at the j

approximate mean points respectively and with radius ap-
proximately being radmin (X). Note that B j+1,1, . . . ,B j+1, j
can have some points from C j+1. Let P j+1 be the set of
unknown points in C j+1 \

(
∪

j
l=1B j+1,l

)
. The algorithm con-

siders two cases, a)
∣∣∣P j+1

∣∣∣ is large and b)
∣∣∣P j+1

∣∣∣ is small.
For the case a) when

∣∣∣P j+1
∣∣∣ is large, we can sample points

from P j+1 using random sampling, and get an approximate
mean π of P j+1, and then construct a simplex determined
by π, pv1 , . . . , pv j to contain the ( j + 1)th mean point, using
Lemma 3.7. This is because, C j+1 ∩ B j+1,l, l ∈ [ j] can be
seen as a partition of C j+1 whose approximate mean is pvl ,
thus the simplex lemma II applies. For case b) where

∣∣∣P j+1
∣∣∣

is small, it directly constructs the simplex determined by
pv1 , . . . , pv j , and searches for the approximate mean point
of C j+1 in the grid. We can establish that C j+1 ∩ B j+1,l,
l ∈ [ j] can be seen as a partition of C j+1 whose approxi-
mate mean is pvl , and from the Lemma 3.8, which roughly
says that even if we remove a small number of points from
a cluster, its new mean remains close to the original mean.

Setting ε 6
(

2δk
γ(k+1)

)2
in the equation (5), we get statement

of the Proposition 3.2. For complete details of the proof,
refer to the supplementary material.

4 LOWER BOUND

4.1 Hardness Result

Our hardness result immediately follows from Awasthi
et al. (2015). We will show a reduction from Vertex-Cover
problem to the α-center proximal k-means clustering with
balanced clusters. The Vertex-Cover problem can be stated
as follows: Given an undirected graph G = (V, E), choose a
subset S of vertices with minimum |S |, such that S is inci-
dent on every edge of the graph. Awasthi et al. (2015) show
the following lemma:

Lemma 4.1 (Corollary 5.3, Awasthi et al. (2015)). Given
any unweighted triangle-free graph G with bounded de-
grees, it is NP-hard to approximate Vertex-Cover within
any factor smaller than 1.36.

Theorem 4.2. There exists constants α > 1, ω > 0, ε > 0,
such that there is an efficient reduction from instances of
Vertex-Cover on triangle-free graphs of bounded degree to
those of α-center proximal instances of Euclidean k-means
clustering, where the size of each cluster is at least ωn/k,
that satisfies the following properties:

(i) if the Vertex-Cover instance has value k, the optimal
α-center proximal k-means clustering where the size
of each cluster is at least ωn/k, has cost at most m−k.

(ii) if the Vertex-Cover instance has value at least k(1+ε),
then the optimal α-center proximal k-means cluster-
ing, where the size of each cluster is at least ωn/k,
has a cost at least m − (1 −Ω(ε))k.
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Table 1: This table shows the fraction of points satisfying α > threshold value, for k++, GT, k++-pruned, and GT-pruned
clustering, for various values of the threshold.

Dataset α > 1.04 α > 1.06 α > 1.08 α > 1.1 α > 1.12
Wine (k++) 1 0.994 0.989 0.989 0.978

Wine (k++ - pruned) 1 1 1 1 1
Wine (GT) 1 0.994 0.989 0.989 0.978

Wine (GT - pruned) 1 1 1 1 1
Iris (k++) 0.993 0.993 0.993 0.98 0.98

Iris (k++ - pruned) 1 1 1 1 1
Iris (GT) 0.993 0.993 0.987 0.987 0.98

Iris (GT - pruned) 1 1 1 1 1
Banknote Auth. (k++) 0.989 0.985 0.98 0.976 0.97

Banknote Auth. (k++ - pruned) 0.999 0.999 0.998 0.997 0.992
Banknote Auth. (GT) 0.989 0.985 0.98 0.976 0.97

Banknote Auth. (GT - pruned) 0.999 0.999 0.998 0.997 0.992

Table 2: This table shows the fraction of points satisfying α > threshold value, for k++, GT, k++-pruned, and GT-pruned
clustering, for various values of the threshold.

Dataset α > 1.017 α > 1.019 α > 1.021 α > 1.023 α > 1.025
Letter Rec. (k++) 0.966 0.962 0.957 0.952 0.948

Letter Rec. (k++ - pruned) 0.995 0.994 0.994 0.994 0.994
Letter Rec. (GT) 0.964 0.96 0.954 0.949 0.945

Letter Rec. (GT - pruned) 0.995 0.994 0.994 0.994 0.993

The proof of the Theorem 1.5 follows immediately from
Theorem 4.2 and Lemma 4.1 combined together. See the
supplementary material for a more detailed proof.

4.2 On the Size of Possible Clustering

Our construction is similar to the instance constructed by
Bhattacharya et al. (2018) in their Theorem 2, thereby prov-
ing the Proposition 1.9. Refer to the supplementary mate-
rial for complete details.

5 EXPERIMENTS

We try to calculate the value of α for multiple real-world
labeled datasets. We consider two possible clusterings of a
dataset: ‘k++’, and ‘GT’. The k++ clustering of a dataset
corresponds to the cluster returned by the smallest k-means
cost of 1000 trials of Lloyd’s algorithms on the unlabeled
(by removing the labels) dataset using k-mean++ initializa-
tion. The GT clustering of a dataset corresponds to finding
the mean of a cluster using the labels, and then run Lloyd’s
algorithm to get the clustering.

We also look at the pruned versions of the dataset (‘k++

- pruned’, ‘GT - pruned’). The pruning is done by fixing
a value for α. We remove points from the dataset which
do not satisfy the α proximity condition and recompute the
means of the pruned clusters. There will still be some frac-
tion of points not satisfying the α proximity condition in
the pruned dataset, however we observe that this fraction

has decreased. We report the fraction of the points satisfy-
ing the α proximity condition in the Table 1 and Table 2.

The experiments were run on four labeled datasets from the
UCI Machine Learning Repository: Wine (n = 178, k =

3, d = 13), Iris (n = 150, k = 3, d = 4), Bank Authenti-
cation (n = 1372, k = 2, d = 4), and Letter Recognition
(n = 20, 000, k = 26, d = 16).
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