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Abstract

In this paper we propose a Bayesian method
for estimating architectural parameters of
neural networks, namely layer size and net-
work depth. We do this by learning con-
crete distributions over these parameters.
Our results show that regular networks with
a learnt structure can generalise better on
small datasets, while fully stochastic net-
works can be more robust to parameter ini-
tialisation. The proposed method relies on
standard neural variational learning and, un-
like randomised architecture search, does not
require a retraining of the model, thus keep-
ing the computational overhead at minimum.

1 INTRODUCTION

One of the reasons for the success of modern
deep learning models is attributed to the devel-
opment of powerful architectures that exploit cer-
tain regularities in the data (e.g., convolutional
networks such as [Simonyan and Zisserman, 2014,
Szegedy et al., 2015]) and alleviate issues with numer-
ical optimisation (e.g., learning an identity mapping
in very deep networks [He et al., 2016]). In fact, it
has been shown [Saxe et al., 2011] that architecture
alone can improve representation learning even with
randomly initialised weights.

Traditionally, the architecture of a neural network is
treated as a set of static hyperparameters, which are
tuned based on an observed performance on a held-out
validation set. This viewpoint, however, requires that
a network is initialised, trained until convergence and
evaluated at each modification of the architecture—a
time-consuming procedure which does not allow for an
efficient, exhaustive hyperparameter search.
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In this work, we propose a scalable Bayesian method
to structure optimisation by treating hyperparame-
ters, such as the layer size and network depth, as ran-
dom variables whose parameterised distributions are
learnt together with the rest of the network weights.
Taking a Bayesian probabilistic approach to architec-
ture learning is good for two main reasons: (i) the
posterior distribution over the architectural parame-
ters reveals whether or not the model has the capac-
ity to represent the training data well; and (ii) im-
posing prior beliefs over the parameters naturally al-
lows for expert knowledge to be incorporated into the
model, without imposing any unbreakable constraints
as a side effect. However, obtaining the correct poste-
rior distribution in closed form is not possible due to
the highly nonlinear nature of deep neural networks;
also residing to a Markov Chain Monte Carlo sampling
technique is computationally prohibitive. Instead, we
apply the framework of approximate variational in-
ference in order to estimate a posterior distribution
over the architectural variables and maintain the dif-
ferentiability of the model by the means of a contin-
uous relaxation on the discrete categorical (concrete)
distribution [Maddison et al., 2016, Jang et al., 2016].
Thus we are able to efficiently evaluate a continuum
of architectures. We will show empirically that en-
sembling predictions from networks of sampled archi-
tectures acts as a regulariser and mitigates overfitting.

In the next section we review the necessary back-
ground in approximate variational inference, present
our model from a Bayesian viewpoint and briefly in-
troduce the concrete categorical distribution. In Sec-
tion 3 we show the mechanism of layer size and network
depth learning and give an intuitive interpretation of
the approach. Section 4 compares our method to exist-
ing ones and discusses their shortcomings. In Section 5
we evaluate multiple models in regression, classifica-
tion and bandits tasks and finally we discuss potential
consequences in Section 6.
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2 BACKGROUND AND MODEL
STATEMENT

2.1 Approximate Variational Inference

Let W = {W1,W2, . . . ,Wn} denote the weights of
an n-layer network and α the architectural parameters
which are going to be learnt. Further, let (X,Y) be a
labelled dataset. Then, in the framework of Bayesian
reasoning, we define a prior distribution p(W,α) =
p(W)p(α), a likelihood model p(Y | X,W,α) and we
seek to infer the posterior distribution p(W,α | X,Y).
The latter, however, cannot be evaluated precisely
due to the intractability of the normalisation constant
p(Y | X). The variational Bayes approach reframes
the problem of inferring the posterior distribution into
an optimisation one, by minimising an approximation
error between a parameterised surrogate distribution
q(W,α | X,Y) and the posterior distribution. For the
sake of computational simplicity, throughout this work
we will assume that the approximate posterior is fully
factorisable, i. e.:

q(W,α | X,Y) =

n∏
l=1

q
(
Wl

∣∣ X,Y
) ∏
α∈α

q(α | X,Y)

(1)
and that the network weights in each layer l,
Wl, are independent and Gaussian distributed with

parameters µ,σ ∈ R|Wl|, i. e. q
(
Wl

∣∣ X,Y
)

=

N
(
Wl

∣∣ µ, diag(σ2)
)
. Note that relaxing the in-

dependence and/or the functional form assump-
tion on the network weights can improve mod-
elling performance, as shown by [Cremer et al., 2018,
Pawlowski et al., 2017]. Nevertheless, we leave the ex-
tension of architecture learning in Bayesian neural net-
works with more sophisticated posterior approxima-
tion to future work. The prior distribution over the
weights Wl will be a zero-mean factorised Gaussian
with the same fixed variance σ2

0 for each weight, i. e.
p
(
Wl
)

= N
(
Wl

∣∣ 0, σ2
0I
)
.

The specific form of q(α) and p(α) will be elaborated
in detail in Section 3 where we will consider learning
the layer sizes and the overall network depth. Due
to the discrete nature of these parameters, we cannot
use backpropagation to learn their posteriors. We will
show in Sections 2.2 and 2.3 how we could circumvent
this issue.

Let η and θ represent the sets of variational parame-
ters for the approximate marginals qη(W | X,Y) and
qθ(α | X,Y) which we denote as qη(W) and qθ(α)
respectively. One way to quantify the approxima-
tion error between the surrogate q and the true pos-
terior p is to measure their Kullback-Leibler diver-
gence [Kullback and Leibler, 1951]. It can be shown

that the following relation holds [Jordan et al., 1999]:

η∗,θ∗ = arg min
η,θ

KL(qη(W)qθ(α) || p(W,α | X, Y))

(2)

= arg min
η,θ

− Eqη(W)qθ(α)[log p(Y | X,W,α)]

+ KL(qη(W) || p(W))

+ KL(qθ(α) || p(α))

(3)

= arg min
η,θ

−LELBO(η,θ,X,Y). (4)

The quantity in Eq. (4), LELBO, is called the Evi-
dence Lower Bound and will be approximated with
Monte Carlo (MC) sampling since the prior, the ap-
proximate posterior and the likelihood distributions
will have known densities as we will see in Section 3.
Also, given that the prior distribution p(W) is a Gaus-
sian, the KL-divergence term for the network weights
will be computed analytically and thus will reduce the
variance in the gradient estimates. However, the KL-
divergence for the architectural parameters α will be
estimated using MC sampling. Finally, using the ap-
proximations qη(W) and qθ(α) we can define a poste-
rior predictive distribution over the labels Y and ap-
proximate it with MC sampling:

p(Y | X) =

∫∫
p(Y | X,W,α)qη(W)qθ(α)dWdα.

(5)

Note that even if we treat the network weights W as
point estimates we can still compute an approximate
posterior distribution over α and optimise it using
the ELBO objective while performing a MAP estimate
over W. That is, the approach of Bayesian architec-
ture learning is applicable to regular neural networks
as well and we will show such an example in Section 5.

2.2 The Reparameterisation Trick

The reparameterisation trick
[Kingma and Welling, 2013] refers to a technique
of representing sampling from a probability dis-
tribution as a deterministic operation over the
distributional parameters and an external source of
independent noise. In the context of architecture
learning we would like to show that such a reparam-
eterisation is possible for the architectural random
variable α of some θ-parameterised distribution
α ∼ qθ(α). Then, if there is a deterministic and
differentiable function g such that α = g(θ, ε) with
ε ∼ p(ε) guaranteeing that Eqθ(α)[α] = Ep(ε)[g(θ, ε)],
we can compute the gradient w. r. t. θ on g and use
standard backpropagation to learn θ.
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2.3 The Concrete Categorical Distribution

Proposed by [Jang et al., 2016, Maddison et al., 2016]
the Gumbel-softmax or concrete categorical distribu-
tion is a continuous extension of its discrete coun-
terpart. It is fully reparameterisable as sampling K-
dimensional probability vectors s ∈ ∆K−1 can be ex-
pressed as a deterministic function of its parameters—
the probability vector π—and an external source of
randomness ε which is Gumbel-distributed:

si =
exp((log πi + εi)/τ)∑
j exp((log πj + εj)/τ)

,

εi ∼ − log(− log
(
Uniform(0, 1))

)
.

Here τ is a temperature hyperparameter controlling
the smoothness of the approximation. For τ → 0
the samples become one-hot vectors and for τ → ∞ :
si = sj , ∀i, j. In this work we will consider τ fixed.
The density of the concrete categorical distribution is

p(s | π, τ) = (K − 1)!τK−1
∏K
i=1 πis

−τ−1
i(∑K

i=1 πis
−τ
i

)K . (6)

Analogously for the binary case (s ∈ [0, 1]), one can
express a sample from a concrete Bernoulli distribu-
tion by perturbing the logit with noise from a Logistic
distribution and squashing it through a sigmoid:

s =
1

1 + exp(−(log(π)− log(1− π) + ε)/τ)
,

ε ∼ Logistic(0, 1).

The functional form of its density function is given as:

p(s | π, τ) =
τπs−τ−1(1− s)−τ−1
(πs−τ + (1− s)−τ )2

. (7)

For more properties of the concrete distribu-
tions see the appendices in [Jang et al., 2016,
Maddison et al., 2016].

3 ADAPTIVE NETWORK
ARCHITECTURE

In this work we will focus on two important archi-
tectural hyperparameters but analogous extensions to
others are possible. First we will look into learning the
size of an arbitrary layer l denoted with sl and then
we will proceed with estimating the optimal depth of a
network by means of independent layer-wise skip con-
nections γl. Following the independence assumption
from Eq. (1) for a network of n layers we have:

q(α) =

n∏
l=1

q
(
sl
)
q
(
γl
)
. (8)

Analogous factorisation applies for the prior p(α) as
well. In our work, it has the same functional form as
the approximate posterior but has fixed parameters.

3.1 Layer Size

Let sl ∈ ∆K−1 be a concrete-categorically distributed
random variable encoding the size of an arbitrary fully-
connected layer l with maximum capacity of K units1.
Then the integer number representing the layer size en-
coded in a sample is given as k = arg maxi s

l
i. In order

to enforce the sampled size on the layer, we propose
building a soft and differentiable mask m(sl) ∈ ∆K−1

which multiplicatively gates the output of l:

yl = f(Wlyl−1)�m(sl) (9)

where we omit the bias bl for the sake of notational
brevity and use f to denote the activation function.
Due to the fully-connected nature of the layer, there
is in general no preference for which k units should be
used. However, one has to be consistent in selecting
them across different gradient updates, as this subset
of units will represent the reduced in size layer and all
others should be discarded, e.g. by deleting K−k rows
of Wl. To do this, we construct the mask such that
the top k rows are approximately 1s (letting through
gradient updates) and the rest 0s (blocking gradient
updates). E. g., m(sl) = Usl where U ∈ {0, 1}K×K
is an upper triangular matrix of ones. Since sl will
never be a one-hot vector in practice, the resulting
mask will be soft. Note that in a fully Bayesian neural
network, the approximate posterior on the parameters
of all redundant (blocked) units will conform to the
prior, essentially paying a portion of the divergence
debt borrowed by the active units.

Before giving explicitly the form of the approximate
posterior q

(
sl
)

we argue that (i) the learnt distribu-
tion should be unimodal, such that a unique optimal
layer size can be deduced, and (ii) it should provide us
with a meaningful uncertainty estimate. As the proba-
bilities of the concrete categorical distribution are not
constrained to express unimodality, we suggest to limit
the degrees of freedom by coupling πi through a deter-
ministic and differentiable function. One such candi-
date is the renormalised density of the truncated Nor-
mal distribution which we denote as N

(
µ, σ2, 1,K

)
.

By abuse of notation we express π as a function of µ
and σ and evaluate it at points {1, 2, . . . ,K}:

π(µ, σ)i =
N
(
i
∣∣ µ, σ2, 1, K

)∑K
j=1N(j | µ, σ2, 1, K)

for i ∈ [K],

(10)

qµ, σ
(
sl
)

= ConcreteCategorical(π(µ, σ)). (11)

1Or K filters if the layer is convolutional.



Bayesian Learning of Neural Network Architectures

Besides the unimodality, this parameterisation is also
advantageous for requiring a constant number of vari-
ational parameters w. r. t. the layer size. Throughout
this work, the prior pµ0,σ0

(
sl
)

assumes the same pa-

rameterisation as qµ,σ
(
sl
)

and µ0 and σ0 are specified
in advance. Care must be taken, however, when set-
ting the temperature τ . Since the gradient is scaled
with the inverse of τ , small values, e.g. in the order
of 0.01, can lead to optimisation instability. We have
observed a good performance with a constant temper-
ature in the range of 1.0 to 3.0, which we found empir-
ically. Finally, we note that the gradients w. r. t. the
weights and biases are multiplicatively stretched by
the sampled mask vector. Therefore, our method can
be interpreted as an auxiliary per-unit learning rate,
modulating the error signal coming from the data log-
likelihood term in the ELBO objective.

3.2 Network Depth

Inspired by [He et al., 2016], we infer the optimal
depth of a feed-forward neural network by learning a
bypass variable γl for each layer independently. Us-
ing the notation from above, we can express the layer
output yl as

yl = (1− γl)f(Wlyl−1) + γlyl−1. (12)

We treat γl in a Bayesian manner and assume a con-
crete Bernoulli distribution for the form of the approx-
imate posterior. Thus we learn a single variational pa-
rameter π per layer and, again, keep the temperature
hyperparameter τ fixed:

qπ
(
γl
)

= ConcreteBernoulli(γl). (13)

We set the prior pπ0

(
γl
)

to be another concrete
Bernoulli distribution with fixed parameter π0. Simi-
larly to the concrete categorical distribution, the tem-
perature hyperparameter τ cannot be small enough so
that the sampled bypass coefficient γl becomes a nu-
merical 1 or 0. Therefore, in the process of training,
the outputs of the skipped layer are only strongly in-
hibited and not completely shut off but as we will see,
this still allows to detect an optimal layer count.

One drawback of the presented approach is its limited
applicability to those layers only which do not change
the dimensionality of their inputs. The reason is that
the skip connection is implemented as a simple convex
combination of the layer’s input and output as given
in Eq. (12). Nevertheless, this method can be used in
parallel with the adaptive layer size and thus enable
intermediate dimensionality fluctuations. Analogously
to the per-unit learning rate argument, we can view the
skip connection as a modulation on the gradients to all
units and we interpret this method as an adaptive per-
layer learning rate.

4 RELATED WORK

Neural network architecture search has long
been a topic of research and diverse methods
such as evolutionary algorithms [Todd, 1988,
Miller et al., 1989, Kitano, 1990], reinforcement
learning [Zoph and Le, 2016] or Bayesian optimisa-
tion [Bergstra et al., 2013, Mendoza et al., 2016] have
been applied. Despite the underlying differences, all
these approaches share a common trait in the fact
that they decouple the architecture design from the
training. Consequently, this has a significant compu-
tational burden and to the best of our knowledge, we
are the first to oppose to this paradigm and merge
weight and architectural hyperparameter optimisation
using the forward- and backpropagation cycle of
neural network training.

In [LeCun et al., 1990, Hassibi and Stork, 1993] unim-
portant weights are identified and removed from the
architecture. A major limitation is that the initial net-
work architecture can only be reduced. Our approach
is similar in the sense that it has an upper limit on the
network size, but it also allows for growth after initial
contraction, should there be new evidence supporting
it. Furthermore the method presented in this work
is principled in the inclusion of expert knowledge in
the form of fixed prior probability for each layer and
only requires the manual tuning of the temperature
constant τ .

5 EXPERIMENTS

5.1 Regression on Toy Data

Point-estimate Weights In this first toy data ex-
periment we demonstrate learning a suitable layer size
in a single-layer neural network with 50 units and
ReLU activation functions. We set a very conserva-
tive prior on the size variable pµ0,σ0

(s) with µ0 = 1
and σ0 = 2 and record the change in the approxi-
mate posterior over time. Figure 1 depicts qualita-
tively the probabilities of the concrete categorical dis-
tribution and three snapshots show the current fit over
the dataset.

In this example, we generate 2000 points from a one-
dimensional noisy periodic function. Due to the large
number of data points, the total loss is largely domi-
nated by the data likelihood term and the increasing
divergence between the approximate posterior and the
prior is acting as a weak regulariser. Consequently, the
allocation of more units stops after the data is well ap-
proximated. Note that this would not happen, should
the prior parameter µ0 be set to a large value, e.g. 40,
as there is no incentive for the model to converge to a
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Figure 1: Change in the posterior probabilities π over time
(as used in Eqs. (10) and (11)). Below the diagram, three
snapshots show the fit of the training data: the more units
are released, the better the network is able to account for
the non-linearity of the data. The optimisation converges
to parameters µ = 21.99 and σ = 0.16. The temperature
hyperparameter τ is set to 3.0.

simpler solution. We will see in short that this is no
longer the case once we treat the network weights W
in a Bayesian way as well.

Next, we initialise a deep neural network with 11 lay-
ers, 10 of which are subject to the bypassing mecha-
nism. In order to enforce the usage of more than one
layer we limit the size of each to 5 units and we use
again a ReLU activation function. Figure 2 shows the
change in the probability of skipping a layer over time.
The posterior allows for a clear interpretation that a
rigid network of 5 layers will be able to reliably fit the
data.
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Figure 2: Change in the posterior probabilities
{π1, . . . , π10} for the skip variables {γl}l∈{1,2,...,10}
(see Eq. (13)) over time. Five of the layers are bypassed
with high probability, indicating that a network with 5 hid-
den layers of 5 units each is enough to fit the data. The
temperature hyperparameter τ is set to 1.0 for each layer.

Bayesian Weights We now construct a fully
Bayesian neural network with independently normally
distributed weights and biases. In Bayesian neural

networks the KL-divergence between the approximate
posterior and the prior is acting as a strong regulariser
on the parameters and in cases of small data size and
overly parameterised models, the noise in the parame-
ters dominates. The aim of this experiment is to show
that the presented framework of architecture optimisa-
tion mitigates this issue by not only extending inade-
quately small architectures but also reducing oversized
ones. Figures 3a and 3b show the change in posterior
for two different priors: one with µ0 = 250 and σ0 = 20
and another with µ0 = 500 and σ0 = 50. Notice that
in both cases the variational parameter µ converges
to approximately the same value, suggesting that the
method is robust to setting inappropriate prior distri-
butions.
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Figure 3: Change in posterior over the size of a single-
layer Bayesian neural network. Prior parameters: (a) µ0 =
250 and σ0 = 20 and (b) µ0 = 500 and σ0 = 50. The
temperature hyperparameter τ is set to 3.0.

In addition, we performed experiments where the layer
size and the network depth are jointly learnt. In the
cases where the architectural prior is on very few units
and layers, as in Figure 1, the network first allocates
more layers. This is an easier way to increase capac-
ity in comparison to adding more units to a layer. It
has, however, one important consequence—having a
very deep but narrow Bayesian neural network can be
computationally inconvenient, as the variance in the
output becomes intractably large. One way to alle-
viate this problem would be to balance the network
depth and layer size, e.g. by choosing an appropriate
prior connecting the size and skip variables. We leave
this to future research.

5.2 Regression on UCI Datasets

We explored the robustness in performance of
Bayesian neural networks on several real-world
datasets [Dheeru and Karra Taniskidou, 2017]. We
trained shallow and deep rigid networks and their
architecture-regularised counterparts for 200 epochs
with small batch size of 8. The shallow model com-
prises of a single ReLU-activated layer with 50 units



Bayesian Learning of Neural Network Architectures

Boston Concrete Energy Wine Yacht

100

101

lo
g-

R
M

S
E

Rigid

Adaptive size

Deep rigid

Adaptive depth

Figure 4: Test set RMSE performance on 5 UCI datasets
for single-layer rigid and adaptive and deep rigid and adap-
tive Bayesian neural networks. Lower is better.

and the deep one stacks 5 of them. In all cases the
prior distributions over the structural variables were
initialised with parameters µ0 = 25, σ0 = 10 for the
size mechanism, π0 = 0.1 for the layer bypassing one.
All network weights have a standard normal prior. The
posterior approximation over the weights is initialised
from the prior as well. As in the previous experiments,
the temperature parameters τ are kept fixed at 3.0 and
1.0 for the layer size and network depth respectively.
The datasets chosen for this experiment are multidi-
mensional (varying between 6 and 13 features) and
contain a fairly small amount of samples (between 300
and 1500), which results in very noisy predictions on
the overparameterised models.

We show that learning the structure has significant
benefits in performance measured as a root mean
squared error (RMSE) and log-likelihood on a held-
out test set. The experiments have been repeated 20
times. In Fig. 4 the RMSE of the depth and size adap-
tive models are lower meaning that they generalise bet-
ter and the standard deviations narrower, signifying a
robustness to initialisations. The results for the log-
likelihood in Fig. 5 show that the structure-regularised
models are less uncertain about the predictions. Deep
rigid models however, fail to fit the data as the noise in
the network weights is prevailing. Moreover, both rigid
models are highly dependent of the particular param-
eter initialisation, which is reflected in the large stan-
dard deviations in the box plots. On the other hand,
the performance of the adaptive models is consistent
throughout independent experiment repetitions.
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Figure 5: Test set log-likelihood performance on 5 UCI
datasets for single-layer rigid and adaptive and deep rigid
and adaptive Bayesian neural networks. Higher is better.

5.3 Contextual Bandits

In this experiment we set up a discrete decision making
task where an agent’s action a ∈ A triggers a reward
r ∈ R from the environment, i.e. the bandit. At each
time step the agent’s action is conditioned on a con-
text c ∈ C which is independent of all previous ones.
Hereby we aim to show the versatility of the adaptive
architecture approach in an online learning scenario as
changing the quality and quantity of the data changes
the requirements for a network structure.

In the bandit task the goal of the agent is to max-
imise the expected received reward, or equivalently, to
minimise the expected regret. The latter is defined as
the difference in the rewards received by an oracle and
the agent. In order to perform optimally, the agent
learns an approximation f(a, c) : (A × C) → R to the
bandit’s intrinsic reward function and uses it to pick
an action. The current context, performed action and
received reward are then kept in a data buffer.

The reward approximation function f is parameterised
as a Bayesian neural network with weights W and a
prior p(W). Furthermore, let p(r | a, c, W) be the
likelihood of a reward r under fW. Then, using vari-
ational inference we can define a Bayesian objective
and learn an approximate posterior qθ(W). Using
the likelihood term p(r | a, c, W), we can now define
the optimal action as the one that maximises the ex-
pected reward. After performing the action we then
update qθ(W) and repeat for the next context sam-
ple. This iterative approach is called Thompson sam-
pling [Thompson, 1933] and was developed as an ef-
ficient way to tradeoff exploration for exploitation in
the framework of Bayesian decision making.
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In the following we compare agents with purely greedy,
randomised and (adaptive) Bayesian reward estima-
tion models. The purely greedy agent is deterministic
in nature and always picks the action with highest re-
ward estimate for a given context. The randomised
or ε-greedy agent performs the estimated best action
with probability 1− ε, otherwise a random one is cho-
sen. This way, despite the agent’s deterministic reward
model it will still explore potentially better options.
Nevertheless, if ε is not annealed during the interaction
with the bandit, the agent will never achieve a 0 ex-
pected regret, even with a perfect reward model. The
Bayesian agent, however, will explore more actively in
the beginning when few data are seen, and will tran-
sition automatically into an exploitation regime once
the uncertainty in the posterior becomes small enough.
The speed at which this transition happens depends
on the prior, the initialisation and the variance in the
gradients.

Following [Blundell et al., 2015] we evaluate
the agents on the Mushroom UCI dataset
[Dheeru and Karra Taniskidou, 2017] consisting
of more than 8000 mushrooms, described as categor-
ical vectors of features. T he task is then to decide
whether or not to consume a given mushroom. If it
is labelled as poisonous and is being consumed the
agent receives a randomised reward of either −35 or
5 with 50% chance each. If the consumed mushroom
is edible the reward is positive 5. All rejected samples
receive a reward of 0. In this experiment we measure
the cumulative regret over the course of 30 000
interactions. Both the greedy and Bayesian agents
are parameterised by 2-layer neural networks with
100 units and ReLU activations in each layer. The
adaptive Bayesian agent has a prior centred at 50
units and a broad standard deviation of 20. For the
sake of computational efficiency, we do not retrain the
reward model at each new bandit interaction but only
fine-tune it with one epoch on the current dataset
buffer whose size is limited to the last 4096 samples.
We used a learning rate of 0.0005 and initialised the
standard deviations of the Bayesian weights at 0.02.
The reported results are the average of 5 independent
runs of the experiment.

Throughout the experiments, the Bayesian rigid agent
consistently encountered stability issues and after
about 20 000 interactions the reward estimates became
so unreliable, that the model settled for the suboptimal
solution of picking the reject action for all observed
mushrooms. Fig. 6 shows the cumulative regret over
time. The failure of the rigid Bayesian model is due
to a numerical instability arising from huge gradients
caused by wrong reward guesses as it can be seen in
the plot of the reward RMSE in Fig. 7. Clearly, the

suboptimal behaviour of the Bayesian rigid agent is
remedied by the adaptive size regularisation.

In addition, we show the benefits of the learnt architec-
ture by initialising a new one from the converged pos-
terior approximation over the size, in this case—two
layers with 34 and 20 units accordingly. It has best
performance among the Bayesian and greedy agents
with the only exception being the purely greedy agent.
We attribute its surprising success to chance and claim
without proof that a more challenging dataset will be
able to display its lack of principled exploration skills.
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Figure 6: Cumulative regret, aggregated over 30 000 ran-
domly presented context vectors. The estimated reward is
modelled by 2-layer rigid and adaptive size Bayesian neural
networks. The rigid network consistently exhibits instabil-
ity after about 17 000 steps, while the adaptive one remains
stable. The best performance among all Bayesian models
is obtained by a rigid network whose architecture is ini-
tialised from the converged structural parameters of the
adaptive network. As a baseline 0.05−ε and purely greedy
agents are evaluated.
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Figure 7: Reward RMSE for the rigid and adaptive agents.
The instability in the estimate results in suboptimal be-
haviour in action picking and hence a substantial increase
in cumulative regret.

5.4 Image Classification

To demonstrate the broad applicability of the pro-
posed adaptive architecture method, we apply it on
the filter count hyperparameter in Bayesian convo-
lutional neural networks. The extension from the
fully connected layers to the output channels of a
convolutional layer is straightforward. Similarly, the
adaptive network depth regularisation remains un-
changed. In this case though, the number of chan-
nels from the previous layer should match the one
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from the current. All experiments are performed
on three popular 10-class datasets of increasing dis-
crimination difficulty: MNIST [LeCun et al., 2010],
Fashion MNIST [Xiao et al., 2017] and CIFAR-10
[Krizhevsky et al., 2014]. The training sets of these
are comprised of 60 000, 60 000 and 50 000 samples re-
spectively and all results presented are based on the
average of 100 samples form the model predictive dis-
tribution over the held-out 10 000 test samples.

We check the advantage of the adaptive size regularisa-
tion in a fairly “wide” model architecture consisting of
three Bayesian convolutional layers, each followed by a
ReLU non-linearity and a max pooling operation and
two Bayesian fully-connected layers. The first two lay-
ers have a window size of 5 and the third of 3. The lay-
ers host 81, 64, and 64 filters respectively and padding
is added to preserve the input dimensionality. After
the convolutional layers, the data is flattened and pro-
cessed by a ReLU-activated fully-connected layer of
size 64 and fed into a softmax output layer. For the
adaptive network we apply the size regularisation af-
ter each convolutional layer. The priors over the size
parameters are set to 80% of the maximum filter count
and we set τ = 3.0. All configurations are trained for
200 epochs using early stopping, the Bayesian layers
have a standard normal prior and the standard de-
viations of the network weights are initialised to 0.05.
Additionally, we create a deep architecture with 9 con-
volutional layers grouped into 3 blocks of 3 consecutive
layers with 32 filters (16 for the first block only) and
a max-pooling operation at the end. For the adap-
tive depth networks, the second and third layer in
each block are skipped. We set a very conservative
skip prior probability π0 = 0.1 and keep the temper-
ature constant at τ = 1.0. At the end of the third
block, the data is flattened and passed through the
fully-connected ReLU and softmax output layers as
described above. All other training configurations re-
main the same.

We evaluate all four neural network configurations in
two experimental scenarios. In the first one we learn
the parameters from the full training dataset and in
the second we reduce each to 1000 randomly chosen
samples. Table 1 shows the test set accuracy on the
full dataset size (top) and on the reduced one (bottom)
for the Bayesian models. There is a clear advantage of
the adaptive networks over the rigid ones and it is only
amplified by the difficulty of the dataset—the improve-
ment in test set accuracy on the reduced CIFAR-10 is
almost 4%. We remark, however, that even the best
of these results are not representative for the state-
of-the-art and that the purpose of the experiment is
to compare the influence of the adaptive architecture
method in a rather generic setup.

Dataset Rigid Adaptive size Deep rigid Adaptive depth

MNIST 99.34 99.40 99.46 99.42
Fashion 91.41 91.13 91.14 91.22
CIFAR-10 73.31 74.06 68.51 69.63

MNIST 94.47 95.67 95.72 94.81
Fashion 79.69 81.18 80.32 80.83
CIFAR-10 34.98 38.95 33.83 37.49

Table 1: Test set accuracy on the full (top) and reduced
(bottom) datasets for “wide” rigid and adaptive as well as
“deep” rigid and adaptive Bayesian convolutional neural
networks.

6 CONCLUSION

In this work we introduced a novel method for learn-
ing a neural network architecture by including discrete
hyperparameters such as the layer size and the net-
work depth into the Bayesian framework. We used
parameterised concrete distributions over the archi-
tectural variables and variational inference to approxi-
mate their posterior distributions. T his allowed us to
learn the network structure without significant compu-
tational overhead, to sweep through a continuous hy-
perparameter space and to incorporate external knowl-
edge in the form of prior distributions. The inter-
pretability of the approximate posterior distribution
over the layer size and network depth parameters gave
us a tool to identify architectural misspecifications and
choose optimal values for the layer dimensions. We
showed empirically the benefits of the methods in pre-
dictive tasks on regression and classification datasets
where regularised network structures demonstrated su-
perior test set performance.
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