Supplemental material for “Blind Demixing via Wirtinger Flow with
Random initialization”

A Establish Approximate State Evolution
A.1 Establishing Approximate State Evolution for Phase 1 of Stage I

We are moving to prove that if the induction hypotheses (41) hold for the t*® iteration, then ap, (21a), B,
(21b), ay, (20a) and B, (20b) obey the approximate state evolution (23). This is demonstrated in Lemma 2.

Lemma 2. Suppose m > Cs?p? max{K, N} log'®m for some sufficiently large constant C' > 0. For any 0 <
t < Ty (28), if the t*™ iterate satisfies the induction hypotheses (41) , then fori = 1,--- s, with probability at
least 1 —cym™" —cyme~ 2K for some constants v, ¢y, ca > 0, the approzvimate evolution state (23) holds for some

W}hi ﬂWJwﬁ v|§0h§: 7|90ac§’ 7‘p:cf < 1/10gm; t=1,---,s.

) ‘phi
Proof. Please refer to Appendix D for details. O

In the sequel, we will prove the hypotheses (41) hold for Phase 1 of Stage I via inductive arguments. Before
moving forward, we first investigate the incoherence between {xt}, {x/**"} (resp. {h!}, {h®"}) and {a;;},
{ai}"} (resp. {b;}, {b}*"}).

Lemma 3. Suppose that m > Cs?u? max{K, N} log8 m for some sufficiently large constant C > 0 and the t'"
iterate satisfies the induction hypotheses (41) fort < Ty (28), then with probability at least 1 —cym ™" —cyme ™K

for some constants v,cy,co > 0,

oy max Jag@] - F " S Viogm. (A.1a)

Lo nax lay @t |- 12t 13" < Vlogm, (A.1b)
Lot e @y S Viogm, (A.le)
1§i§12%)§(lgm !afz,ﬁﬁfgnl ) ||5Eflsgn||§1 S \/@7 (A.1d)
e e E | el S Viogm. (A1)
o s, (bR Rl S e log m, (A.2a)
L max [BTREEREES — dog? m, (A.2b)
1 005 [P IR S g m. 2

Proof. Based on the induction hypotheses (41), we can prove the claim (A.1) in Lemma 3 by invoking the

triangle inequality, Cauchy-Schwarz inequality and st%Bdard Gaussian concentration. Furthermore, based on
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the induction hypotheses (41), the claim (A.2) can be identified according to the definition of the incoherence
parameter (9) and the fact ||b;[|, = \/K/M. O

Now we are ready to specify that the hypotheses (41) hold for 0 < ¢t < T; (28). We aim to demonstrate that if
the hypotheses (41) hold up to the t*" iteration for some 0 < ¢t < T}, then they hold for the (¢ + 1)'" iteration.
Since the case for ¢ = 0 can be easily justified due to the equivalent initial points, we mainly focus the inductive
step.

Lemma 4. Suppose the induction hypotheses (41) hold true up to the t'™* iteration for some t < T| (28), then

v

fori=1,--- s, with probability at least 1 — cym™" — cyme~K for some constants v, c1,cy > 0,

t+1 sp2ky/max{K, N}log®m
)7 e "

max dist <Z§+1’(l),2f+l) < (Bpe+r + Byrer) (1 +
i i m

1<I<m slogm

holds m > Csuzm\/maX{K, N} log® m with some sufficiently large constant C > 0 as long as the stepsize 1 > 0
obeys 1 < s~% and Oy > 0 is sufficiently large.

In terms of the difference between ! and acf’(l) (resp. h! and h?(l)) along with the signal direction, i.e., (41b)
and (41c), we reach the following lemma.

Lemma 5. Suppose the induction hypotheses (41) hold true up to the t'* iteration for some t < T| (28), then

v

with probability at least 1 — cym™" — cyme™ 2% for some constants v, cy,co > 0,

. - 1 t+1 2 Kl 13
maxdist (h§ RO p hE“) RIS < apen (1 + = ) C, V208 T (A4)
<i<m i slogm m
~ 1\ 2ky/Nlog™
max dist (szl’(l),xﬁf'l) < i <1 + ) Cs SR o m (A.5)
1<I<m i slogm m

holds for some sufficiently large Cy > 0 with Co > Cy, provided that m > Csu?k max{K, N} log'?m for some

sufficiently large constant C > 0 and the stepsize n > 0 obeys n =< s~ 1.

Proof. Please refer to Appendix E for details. O

t,sgn
i )

The next lemma concerns the relation between h! and h!*®"  i.e., (41d), and the relation between x! and
ie., (41e).

Lemma 6. Suppose the induction hypotheses (41) hold true up to the t'* iteration for some t < T) (28), then

v

with probability at least 1 — cym™" — cyme 2K for some constants v,c1,co > 0,

. 1 t+1 212 K log®
max dist (R R <aen (1+ ) Oy | S22 Jog (A.6a)
1<i<s i slogm m
o 1o\ 242 N log®
max dist (!9 341) <o (H ) Cyy | SN og"m (A.6b)
1<i<s i slogm m

holds for some sufficiently large C3 > 0, provided that m > Csp?k? max{K, N} log8 m for some sufficiently large

constant C > 0 and the stepsize n > 0 obeys n < s 1.

We still need to characterize the difference hf — ﬁf’(l) - TLE’Sgn + Ez”sgn’(l) (41f) and the difference ! — 52’(1) -
~t,sgn ~t,sgn,
T, +x;

® (41g) in the following lemma.
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Lemma 7. Suppose the induction hypotheses (41) hold true up to the ' iteration for some t < Ty (28), then

v

with probability at least 1 — cim™ — cime™ 2% for some constants v, c1,ca > 0,

~ - ~ ~ t+l 2\/K log'®
ma [ RO SRy e <, <1 + ) VI8 T (ATa)
1<i<m 2 i slogm m
_ . ~ i+ 1sgn 1\ su®V/Nlog™
max [|FHY - g0 _ gitleen | gl ,(l)H <agi (1 I > c, SV ios m (A.7b)
1<i<m 2 i slogm m

holds for some sufficiently large Cy > 0, provided that m > Cspu? max{K, N} log®m for some sufficiently large

constant C > 0 and the stepsize n > 0 obeys n < s~ 1.

Remark 1. The arguments applied to prove Lemma 4-Lemma 7 are similar to each other. We thus mainly focus
on the proof of (A.5) in Lemma 5 in Appendixz E.

A.2 Establishing Approximate State Evolution for Phase 2 of Stage I

In this subsection, we move to prove that the approximate state evolution (23) holds for T <t < T (75 and T}
are defined in (27) and (28) respectively) via inductive argument. Different from the analysis in Phase 1, only
{25} is sufficient to establish the “near-independence” between iterates and design vectors when the sizes of
the signal component follow apt, o, 2 1/logm in Phase 2 (according to the definition of 77). As in Phase 1,
we begin with specifying the induction hypotheses: for 1 <1i¢ < s,

i =

max dist (zt’(l) A't)
1<i<m

Cs (A.8a)

1 )t su2f£\/max{K, N}log'®m
m

<(Bnt + Bat) (1 +

Cs S th

slogm
=i, < G5, (A.8D)

I

From (A.8), we can conclude that one has

=ttt < L/

1§i§r?,?)§{lgm ’azlwz‘ sz||2 ~ 1Og m, (Ag)
“Ril IRHIEY < —E 1002

lgign"sl,%élgm bl hz ||h’z||2 ~ \/TH IOg m, (A]'O)

v

with probability at least 1 — cym™ — cime~ 2K for some constants v, cq,co > 0 during 71 < t < T, as long as

m > Csp2kK log® m.

We then move to prove that if the induction hypotheses (41) hold for the t*! iteration, then ap, (21a), Bn, (21b),
0, (20a) and B, (20b) obey the approximate state evolution (41). This is demonstrated in Lemma 8.

Lemma 8. Suppose m > Cs?u?k* max{K7N}10g12m for some sufficiently large constant C > 0. For any
Ty <t <T, (I and T, are defined in (27) and (28) respectively), if the t' iterate satisfies the induction

v _ cyme— 2K for some constants

hypotheses (41) , then for i = 1,--- s, with probability at least 1 — c;m™
v,c1,c0 > 0, the approximate evolution state (23) hold for some |1/Jh§\, Wmﬂ» |<Ph§|a |S%§|a |Ph§|7 |Pm§| < 1/logm,

i=1,---s.
It remains to proof the induction step on the difference between leave-one-out sequences {zt’(l)} and the original
sequences {z'}, which is demonstrated in the following lemma.

Lemma 9. Suppose the induction hypotheses (41) are valid during Phase 1 and the induction hypotheses (A.8)
hold true from Ti" to the t*™" for some t < T, (27), then fori=1,--- s, with probability at least 1 — cym ™" —
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cime~ 2K for some constants v, c1,ca > 0,

(A.11)

1<i<m

1 t+1 2 K1 18

max dist (z:,(l)7zf) < (Bht+l + ﬁwt+1> (1 + ) Ce SH Hm
‘ i slogm m

holds m > Csu’kK log8 m with some sufficiently large constant C > 0 as long as the stepsize n > 0 obeys n =< s~ !

and Cg > 0 is sufficiently large.

Remark 2. The proof of Lemma 8 and Lemma 9 is inspired by the arguments used in Section H and Section I
in [16].

A.3 Analysis for Stage I1

Combining the analyses in Phase 1 and Phase 2, we complete the proof of Theorem 1 for Stage I, i.e. 0 <t < T,
(27). Consider the definition of T, (27) and the incoherence between iterates and design vectors given in (A.9)

and (A.10), we arrive at

70 2| < L A12
&~ =i, < % (A12)
dist(zT, 2%) <~ (A.13)
@ </
lgigl?,?}éjgm aljwl ||mz ||2 ~ IOg m, (A14)
RO R IET < 102
TR S L B L N\/mlog m, (A.15)
which further implies that
max  |af; (37 — )| g TY0E™ (A.16)
1<i<s, 1<j<m | ~os

based on the inductive hypothesis (A.8a). Based on these properties, we can exploit the techniques applied in
[18, Section IV] to prove that for ¢ > T, + 1,

dist (2%, 2%) < (1 - L)H” dist (277, 2)
t—T,
<~ (1 _ %) , (A.17)

where the stepsize 7 > 0 obeys n =< s~ as long as m > s2u2k* max{K, N} log® m. It remains to prove the claim

(15) for Stage II. Since we have already demonstrate that the ratio Qpt / Brt increases exponentially fast in Stage

I, there is
ath 1 T
> 1 .
Bprn VIR Tog i L e
By the definition of T (see (28)) and Lemma 1, one has a,r, < 8, < 1 and thus
QR
— =< 1. A18
o (A.18)

When it comes to t > T, based on (A.17), we have

ang 1 —dist(hf,hf) _ 1—dist (2", 2")

Bnt —  dist(hl,hY) T dist(zf,2%)
SELTE AT UL S E

o ’Y/\/i Bh;_rl

16x
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1 T n o\
> (1 L ([
R et L e ( 16n)
(i) 1 n \tT
! bt (- 8
R TRiesr e 16

1

>____— (1 ¢
N\/W( +6377),

where (i) is derived from (A.18) and the fact that v is a constant, (ii) arises from T, — T} < s~ ! based on Lemma
1, and the last inequality is satisfied as long as c3 > 0 and 7 < s~!. Likewise, we can apply the same arguments

to the ratio Qg / ﬂmf_, thereby concluding that

O‘wﬁr > 1

5 X VNN (1+ean)’. (A.19)
B Preliminaries
For a;; € CY, the standard concentration inequality gives that, for i = 1,--- , s,
max aija| = max |aj;2*| < 5y/logm (B.1)

with probability 1 —O (m_lo) [18]. In addition, by applying the standard concentration inequality, we arrive at,
fori=1,---,s,
ills < .
max i, < 3VN (B.2)

for some constants, ¢, C’ > 0 [18].

with probability 1 — C’ exp (me’CK )

Lemma 10. Fiz any constant co > 1. Define the population matriz ViF (2) as

&l Ie iz} — Rl 0 hiz?"
) A [ 1 0 % zh' 0
0 (ziRi")" lzill3 I i — hizl*
(RiaiT)" 0 aih; —xih |hl; Ik

Suppose that m > ¢1s22K log® m for some sufficiently large constant ¢; > 0. Then with probability exceeding

1-0 (m_lo),
2,,2
| (are =921 (2)) — (T = n9°F ()| < y SE08 as {2)2 1)

and  ||V2f (2)]| < 5]|=]f5 + 2

. . -1
hold simultaneously for all z obeying maxi<;<s1<i<m |@5;| - HleQ S Viegm and maxi<i<si<i<m |bjhi| -

||hZ-H2_1 < ﬁ log® m, provided that 0 < n < Z1) for some sufficiently small constant co > 0.

max{ﬁi
C Proof of Lemma 1

To prove Lemma 1, we divide Stage I into several substages and analyze them separately. For simplification, we

focus on the case when the initialization obeys (26), which can be generalized to other cases.

e Stage I-a. Consider  the iterations 0 < t < To with  Tj

min {t | max; By1+1/q; < V0.6, max; B 1+1/q; < \/0.6}, we have the following claim.
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Claim 1. Assume that the stepsize n > 0 is sufficiently small, fori=1,--- s, we have
ﬁhf‘*’l < (1 - g)ﬁhfa 0 <t< TO7
Qg1 < (1 + 277)0%57 0 <t< T07
Ozh?—l > (1 + g)ahg, 1 <t<Ty,
Rt = R0 /2,
a, o+ > (1 — 2n)v0.6¢;,
1
To < —.
Ui

In addition, there is Ty < Ty (recalling the definition of T (29)) since max; a,n, < cs. Similarity, the
condition (C.1) is satisfied in the case with respect to x! fori=1,---,5, 0 <t < Tj.

In consequence, we conclude from Claim 1 that for 0 <t¢ < Ty :

c8q; > Opt =

Clng > amf >

> —
- 2 T 2/NlogN’

1.5g; > PBpo

Oh? > qi
2 ~2/KlogK’

qi

Oy

~o

> Bt 2 Bry+1 = (1 —2n)vV0.64;,

ah;+1/ah¢ Ozmt_+1/amp
17’214'_77 and 177'214_7]’
Bre+r/Bne Bttt/ Bat

which justifies (30) and (31).

e Stage I-b. The second substage is consist of the iterations obeying Ty < t < Ty (recalling the definition of

T3 (29)).

Claim 2. Assume that the stepsize n > 0 is sufficiently small, fori=1,--- s, Ty <t < Ty, we have

Bt € |(

1 - 25)2v/0.64;, (1 + 0.1n)\/0.6q1}

Bhf+1 < (1 + O-ln)ﬂhﬁ
aperr < (1+2.2n)ap:.

(C.2a)

(C.2b)

(C.2¢c)

Similarity, the condition (C.2) is satisfied in the case with respect to x! fori=1,---,s, To <t < Ts.

Hence, recall the definition of T (28), we

log

arrive at

max{cs,cg}

T —

T,

o < logmax {K, N}

T <
0~ Jog(1+22n) ~ "
log

max{cs,cg}
max{cr,cl}

< loglogm

log5 m

ah§+1/ah¢

M R |
ﬂh2+1/ﬂh§:

e Stage I-c. Consider the iteration in T <

-7 < 7
'~ Jog (1+22n) ~ 7

Ozwt,+1/awr_,
+0.1y and ——— >1+40.1n.
Byt /Bt

t < T, we have the following results.
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Claim 3. Assume that the stepsize n > 0 is sufficiently small, fori=1,---,s, To <t <T,, we have
T2
, < ——q; C.3

ahf +5hi = K/\/gQ'L? ( a’)

Ozht+1/04h4
———= > 1+ cgm, C.3b
5h§+1/5h2 97 ( )
apet > (1= L1n+nrvs/v)om:, (C.3¢)
Burer > (1= 0.97) By (C.3d)

1

T,-T, 5 7 (C.3e)

for some constant cg > 0. Similarity, the condition (C.3) is satisfied in the case with respect to x! for

i=1,,8 Ty <t<T,.

D Proof of Lemma 2

D.1 Proof of (23c)

According to the Wirtinger flow gradient update rule (5b), the signal component x’ifl can be represented as

follows

m S

~t+1 _ ~t n Lg% 1 bep w0 \pegt,

Lip =i — 2 (E hi bjay;xy, — hy bjag;x; |bihia;,
[hillz 5= N\

Expanding this expression using a¥ x! =zt ar; 1+ a,  x!, and reformulate terms, we arrive at
p & p 8 AT = Ty Akj, kj LTk L ;
~t+1 _ ~t / / /
zy =Ty +nJa —ndig =0 Jis, (D.1)

where

m S
Jin=Y_ > hIbbihlariqrai,

j=1k=1
m S
Jiz =Y > hibblhlag i ai;
g ik, 10 k|| Yig,1
j=1k=1
m S
Jis=Y_ > hibbihlay; @l a;
j Y10 kg, L il Y,
j=1k=1
i =n/|hl3.

We will control the above three terms J;1, J;2 and J;3 separately in the following.

e With regard to the first term J;1, it has

m S

S m
> akhibibihlagas, = ahi | > @rjiai1b;b; | bl
=1 k=1 k=1 =1

According to Lemma 11 and Lemma 12, there is

where the size of the remaining term r; satisfies

u ~ |K 2K ~
< h“*h?\/l < \/1 -hR! D.3
|r1|NI;qk k 1 m OgmN m Ogm 7 17 ( )

based on the fact that |[R4[|2 <1 and |RL2 <1for k=1,---,s.
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e Similar to the first term, the term J;5 can be represented as

~ 2
Jig = th ) 5:1 + 72, (D4)
where the term 7;5 obeys
S
~.~ | K 2K
~ tx7 t ~t
|7‘2|§|xl1|2hk hz\/mlogmﬁ\/mlogmhlﬂ (D5)
k=1
e For the last term J;3, it follows that
m S S m
Ttk * 7t x ~t T tx * t * Tt
Z hi b;bjhiay; | ;) aij1 = Z hy; Zaij,lakj,qubjbj h;. (D.6)
j=1k=1 k=1 j=1
By exploiting the random-sign sequence {x;**"}, one can decompose
m m m
Z aij,lazﬂ_iﬁbjb; = Z aij,lasz_:bzfgnbjb; + Z aijylazj_rj_ (ifj_ - i:fgn) bjb;k (D7)
J=1 J=1 Jj=1

Note that aijJa,";jJ_a'cffgnbjb; in (D.7) is statistically independent of &;; (35) and b5*"b}*"" = b;b5. Hence
we can consider Y70 a;;1a5; L &;78"b;b% as a weighted sum of the &;’s and exploit the Bernstein inequality
to derive that

Z aij,laZjLzEE’fgnbjb;‘ = Z €ij (aij71aszi§fgnbjb;) S \/ V1 IOg m + B1 logm (DS)
j=1 j=1

with probability exceeding 1 — O (m_lo), where

m
L 2 * ~t,sgn 2 *|2
Vi ~—E laijal” ag; 27" [b;bj
=1
~t,sgn *
By := max |a;;1 |a*- z; | b‘b‘|'
1Sj§m| VA | kjL%il ]

In view of Lemma 17 and the incoherence condition (A.1d) to deduce that with probability at least 1 —
O (m=19),

K

m

2lag @t b | 612 S = (&t

T

m
(2B E lai,1
i=1

with the proviso that m > max{K, N'}log* m. Furthermore, the incoherence condition (A.1d) together with
the fact (B.1) implies that
~t,sgn

K
By < Elogm ku_ H2

Substitute the bounds on V4 and By back to (D.8) to obtain

m
. * Vt’Sgnb‘b* < KlOgm
Aij 1 Qi L 000 m
=1

as long as m 2 Klog®m. In addition, we move to the second term on the right-hand side of (D.7). Let

i (D.9)

L= Z;"zl aijiay;zb;b;, where z € CN-1 is independent with {ay;} and |/z||, = 1. Hence, we have

Klogm | - . t.sen
T|wEL_wELg ||27 (D].O)

m
> aijaay, (@ — &) biby|| < el |2 — 2|, <
j=1
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with probability exceeding 1 — O (m_lo), as long as that m > K log® m. Here, the last inequality of (D.10)
comes from Lemma 13. Substituting the above two bounds (D.9) and (D.10) into (D.7), it yields

S * Klogm tsn Klogm ~t,sgn
Zazj lakj J_mu_b b 5 } g H2 H zJ__wllg H2 (D]_l)
j=1
Combining (D.6) and (D.11), we arrive at
s2Klogm | - s2Klogm || -, _t,sgn
PPy Ly Y L Sy T D12)
by exploiting the fact that |[hL||2 < 1 for k = 1,---,s and the triangle inequality || T, < @, +
2% — 27
il 2°
Collecting the bounds for J;1, J;2 and J;3, we arrive at
Tt = 0 Ja —n'Ji2 — ' Jis
= &1 +ng:hIhl/||R|5 — 0Tl + R
= (1 —n)wfy +na:hi hi/||R})3 + R, (D.13)

where the residual term R follows that

2
IBlS ”’{ZHQ\/Sﬂf1ogm(h5.*h;%+ml\+||:E1;L|\2+y|55§l ;e |, ) (D.14)
ill2

Substituting the hypotheses (41) into (D.13) and in view of the fact az: = (2, ) /||°||2 and the assumption

that ||h5||2 = ||a:5\|2 =gq; fori=1,--- s, one has

Oéwz+1

- 2F 2fC 2fC
=(1—n)ag + n”qihf*hﬁ +0 (77” i logmozmr_) +0 (77” S—log mﬂmt) +0 <77" i logm - Oéh7§>
§ V " : V " : \V " :
1 ¢ su2N log®m
O nag (1 Cs\| ————
* g awi< +slogm> s m

NG Vot qiQpt

=(1- + 55 )0t + 1—ppt) 55—, D.15
(1-mn wt+ﬁ2) 4 1( pi)aip‘ﬁig (D.15)
where 11" = n/(qil|h}||3), for some |1yt |, |pgt| < @, provided that
2K 1 i
e LR (D.16a)
aGm logm
2K ] ;
L L R (D.16b)
aGm ¢ logm ™
t 2N log® )
1+ Coy |28 T T (D.16¢)
slogm am logm

where the parameter ¢; is assumed to be 0 < ¢; < 1. Therein, the first condition (D.16a) naturally
holds as long as m > s2Klog®m. In addition, the second condition (D.16b) holds true since S5 <
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lzt]l2 < amgx/log5m (based on (41j)) and m > s?K log® m. For the last condition (D.16¢), we have for

t<Ty =0 (slogmax{K,N}),
1 t
1 =0(1
( + slogm) (1),
which further implies

1 ¢ su2N log® m su2N log®m i
1+ Cyy |8 < oy [EEZ 08 T o
slogm gm qg;m logm

as long as the number of samples obeys m > su2N log'® m. This concludes the proof.

Despite it turns to be more tedious when proving (23a), similar arguments used above can be applied to the
proof of (23a). Specifically, according to the Wirtinger flow gradient update rule (5a), the signal component

<hE7 }VLD can be represented as follows
hg*h?l = hE*hi |~t||2 Z (Zb hi.Z) ax; — )hh*b amwz
Expanding this expression using a,’;jw}; = xzuakj,l +ay; L@} and rearranging terms, we are left with
R R = h*RE — 5Ly + 1 Lio + 11, Lis, (D.17)
where

m S
* t ~t
L = E E hE bjb}‘hka:k*akja T,
jfl k=1

Lip = Z Z hh*b b* kakj 19K 045,1: 170,

j=1k=1

m S
=" hIbibihial;  al akjaqr,
j=1k=1

;= n/|1&][3-
Here, L;1, L;s and L;3 can be controlled via the strategies exploited to control J;1, J;2 and J;3.

D.2 Proof of (23d)

In view of Lemma 15 and Lemma 16, by utilizing similar arguments as in Section D.1, it yields that with

probability exceeding 1 — O(mflo)7
o =1 —n)at, —n'r, (D.18)
where
0 =n/|Rl3
Il S dog? o (84, + 811 + (3 B/ L g

According to the definitions of ay, (13) and B4, (14), we arrive at

QK 22N
ﬁmt.+1=<1—n>6mg+‘°</” = 10g9m'%:>”<”’” - 10g9m(0‘m§+/3m;)>

77%\/» ﬁ m
Nqi Pt
5 ) Bat (D.19)

==+ 55
O‘hi—i_ﬂhj
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with the proviso that m > s?u? max{K, N'}log® m and

for some |z | <

logm’
22K Gi
% logg m- (O‘wf + ﬂwi) < @5@27 (D20)
22N .
2 K )2 0 % g, (D.21)

4 —=
N
Here, according to the assumption QO <1/ log®m (see definition of Ty (28)) and the induction hypothesis 8; > ¢5
(see (41h)), the condition (D.20) and (D.21) are satisfied as long as m > s?u2 max{K, N} log"/?m

logm"™ ™

E Proof of (A.5) in Lemma 5

By applying the arguments in [2, Appendix F], it yields that

dist (mf“’(l), 55“)

2

Wit wt
<K Zmax{‘ } |52, (E.1)
i
where w! is the alignment parameter and
! 41,
Jk =w w?Ll Wi (m)utualwk ® (E2)
where w,i’(ri)utual is defined in (38). According to (10) and (38), we arrive at
1 t,(1 t4+1,(1
wiz Wy, r(n|)1tual il w

=e] (z! -z )

=T; — # O - e (V f( ) - V:cif(l)(gfy(l)» - U/(ZE?(l)*bl i*czt’?t 0 hh*blaklwk)blh ()azl 1
k=1

where the stepsize 1/ = n/|ht||2. It follows from the fundamental theorem of calculus [19, Theorem 4.2] that

~ 41,01
FHL _ Stt @

il T Pl
0 v zt— g0
-1 Kzﬁ?(l)*bl%@?(l) hh*bl%ﬂ’k)@’l (l)azm] ) (E.3)
k=1

where z (1) = 2! + 7 (26 — 2') with 0 < 7 < 1 and the Wirtinger Hessian with respect to z; is

D B ] , (E.4)

with D = 37" | |bthi|*aiaf; and E =377 bbrhi(aijafz;) "

e We begin by controlling the second term of (E.3). Based on (A.2a) and the hypothesis (41a), we obtain
i

e

max log? m

1<i<s,1<I<m

by RVl S
Along with the standard concentration results

iz ] < Viogmlje! ",
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one has

5
< Sposm aﬁ‘“H (E.5)
~ m ’ 2

( > hi " biag,a " - h?f”l%ﬁi) b by Vai

k=1

o It remains to bound the first term in (E.3). To achieve this, we first utilize the decomposition
~t,(1)

x [ ~t ~t,()\ _ —— (~t ~t,(1) % ~t
a;; <w7, - = Qi1 Ty — Ty ) tag g (T — X))

to obtain that

zt -z
1 (V2. f(z(1)dr) [ oot | T (1) + w2 (1) + w3 (1),
where
Z b h a” 1G45,1 (?1 5??1(1))
Z |b* al] 1az] 1 (itJ_ - i:il))

Zb* T)ajai(T)bj a; (m)

Based on Lemma 10, Lemma 14 and the fact ||b;[|, = \/K/m, by exploiting the techniques in Section D,

w1 (1), wa (1) and w3 (7) can be bounded as follows:

R s2u2Klogm [ ,
wi (1) = [ha(r)l; (F - 7{") + O (\/ o ( - x%”)) (E:6)

Klog® A ~ ~tsgn  ~tsen
wa ()] S ) = (||t - 20" ~al - s a0 ) (E7)
ws (7) = har (r)] (7 - 20 0) wi(7)+o( — ||z -2 ) (E.8)
log” m

with probability at least 1 — O(m~1°), provided that m > p?K log"® m.
e Combining the bounds (E.5) (E.6), (E.7) and (E.8), one has

~t+1 AL
Tip —Tq

1
hi(7)||3dr 22K 1 _ R 210"
= 1_77M+0 n/\/m '($§1—$Z1(l>+o<nlw‘
[R5 m m
Kl ’ T ~t,sgn ~ n
+O<”/W<’“" —a - - ’(”H2>>,

1 ~t o~ ~t o~ *
+ 0 <17' = ‘ Tt — a:f’(l)H > +7n sup |hi1(7)] (:cf — wﬁ’(l)> x;(7)
log”m 2

3
0<r<1
For simplification, note that for the last term, for any ¢t < 77 <

=)
2

t ot (l)
il

slogmax{K,N},0<7<land1<i<s,

one has

@)
- mll ‘

1 )tC sp?ky/ Nlog®m
2

slogm m

|zi1 (7)

SOt + 0t (1 +

/Saacﬁa
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as long as m > su2k\/N log™ m. In addition, there is
1hia ()] - (& =30 0) ()|
Slaa()]-|@ - 20| -z,

zt—zh0 H2 (E.9)

Sam;?

K3

based on the fact ||z;(7)||, < 1. Furthermore, we have
R, - ”H e a0
m

Ft_ (l) H
as long as m > K log'? m, in view of the assumption Qg L1 /log5 m. Therefore, we can further obtain

T; —

~t+1 At+1 0
L1

~t,(1)

Tip — Ty

<(I-n+no) |z

2 5
Lo (n'”‘ log ||ag||2> +0 (1o,

~t,(1) ~t,sgn /\t sgn [©)
Tig — Ty Ty~

L_ﬁtil H Lo , [ Klog? m)

Here the last inequality comes from the sample complexity

where 11/ = n/||h!|]2, for some |g;| < logm'
m > sK log” m and the assumption ay < 15575+ Given the inductive hypotheses (41), we can conclude

dlSt( t+1,(1) %f—',-l) = |zt 7@5#,(1)‘ ||$u||
1 ~t+1,(1
<K/ t"r -7y ()‘
1 t
<(1- ! |1 .
<S(L=n+1n"01) g ( + Slogm>
skp?y/Nloghm su?klog® m

1 K skpu2y/Nlog®m
+ O "ot B [ 1 + C, ——1
(77 ami ﬁzl ( SlOg > 1

Klog? 1
+O(n/,/ogm% <1+ )
m i slogm

skp?y/Nlog'® m
m

o

(i) tC spky/Nlog®m

S(I—U—FQQ)Oém@(l—F) 2
g slogm m

(if) (1 N 1 )H_l o sp2ky/Nlog™®m
2

S Oéwt+1
slogm m

for some |g2| < Here, the inequality (i) holds true as long as

logm*

su2m10g5m(a 4B t) < 1 @i Cy spu2r\/ N log" m (F.10a)

logm i m
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s/ N log® m < 1 spu2r\/ N log™ m
m

Bzt C1 gt Co , (E.lOb)
i logm i m
Klog®m _, sp*kv/Nlog'®m 1 sp2ky/ N log"® m
Cy < Oy . (E.lOC)
m m logm m

Here, the first condition (E.10a) is satisfied since (according to Lemma 1)

(%5 + Bwﬁ) < Bat S 0gry/Nlogm.

The second condition (E.10b) holds based on Byt < agtv/Nlogm. The third one (E.10c) holds as long as
m > Klog7 m. Moreover, we get that for some |g;1| < @,

i a(l:t»
i

_ t+1 _ t+1
Oémz Ozmz N

1
< at 1
= Galtt ( * 510gm> ’

Attt
(1_77+492)amf:{ - +7793}04m1

as long as a1 /age < 1.
F Technical Lemmas

Lemma 11. Suppose m > K log® m. With probability exceeding 1 — O (m’lo), we have
m . K
Za¢j71aij71bjbj — IK S —logm
Jj=1
Lemma 12. Suppose m > K log® m. For k # i, we have

m . K
> rjiaiabby| S m,

j=1

- K
> larjallaia| bibi|| < \/Tgm,
i=1 m

with probability exceeding 1 — O (m_lo).

Lemma 13. Suppose m > K log®m and z € CN=1 with ||z||, = 1 is independent with {ay;} . With probability

exceeding 1 — O (m_lo), we have
m
* * K
Z aij@akj#zbjbj 5 H E 10g m.

Jj=1

Remark 3. Lemma 12, Lemma 13 and Lemma 11 can be proven by applying the arguments in [18, Section
D.3.3].

Lemma 14. Suppose m > (1% /6%)N log® m. With probability exceeding 1 — O (mflo), we have

2
bih|” aijial  — hilla In1|| S 0 1Ril3

m
Jj=1
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obeying maxi<i<m |bj hil - HhiHQfl < L T log® m. Furthermore, there is

”[ng

Z bjabihiaijag; —hiln|| S 6 ||hilly,

with probability exceeding 1 — O (m™1°), provided m > (11/6%)s%N log® m.

Proof. Please refer to Lemma 11 and Lemma 12 in [2]. O

Lemma 15. Suppose m > suzx/Nlog9 m, then with probability exceeding 1 — O (m’lo), we have

zm: > 9 < spu2v/ K log” m
m

hib;jbih,a;;a); — lhill5 In

j=1k=1

(LA (F.1)

~

obeying maxi<i<s,1<j<m ’b;(h1’ . Hhiuz_l S \/% 10g2 m.

Lemma 16. Suppose m > su?y/N log® m. With probability exceeding 1 — O (m_lo), we have

m S 2 5
S S b, - enony| < PYERE | 2
j=1k=1 m

obeying maxi<i<m ‘bl HhﬂHQ*I < l:n and maxi<i<m, |bf h;| - ||h,iH2—1 < ﬁ log? m.

Remark 4. The proof of Lemma 15 and 16 exploits the same strategy as [16, Section K] does.

Lemma 17. Suppose that a;; and b; follows the definition in the main text. 1 <i < 5,1 < j < m. Consider
any € > 3/n where n = max{K,N}. Let

o N—1
5i={x €€ max lafyux| <5 lsll ).

where B is any value obeying B > c1v/logm for some sufficiently large constant ¢y > 0. Then with probability

exceeding 1 — O (m’lo), one has

‘z;ﬁl|aij,1|2|a;jlz|2bjb;—||zH21K( < elzl, for all z € S, provided that m >
1

comax{ znlogn, < 2nlog2m};

2. ‘Z;nzl laijillag; zb;bs| < e€llz|ly for all z € S, provided that m > co max {E%nlogn, %Bnlog% m};

Here, cg > 0 is some sufficiently large constant.

Proof. Please refer to Lemma 12 in [16]. O





