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Abstract

This paper concerns the problem of demixing
a series of source signals from the sum of bi-
linear measurements. This problem spans di-
verse areas such as communication, imaging
processing, machine learning, etc. However,
semidefinite programming for blind demixing
is prohibitive to large-scale problems due to
high computational complexity and storage
cost. Although several efficient algorithms
have been developed recently that enjoy the
benefits of fast convergence rates and even
regularization free, they still call for spec-
tral initialization. To find simple initial-
ization approach that works equally well as
spectral initialization, we propose to solve
blind demixing problem via Wirtinger flow
with random initialization, which yields a
natural implementation. To reveal the ef-
ficiency of this algorithm, we provide the
global convergence guarantee concerning ran-
domly initialized Wirtinger flow for blind
demixing. Specifically, it shows that with
sufficient samples, the iterates of randomly
initialized Wirtinger flow can enter a local re-
gion that enjoys strong convexity and strong
smoothness within a few iterations at the first
stage. At the second stage, iterates of ran-
domly initialized Wirtinger flow further con-
verge linearly to the ground truth.

1 INTRODUCTION

Suppose we are given an observation vector y ∈ Cm in
frequency domain generated from the sum of bilinear
measurements of unknown vectors x\i ∈ CN , h\i ∈ CK ,
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i = 1, · · · , s, i.e.,

yj =

s∑
i=1

b∗jh
\
ix
\∗
i aij , 1 ≤ j ≤ m, (1)

where {aij} ∈ CN , {bj} ∈ CK are design vectors.
Here, the firstK columns of the matrix F form the ma-
trix B := [b1, · · · , bm]∗ ∈ Cm×K , where F ∈ Cm×m
is the unitary discrete Fourier transform (DFT) ma-

trix with FF ∗ = Im. Our goal is to recover {x\i} and

{h\i} from the sum of bilinear measurements, which is
known as blind demixing [1, 2].

This problem has spanned a wide scope of applications
ranging from imaging processing [3, 4] and machine
learning [5, 6] to communication [7, 8]. Specifically,
by solving the blind demixing problem, both original
images and corresponding convolutional kernels can be
recovered from a blurred image [3]. This problem has
also been exploited to demix and deconvolve calcium
imaging recordings of neuronal ensembles [4]. Blind
demixing also finds applications in machine learning
[5, 6] where feature maps convolve with filters individ-
ually and added overall users to approximate the input
vector. In the context of communication, this problem
ensures to recover the source signal from distinguish-
ing users without knowing channel vectors, thereby en-
abling low-latency communication [7].

Although blind demixing plays vital role in various
areas, solving it is generally highly intractable. More-
over, some applications of blind demixing problem in-
volves large-scale data, hence efficient algorithms with
optimal guarantees are needed urgently to recover sig-
nal vectors from a single observation vector. Instead of
computationally expensive convex method [1], a non-
convex algorithm, regularized gradient descent [9], has
been recently proposed to efficiently solve blind demix-
ing problem. This method, however, requires extra
regularization and still yields conservative computa-
tional optimality guarantees. To elude the regulariza-
tion and develop an algorithm with progressive com-
putational guarantees, the least square estimation ap-
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proach was proposed in [2]:

P : minimize
{hi},{xi}

f(h,x) :=

m∑
j=1

∣∣∣ s∑
i=1

b∗jhix
∗
iaij − yj

∣∣∣2, (2)

which is solved via Wirtinger flow with spectral ini-
tialization by harnessing the benefits of low computa-
tional complexity, regularization-free, fast convergence
rate with aggressive step size and computational op-
timality guarantees [2]. Nevertheless, this algorithm
with theoretical guarantees depends on the spectral
initialization by computing the largest singular vector
of the data matrix [2]. To find a natural implementa-
tion for the practitioners, we propose to solve the blind
demixing problem via randomly initialized Wirtinger
flow. Our goal, in this paper, is to confirm the effi-
ciency of this algorithm with theoretical guarantees.
Specifically, we shall verify that the iterates of ran-
domly initialized Wirtinger flow are able to achieve
a local region that enjoys strong convexity and strong
smoothness within a few iteration at the first stage. At
the next stage, we further show that the iterates of the
randomly initialized Wirtinger flow linearly converges
to the ground truth.

1.1 State-of-the-Art Algorithms

Despite the general intractability of blind demixing, it
can be effectively solved by several algorithms under
the proper statistical models. In particular, semidef-
inite programming was developed in [1] to solve the
blind demixing problem by lifting the bilinear model
into the matrix space. However, it is computation-
ally prohibitive for solving large-scale problem due to
the high computation and storage cost. To address
this issue, the nonconvex algorithm, e.g., regularized
gradient descent with spectral initialization [9], was
further developed to optimize the variables in the nat-
ural space. Nevertheless, the theoretical guarantees for
the regularized gradient [9] provide pessimistic conver-
gence rate and require carefully-designed initialization.
The Riemannian trust-region optimization algorithm
without regularization was further proposed in [7] to
improve the convergence rate. However, the second-
order algorithm brings unique challenges in provid-
ing statistical guarantees. Recently, theoretical guar-
antees concerning regularization-freed Wirtinger flow
with spectral initialization for blind demixing was pro-
vided in [2]. However, this regularization-freed method
still calls for spectral initialization. In this paper, we
aim to explore the random initialization strategy for
natural implementation and theoretically verify the ef-
ficiency of the randomly initialized Wirtinger flow.

Based on the random initialization strategy, a line of
research studies the benign global landscapes and aims

to design generic saddle-point escaping algorithms,
e.g., noisy stochastic gradient descent [10], trust-region
method [11], perturbed gradient descent [12]. With
sufficient sample size, these algorithms are guaranteed
to converge globally for phase retrieval [11], matrix re-
covery [13], matrix sensing [13], robust PCA [14] and
shallow neural networks [15] where all local minima
are as good as global and all the saddle points are
strict. However, the theoretical results developed in
[10, 11, 12, 13, 14, 15] are fairly general and may yield
pessimistic convergence rate guarantees. Moreover,
these saddle-point escaping algorithms are more com-
plicated for implementation than the natural vanilla
gradient descent or Wirtinger flow. To advance the
theoretical analysis for gradient descent with random
initialization, the fast global convergence guarantee
concerning randomly initialized gradient descent for
phase retrieval has been recently provided in [16].

1.2 Wirtinger Flow with Random
Initialization

In this paper, we solve the blind demixing problem
via randomly initialized Wirtinger flow by harnessing
the benefits of computational efficiency, regularization-
free and careful initialization free. In this paper, our
main contribution is to provide the global convergence
guarantee for the randomly initialized Wirtinger flow.

Wirtinger flow with random initialization is an it-
erative algorithm with vanilla gradient descent up-
date procedure, i.e., without regularization. Specif-
ically, the gradient step of Wirtinger flow is repre-
sented by the notion of Wirtinger derivatives [17], i.e.,
the derivatives of real-valued functions over complex
variables. To simplify the presentation, we denote
f(z) := f(h,x), where

z =

z1· · ·
zs

 ∈ Cs(N+K) with zi =

[
hi
xi

]
∈ CN+K . (3)

Furthermore, we define the discrepancy between the
estimate z and the ground truth z\ as the distance
function, given as

dist(z, z\) =

(
s∑
i=1

dist2(zi, z
\
i )

)1/2

, (4)

where

dist2(zi, z
\
i ) = min

αi∈C
(‖ 1

αi
hi − h\i‖

2
2 + ‖αixi − x\i‖

2
2)/di

for i = 1, · · · , s. Here, di = ‖h\i‖22 + ‖x\i‖22 and each αi
is the alignment parameter.

Let A∗ and a∗ denote the conjugate transpose of ma-
trix A vector a respectively. For each i = 1, · · · , s,
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Figure 1: Numerical results.

∇hif(z) and ∇xif(z) denote the Wirtinger gradient
of f(z) with respect to hi and xi respectively:

∇hif(z) =

m∑
j=1

( s∑
k=1

b∗jhkx
∗
kakj − yj

)
bja
∗
ijxi, (5a)

∇xif(z) =

m∑
j=1

( s∑
k=1

h∗kbja
∗
kjxk − yj

)
aijb

∗
jhi. (5b)

In light of the Wirtinger gradient (5), the update rule
of Wirtinger flow is given by[
ht+1
i

xt+1
i

]
=

[
hti
xti

]
− η

 1
‖xti‖22

∇hif(zt)

1
‖hti‖22

∇xif(zt)

 , i = 1, · · · , s,

(6)

where η > 0 is the step size.

1.3 Numerical Results

The power of randomly initialized WF for solving
problem P (2) will be illustrated by numerical ex-
ample. The ground truth signals and initial points are
randomly generated as

h\i ∼ N (0,K−1IK), x\i ∼ N (0, N−1IN ), (7)

h0
i ∼ N (0,K−1IK), x0

i ∼ N (0, N−1IN ), (8)

for i = 1, · · · , s. In all simulations, we set K = N
and normalize ‖h\i‖2 = ‖x\i‖2 = 1 for i = 1, · · · , s.
Specifically, for each K ∈ {10, 20, 40, 80, 100}, s = 10
and m = 50K, the design vectors aij ’s follow aij ∼

N (0, 12IN ) + iN (0, 12IN ). With the chosen step size
η = 0.1 in all settings, Fig. 1(a) shows the relative er-

ror, i.e.,
∑s
i=1 ‖htixt∗i − h

\
ix
\∗
i ‖F /

∑s
i=1 ‖h

\
ix
\∗
i ‖F , ver-

sus the iteration count, where ‖X‖F denotes the
Frobenius norm of the matrix X. We observe that,
the iterations of randomly initialized Wirtinger flow
can be separately into two stages: Stage I: within first
tens of iterations, the relative error maintains nearly
flat, Stage II: the relative error enjoys linear conver-
gence rate which rarely changes as the problem size
varies.

We further illustrate that the performance and con-
vergence rate of the Wirtinger flow with random ini-
tialization depend on the condition number, i.e., κ :=
maxi ‖x\i‖2
mini ‖x\i‖2

. In this experiment, let K = 50, m = 800,

s = 2, the step size be η = 0.2. We then set for the
first component ‖h\1‖2 = ‖x\1‖2 = 1 and for the sec-

ond one ‖h\2‖2 = ‖x\2‖2 = κ with κ ∈ {1, 2, 3}. The
random initialization (8) is utilized. Fig. 1(b) shows
the relative error versus the iteration count. As we can
see, a larger κ yields slower convergence rate.

2 MAIN RESULTS

In this section, we shall verify the preceding numerical
results with theoretical guarantees. Through theoret-
ical analysis, we assume the design vectors aij ’s as
aij ∼ N (0, 12IN ) + iN (0, 12IN ). To present the main
theorem, we first introduce several fundamental no-
tions and definitions.
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Throughout this paper, f(n) = O(g(n)) or f(n) .
g(n) denotes that there exists a constant c > 0 such
that |f(n)| ≤ c|g(n)|, whereas f(n) & g(n) means that
there exists a constant c > 0 such that |f(n)| ≥ c|g(n)|.
f(n)� g(n) denotes that there exists some sufficiently
large constant c > 0 such that |f(n)| ≥ c|g(n)|. In ad-
dition, the notation f(n) � g(n) means that there ex-
ists constants c1, c2 > 0 such that c1|g(n)| ≤ |f(n)| ≤
c2|g(n)|.

Furthermore, the incoherence parameter [9], which
characterizes the incoherence between bj and hi for
1 ≤ i ≤ s, 1 ≤ j ≤ m.

Definition 1 (Incoherence for blind demixing). Let
the incoherence parameter µ be the smallest number
such that

max
1≤i≤s,1≤j≤m

|b∗jh
\
i |

‖h\i‖2
≤ µ√

m
. (9)

Let h̃ti and x̃ti be

h̃ti =
1

ωti
hti and x̃ti = ωtix

t
i, (10)

for i = 1, · · · , s, respectively, where ωi’s are alignment
parameters. We further define the norm of signal com-
ponent and the perpendicular component with respect
to hi for i = 1, · · · , s, as

αhi := 〈h\i , h̃
t
i〉/‖h

\
i‖2, (11)

βhi :=

∥∥∥∥∥h̃ti − 〈h\i , h̃ti〉‖h\i‖22
h\i

∥∥∥∥∥
2

, (12)

respectively. Here, ωi’s are the alignment parameters.
Similarly, the norms of the signal component and the
perpendicular component with respect to xi for i =
1, · · · , s, can be represented as

αxi := 〈x\i , x̃
t
i〉/‖x

\
i‖2, (13)

βxi :=

∥∥∥∥∥x̃ti − 〈x\i , x̃ti〉‖x\i‖22
x\i

∥∥∥∥∥
2

, (14)

respectively.

Theorem 1. Assume that the initial points obey (8)
for i = 1, · · · , s and the stepsize η > 0 satisfies
η � s−1. Suppose that the sample size satisfies
m ≥ Cµ2s2κ4 max{K,N} log12m for some sufficiently
large constant C > 0. Then with probability at least
1−c1m−ν−c1me−c2N for some constants ν, c1, c2 > 0,
there exists a sufficiently small constant 0 ≤ γ ≤ 1 and
Tγ . s log(max {K,N}) such that

1. The randomly initialized WF linearly converges to
z\, i.e.,

dist(zt, z\) ≤ γ
(

1− η

16κ

)t−Tγ ∥∥z\∥∥
2
, t ≥ Tγ ,

2. The magnitude ratios of the signal component to
the perpendicular component with respect to hti
and xti obey

max
1≤i≤s

αhti

βhti
&

1√
K logK

(1 + c3η)t, (15a)

max
1≤i≤s

αxti

βxti
&

1√
N logN

(1 + c4η)t, (15b)

respectively, where t = 0, 1, · · · for some constant
c3, c4 > 0.

Theorem 1 provides precise statistical analysis on
the computational efficiency of WF with random ini-
tialization. Specifically, in Stage I, it takes Tγ =
O(s log(max {K,N})) iterations for randomly initial-
ized WF to a local region near the ground truth that
enjoys strong convexity and strong smoothness. The
short duration of Stage I is own to the exponential
growth of the magnitude ratio of the signal compo-
nent to the perpendicular components (15). More-
over, in Stage II, it takes O(s log(1/ε)) iterations to
reach ε-accurate solution at a linear convergence rate.
Thus, the randomly initialized WF is guaranteed to
converge to the ground truth with the iteration com-
plexity O(s log(max {K,N}) + s log(1/ε)) given the
sample size m & s2 max {K,N}poly log(m).

To further illustrate the relationship between the sig-
nal component αhi (resp. αxi) and the perpendicu-
lar component βhi (resp. βxi) for i = 1, · · · , s, we
provide the simulation results under the setting of
K = N = 10, m = 50K, s = 4 and η = 0.1 with
‖h\i‖2 = ‖x\i‖2 = 1 for 1 ≤ i ≤ s. In particular, αhi ,
βhi versus iteration count (resp. αhi , βhi versus iter-
ation count) for i = 1, · · · , s is demonstrated in Fig.
1(c) (resp. Fig. 1(d)). Consider Fig. 1(a), Fig. 1(c)
and Fig. 1(d) collectively, it shows that despite the
rare decline of the relative error during Stage I, the
sizes of the signal components, i.e., αhi and αxi for
each i = 1, · · · , s, exponentially increase and the signal
component becomes dominant component at the end
of Stage I. Furthermore, the exponential growth of the
ratio αhi/βhi (resp. αxi/βxi) for each i = 1, · · · , s is
illustrated in Fig. 1(e) (resp. Fig. 1(f)).

3 DYNAMICS ANALYSIS

In this section, we shall briefly summarize the proof of
the main theorem which is based on investigating the
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dynamics of the iterates of WF with random initializa-
tion. The steps of proving Theorem 1 are summarized
as follows.

1. Stage I:

• Dynamics of population-level state evo-
lution. Provide the population-level state
evolution of αxi (20a) and βxi (20b), αhi

(21a), βhi (21b) respectively, where the sam-
ple size approaches infinity. We then develop
the approximate state evolution (23), which
are remarkably close to the population-level
state evolution, in the finite-sample regime.
See details in Section 3.1.

• Dynamics of approximate state evo-
lution. Show that there exists some
Tγ = O(s log(max {K,N})) such that
dist(zTγ , z\) ≤ γ , if αhi (11), βhi (12), αxi

(13) and βxi (14) satisfy the approximate
state evolution (23). The exponential growth
of the ratio αhi/βhi and αxi/βxi are fur-
ther demonstrated under the same assump-
tion. Please refer to Section 3.2.

• Leave-one-out arguments. Prove that
with high probability αhi , βhi , αxi and βxi
satisfy the approximate state evolution (23) if
the iterates {zi} are independent with {aij}.
See details in Section A in the supplemen-
tal material. To achieve this, the “near-
independence” between {zi} and {aij} is es-
tablished via exploiting leave-one-out argu-
ments and some variants of the arguments.
Specifically, the leave-one-out sequences and
random-sign sequences are constructed in
Section 3.3. The concentrations between the
original and these auxiliary sequences are
provided in the supplemental material.

2. Stage II: Local geometry in the region of
incoherence and contraction. We invoke the
prior theory provided in [2] to show local conver-
gence of the random initialized WF in Stage II.
Claim 15 in Stage II are further proven. Please
refer to Section A.3 in the supplemental material.

3.1 Dynamics of Population-level State
Evolution

In this subsection, we investigate the dynamics of
population-level (where we have infinite samples) state
evolution of αhi (11), βhi (12), αxi (13) and βxi (14).

Without loss the generality, we assume that x\i = qie1
for i = 1, · · · , s, where 0 < qi ≤ 1, i = 1, · · · , s
are some constants and κ = maxi qi

mini qi
, and e1 denotes

the first standard basis vector. This assumption is

based on the rotational invariance of Gaussian distri-
butions. Since the deterministic nature of {bj}, the

ground truth signals {h\i} (channel vectors) cannot be
transferred to a simple form, which yields more tedious
analysis procedure. For simplification, for i = 1, · · · , s,
we denote

xti1 and xti⊥ := [xtij ]2≤j≤N , (16)

as the first entry and the second through the N th en-
tries of xti, respectively. Based on the assumption that

x\i = qie1 for i = 1, · · · , s, (13) and (14) can be refor-
mulated as

αxi := x̃ti1 and βxi :=
∥∥x̃ti⊥∥∥2 . (17)

To study the population-level state evolution, we start
by considering the case where the sequences {zti} (refer
to (3)) are established via the population gradient, i.e.,
for i = 1, · · · , s,[

ht+1
i

xt+1
i

]
=

[
hti
xti

]
− η

 1
‖xti‖22

∇hiF (zt)

1
‖hti‖22

∇xiF (zt)

 , (18)

where

∇hiF (z) := E[∇hif(h,x)] = ‖xi‖22 hi − (x\∗i xi)h
\
i ,

∇xiF (z) := E[∇xif(h,x)] = ‖hi‖22 xi − (h\∗i hi)x
\
i .

Here, the population gradients are computed based
on the assumption that {xi} (resp. {hi}) and {aij}
(resp. {bj}) are independent with each other. With
simple calculations, the dynamics for both the signal
and the perpendicular components with respect to xti,
i = 1, · · · , s are given as:

x̃t+1
i1 = (1− η) x̃ti1 + η

q2i

‖h̃ti‖22
h\∗i h̃

t
i, (19a)

x̃t+1
i⊥ = (1− η) x̃ti⊥. (19b)

Assuming that η > 0 is sufficiently small and ‖h\i‖2 =

‖x\i‖2 = qi (0 < qi ≤ 1) for i = 1, · · · , s and recogniz-

ing that ‖h̃ti‖22 = α2
hti

+ β2
hti

, we arrive at the following

population-level state evolution for both αxti
and βxti :

αxt+1
i

= (1− η)αxti
+ η

qiαhti

α2
hti

+ β2
hti

, (20a)

βxt+1
i

= (1− η)βxti . (20b)

Likewise, the population-level state evolution for both
αhti

and βhti :

αht+1
i

= (1− η)αhti
+ η

qiαxti

α2
xti

+ β2
xti

, (21a)

βht+1
i

= (1− η)βhti . (21b)
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In finite-sample case, the dynamics of the randomly
initialized WF iterates can be represented as

zt+1
i =

[
ht+1
i

xt+1
i

]
=

[
hti − η/‖xti‖22 · ∇hiF (z)
xti − η/‖xti‖22 · ∇xiF (z)

]
−

−
[
η/‖xti‖22 · (∇hif (z)−∇hiF (z))
η/‖hti‖22 · (∇xif (z)−∇xiF (z))

]
.

(22)

Under the assumption that the last term in (22) is well-
controlled, which will be justified in Section D in the
supplemental material, we arrive at the approximate
state evolution:

αht+1
i

= (1− η +
ηqiψhti

α2
xti

+ β2
xti

)αhti
+ η(1− ρhti)

qiαxti

α2
xti

+ β2
xti

,

(23a)

βht+1
i

= (1− η +
ηqiϕhti

α2
xti

+ β2
xti

)βhti , (23b)

αxt+1
i

= (1− η +
ηqiψxti

α2
hti

+ β2
hti

)αxti
+ η(1− ρxti)

qiαhti

α2
hti

+ β2
hti

,

(23c)

βxt+1
i

= (1− η +
ηqiϕxti

α2
hti

+ β2
hti

)βxti , (23d)

where {ψhti
}, {ψxti

}, {ϕhti
}, {ϕxti

}, {ρhti} and {ρxti}
represent the perturbation terms.

3.2 Dynamics of Approximate State
Evolution

It is easily seen that if αhti
(11), βhti (12), αxti

(13) and
βxti (14) obey

|αhti
− qi| ≤

√
2γ

4κ
√
s

and βhti ≤
√

2γ

4κ
√
s

and

|αxti
− qi| ≤

√
2γ

4κ
√
s

and βxti ≤
√

2γ

4κ
√
s
, (24)

for i = 1, · · · , s, then

dist(z, z\) ≤
[
sκ2

2

(
|αhti

− qi|+ |βhti |
)2

+

sκ2

2

(
|αxti

− qi|+ |βxti |
)2 ]1/2

≤ γ. (25)

In this subsection, we shall show that as long as the
approximate state evolution (23) holds, there exists
some constant Tγ = O(s log max {K,N}) satisfying
condition (24). This is demonstrated in the following
Lemma. Prior to that, we first list several conditions
and definitions that contribute to the lemma.

• The initial points obey

αh0
i
≥ qi
K logK

and αx0
i
≥ qi
N logN

, (26a)√
α2
h0
i

+ β2
h0
i
∈
[
1− 1

logK
, 1 +

1

logK

]
qi, (26b)√

α2
x0
i

+ β2
x0
i
∈
[
1− 1

logN
, 1 +

1

logN

]
qi, (26c)

for i = 1, · · · , s.

• Define

Tγ := min
{
t : satifes (24)

}
, (27)

where γ > 0 is some sufficiently small constant.

• Define

T1 := min
{
t : min

i

αhti

qi
≥ c7

log5m
, min

i

αxti

qi

≥ c′7
log5m

}
, (28)

T2 := min

{
t : min

i

αhti

qi
> c8, min

i

αxti

qi
> c′8

}
,

(29)

for some small absolute positive constants
c7, c

′
7, c8, c

′
8 > 0.

• For 0 ≤ t ≤ Tγ , it has

1

2
√
K logK

≤
αhti

qi
≤ 2, c5 ≤

βhti
qi
≤ 1.5 and

αht+1
i
/αhti

βht+1
i
/βhti

≥ 1 + c5η, i = 1, · · · , s, (30)

1

2
√
N logN

≤
αxti

qi
≤ 2, c6 ≤

βxti
qi
≤ 1.5 and

αxt+1
i
/αxti

βxt+1
i
/βxti

≥ 1 + c6η, i = 1, · · · , s, (31)

for some constants c5, c6 > 0.

Lemma 1. Assume that the initial points
obey condition (26) and the perturbation terms
in the approximate state evolution (23) obey

max
{
|ψhti
|, |ψxti

|, |ϕhti
|, |ϕxti

|, |ρxti |
}
≤ c

logm , for

i = 1, · · · , s, t = 0, 1, · · · and some sufficiently small
constant c > 0.

1. Then for any sufficiently large K,N and the step-
size η > 0 that obeys η � s−1, it follows

Tγ . s log(max {K,N}), (32)

and (30), (31).
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2. Then with the stepsize η > 0 following η � s−1,
one has that T1 ≤ T2 ≤ Tγ . s log max{K,N},
T2 − T1 . s log logm, Tγ − T2 . s.

Proof. Please refer to Appendix C in the supplemental
material.

The random initialization (8) satisfies the
condition (26) with probability at least
1 − O(1/

√
log min{K,N}) [16]. According to

this fact, Lemma 1 ensures that under both random
initialization (8) and approximate state evolution
(23) with the stepsize η � s−1, Stage I only lasts
a few iterations, i.e., Tγ = O(s log max{K,N}). In
addition, Lemma 1 demonstrates the exponential
growth of the ratios, i.e., αht+1

i
/αhti

, βht+1
i
/βhti , which

contributes to the short duration of Stage I.

Moreover, Lemma 1 defines the midpoints T1 when the
sizes of the signal component, i.e., αhti

and αxti
, i =

1, · · · , s, become sufficiently large, which is crucial to
the following analysis. In particular, when establishing
the approximate state evolution (23) in Stage I, we
analyze two subphases of Stage I individually:

• Phase 1: consider the iterations in 0 ≤ t ≤ T1,

• Phase 2: consider the iterations in T1 < t ≤ Tγ ,

where T1 is defined in (28).

where T1 is defined in (28).

3.3 Leave-One-Out Approach

According to Section 3.1 and Lemma 1, the unique
challenge for establishing the approximate state evo-
lution (23) is to bound the perturbation terms to cer-
tain order, i.e., |ψhti

|, |ψxti
|, |ϕhti

|, |ϕxti
|, |ρhti |, |ρxti | �

1/logm for i = 1, · · · , s. To achieve this goal, we ex-
ploit some variants of leave-one-out sequences [16] to
establish the “near-independence” between {zti} and
{ai}. Hence, some terms can be approximated by
a sum of independent variables with well-controlled
weights, thereby be controlled via central limit theo-
rem.

In the following, we define three sets of auxiliary se-
quences {zt,(l)}, {zt,sgn} and {zt,sgn,(l)}, respectively.

• Leave-one-out sequences {zt,(l)}t≥0. For each
1 ≤ l ≤ m, the auxiliary sequences {zt,(l)} are
established by dropping the lth sample and runs
randomly initialized WF with objective function

f (l) (z) =
∑
j:j 6=l

∣∣∣ s∑
i=1

b∗jhix
∗
iaij − yj

∣∣∣2. (33)

Thus, the sequences {zt,(l)i } (recall the definition
of zi (3)) are statistically independent of {ail}.

• Random-sign sequences {zt,sgn}t≥0. Define the

auxiliary design vectors
{
asgn
ij

}
as

asgn
ij :=

[
ξijaij,1
aij,⊥

]
, (34)

where {ξij} is a set of standard complex uniform
random variables independent of {aij}, i.e.,

ξij
i.i.d.
= u/|u|, (35)

where u ∼ N (0, 12 ) + iN (0, 12 ). Moreover, with
the corresponding ξij , the auxiliary design vec-
tor {bsgnj } is defined as bsgnj = ξijbj . With these

auxiliary design vectors, the sequences {zt,sgn}
are generated by running randomly initialized WF
with respect to the loss function f sgn

(
z
)

m∑
j=1

∣∣∣ s∑
i=1

bsgn∗j hix
∗
ia

sgn
ij − b

sgn∗
j h\ix

\∗
i a

sgn
ij

∣∣∣2. (36)

Note that these auxiliary design vectors, i.e.,
{asgn

ij }, {b
sgn
j } produce the same measurements as

{aij} , {bj}, i.e., bsgn∗j h\ix
\∗
i a

sgn
ij = b∗jh

\
ix
\∗
i aij =

qiaij,1b
∗
jh

\
i for 1 ≤ i ≤ s, 1 ≤ j ≤ m.

Note that all the auxiliary sequences are assumed to
have the same initial point, namely, for 1 ≤ l ≤ m,
{z0} = {z0,(l)} = {z0,sgn} = {z0,sgn,(l)}.

In view of the ambiguities, i.e., h\ix
\
i = 1

ωh
\
i(ωx

\
i)
∗,

several alignment parameters are further defined for
the sequel analysis. Specifically, the alignment pa-

rameter between z
t,(l)
i = [h

t,(l)∗
i x

t,(l)∗
i ]∗ and z̃ti =

[h̃t∗i x̃t∗i ]∗, where h̃ti = 1

ωti
hti and x̃ti = ωtix

t
i, is repre-

sented as

ω
t,(l)
i,mutual := arg min

ω∈C

∥∥∥∥∥ 1

ω
h
t,(l)
i − 1

ωti
hti

∥∥∥∥∥
2

2

+
∥∥∥ωxt,(l)i − ωtixti

∥∥∥2
2
, (37)

for i = 1, · · · , s. In addition, we denote ẑ
t,(l)
i =

[ĥ
t,(l)∗
i x̂

t,(l)∗
i ]∗ where

ĥ
t,(l)
i :=

1

ω
t,(l)
i,mutual

h
t,(l)
i and x̂

t,(l)
i := ω

t,(l)
i,mutualx

t,(l)
i .

(38)

Define the alignment parameter between zt,sgni =
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[ht,sgn∗i xt,sgn∗i ]∗ and zti = [ht∗i xt∗i ]∗ as

ωti,sgn := arg min
ω∈C

∥∥∥∥∥ 1

ω
ht,sgni − 1

ωti
hti

∥∥∥∥∥
2

2

+
∥∥ωxt,sgni − ωtixti

∥∥2
2
, (39)

for i = 1, · · · , s. In addition, we denote žt,sgni =
[ȟt,sgn∗i x̌t,sgn∗i ]∗ where

ȟt,sgni :=
1

ωti,sgn
ht,sgni and x̌t,sgni := ωti,sgnx

t,sgn
i .

(40)

3.4 Induction Hypotheses

In this subsection, we shall establish a collection of
induction hypotheses which are crucial to the justifi-
cation of approximate state evolution (23). We list all
the induction hypotheses: for 1 ≤ i ≤ s,

max
1≤l≤m

dist
(
z
t,(l)
i , z̃ti

)
≤(βhti + βxti)

(
1 +

1

s logm

)t
C1

sµ2κ
√

max{K,N} log8m

m
(41a)

max
1≤l≤m

dist
(
h\∗i h

t,(l)
i ,h\∗i h̃

t
i

)
· ‖h\i‖

−1
2

≤αhti

(
1 +

1

s logm

)t
C2
sµ2κ

√
K log13m

m
(41b)

max
1≤l≤m

dist
(
x
t,(l)
i1 , x̃ti1

)
≤αxti

(
1 +

1

s logm

)t
C2
sµ2κ

√
N log13m

m
(41c)

max
1≤i≤s

dist
(
ht,sgni , h̃ti

)
≤αhti

(
1 +

1

s logm

)t
C3

√
sµ2κ2K log8m

m
(41d)

max
1≤i≤s

dist
(
xt,sgni , x̃ti

)
≤αxti

(
1 +

1

s logm

)t
C3

√
sµ2κ2N log8m

m
(41e)

max
1≤l≤m

∥∥∥h̃ti − ĥt,(l)i − h̃t,sgni + ĥ
t,sgn,(l)
i

∥∥∥
2

≤αhti

(
1 +

1

s logm

)t
C4
sµ2
√
K log16m

m
, (41f)

max
1≤l≤m

∥∥∥x̃ti − x̂t,(l)i − x̃t,sgni + x̂
t,sgn,(l)
i

∥∥∥
2

≤αxti

(
1 +

1

s logm

)t
C4
sµ2
√
N log16m

m
, (41g)

c5 ≤
∥∥hti∥∥2 ,∥∥xti∥∥2 ≤ C5, (41h)

∥∥hti∥∥2 ≤ 5αhti

√
log5m, (41i)∥∥xti∥∥2 ≤ 5αxti

√
log5m, (41j)

where C1, · · · , C5 and c5 are some absolute positive
constants and x̂i, x̃i, ĥi, h̃i are defined in Section 3.3.

Specifically, (41a), (41c), (41d) and (41e) identify that
the auxiliary sequences {zt,(l)} and {zt,sgn} are ex-
tremely close to the original sequences {zt}. In addi-

tion, as claimed in (41f) and (41g), h̃ti − h̃
t,sgn
i (resp.

x̃ti−x̃
t,sgn
i ) and ĥ

t,(l)
i −ĥt,sgn,(l)i (resp. x̂

t,(l)
i −x̂t,sgn,(l)i )

are also exceedingly close to each other. The hypothe-
ses (41h) illustrates that the norm of the iterates {hti}
(resp. {xti}) is well-controlled in Phase 1. Moreover,
(41i) (resp. (41j)) indicates that αhti

(resp. αxti
) is

comparable to ‖hti‖2 (resp. ‖xti‖2).

Lemma 4-Lemma 9 in the supplemental material
demonstrate that if induction hypotheses (41) for 1 ≤
i ≤ s hold true up to the tth iteration, then they are
still satisfied in the (t + 1)th iteration under the con-
dition of sufficient samples. Thus auxiliary sequences
are close sufficient to the original sequences, which con-
tribute to bound the last term in (22) thereby validat-
ing the approximate evolution (23).

4 CONCLUSION

In this paper, we develop a least square estimation ap-
proach to solve blind demixing problem. To address
the limitations of state-of-the-art algorithms, e.g., high
computational complexity, low convergence rate and
requirement of careful initialization, we developed the
randomly initialized Wirtinger flow to solve the blind
demixing problem. The global convergence guaran-
tee of this algorithm is further provided in this pa-
per. It shows that iterates of the randomly initial-
ized Wirtinger flow can enter the local region that en-
joys strong convexity and strong smoothness within a
few iterations, followed by linearly converging to the
ground truth.
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