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Abstract

We consider the convex-concave saddle point
problem minx maxy f(x)+y

>
Ax�g(y) where

f is smooth and convex and g is smooth and
strongly convex. We prove that if the coupling
matrix A has full column rank, the vanilla
primal-dual gradient method can achieve lin-
ear convergence even if f is not strongly con-
vex. Our result generalizes previous work
which either requires f and g to be quadratic
functions or requires proximal mappings for
both f and g. We adopt a novel analysis
technique that in each iteration uses a “ghost”
update as a reference, and show that the it-
erates in the primal-dual gradient method
converge to this “ghost” sequence. Using the
same technique we further give an analysis for
the primal-dual stochastic variance reduced
gradient method for convex-concave saddle
point problems with a finite-sum structure.

1 Introduction

We revisit the convex-concave saddle point problems
of the form

min
x2Rd1

max
y2Rd2

L(x, y) = f(x) + y
>
Ax� g(y), (1)

where both f and g are convex functions and A 2
Rd2⇥d1 is a coupling matrix. This formulation has a
wide range of applications, including supervised learn-
ing [Zhang and Lin, 2015], unsupervised learning [Xu
et al., 2005, Bach et al., 2008], reinforcement learn-
ing [Du et al., 2017], robust optimization [Ben-Tal
et al., 2009], PID control [Hast et al., 2013], etc. See
Section 1.2 for some concrete examples.
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Algorithm 1 Primal-Dual Gradient Method

Inputs: initial points x0 2 Rd1 , y0 2 Rd2 , step sizes
⌘1, ⌘2 > 0

1: for t = 0, 1, . . . do
2: xt+1 = xt � ⌘1rxL(xt, yt)

= xt � ⌘1

�
rf(xt) +A

>
yt

�

3: yt+1 = yt + ⌘2ryL(xt, yt)
= yt + ⌘2 (Axt �rg(yt))

4: end for

When the problem dimension is large, the most widely
used and sometimes the only scalable methods to solve
Problem (1) are first-order methods. Arguably the
simplest first-order algorithm is the primal-dual gradi-
ent method (Algorithm 1), a natural generalization of
the gradient descent algorithm, which simultaneously
performs gradient descent on the primal variable x and
gradient ascent on the dual variable y.

There has been extensive research on analyzing the
convergence rate of Algorithm 1 and its variants. It is
known that if both f and g are strongly convex and
admit e�cient proximal mappings, then the proximal
primal-dual gradient method converges to the optimal
solution at a linear rate [Bauschke and Combettes, 2011,
Palaniappan and Bach, 2016, Chen and Rockafellar,
1997], i.e., it only requires O

�
log 1

✏

�
iterations to obtain

a solution that is ✏-close to the optimum.

In many applications, however, we only have strong
convexity in g but no strong convexity in f . This
motivates the following question:

Does the primal-dual gradient method con-
verge linearly to the optimal solution if f is not
strongly convex?

Intuitively, a linear convergence rate is plausible. Con-
sider the corresponding primal problem of (1):

min
x2Rd1

P (x) = g
⇤(Ax) + f(x), (2)

where g
⇤ is the conjugate function of g. Because g is

smooth and strongly convex, as long as A has full col-
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umn rank, Problem (2) has a smooth and strongly con-
vex objective and thus vanilla gradient descent achieves
linear convergence. Therefore, one might expect a lin-
early convergent first-order algorithm for Problem (1)
as well. However, whether the vanilla primal-dual gra-
dient method (Algorithm 1) has linear convergence
turns out to be a nontrivial question.

Two recent results verified this conceptual experiment
with additional assumptions: Du et al. [2017] required
both f and g to be quadratic functions, and Wang
and Xiao [2017] required both f and g to have e�cient
proximal mappings and uses a proximal primal-dual
gradient method. In this paper, we give an a�rmative
answer to this question with minimal assumptions. Our
main contributions are summarized below.

1.1 Our Contributions

Linear Convergence of the Primal-Dual Gradi-
ent Method. We show that as long as f and g are
smooth, f is convex, g is strongly convex and the
coupling matrix A has full column rank, Algorithm 1
converges to the optimal solution at a linear rate. See
Section 3 for a precise statement of our result. This
result significantly generalizes previous ones which rely
on stronger assumptions. Note that all the assump-
tions are necessary for linear convergence: without
any of them, the primal problem (2) requires at least
poly( 1✏ ) iterations to obtain an ✏-close solution [Nes-
terov, 2013], so there is no hope of linear convergence
for Problem (1).

New Analysis Technique. To analyze the conver-
gence of an optimization algorithm, a common way
is to construct a potential function (also called Lya-
punov function in the literature) which decreases af-
ter each iteration. For example, for the primal prob-
lem (2), a natural potential function is kxt � x

⇤k, the
distance between the current iterate and the optimal so-
lution. However, for the primal-dual gradient method,
it is di�cult to show similar potential functions like
kxt � x

⇤k + kyt � y
⇤k decrease because the two se-

quences, {xt}1t=0 and {yt}1t=0, are related to each other.

In this paper, we develop a novel method for analyz-
ing the convergence rate of the primal-dual gradient
method. The key idea is to consider a “ghost” sequence.
For example, in our setting, the “ghost” sequence comes
from a gradient descent step for Problem (2). Then
we relate the sequence generated by Algorithm 1 to
this “ghost” sequence and show they are close in a
certain way. See Section 3 for details. We believe this
technique is applicable to other problems where we
need to analyze multiple sequences.

Extension to Primal-Dual Stochastic Variance
Reduced Gradient Method. Many optimization
problems in machine learning have a finite-sum struc-
ture, and randomized algorithms have been proposed to
exploit this structure and to speed up the convergence.
There has been extensive research in recent years on de-
veloping more e�cient stochastic algorithms in such set-
ting [Le Roux et al., 2012, Johnson and Zhang, 2013, De-
fazio et al., 2014, Xiao and Zhang, 2014, Shalev-Shwartz
and Zhang, 2013, Richtárik and Takáč, 2014, Lin et al.,
2015, Zhang and Lin, 2015, Allen-Zhu, 2017]. Among
them, the stochastic variance reduced gradient (SVRG)
algorithm [Johnson and Zhang, 2013] is a popular one
with computational complexity O

�
(n+ )d log 1

✏

�
for

smooth and strongly convex objectives, where n is
the number of component functions, d is the dimen-
sion of the variable, and  is a condition number that
only depends on problem-dependent parameters like
smoothness and strong convexity but not n. Variants
of SVRG for saddle point problems have been recently
studied by Palaniappan and Bach [2016], Wang and
Xiao [2017], Du et al. [2017] and can achieve similar
O
�
(n+ )d log 1

✏

�
running time.1 However, these re-

sults all require additional assumptions. In this paper,
we use our analysis technique developed for Algorithm 1
to show that the primal-dual SVRG method also admits
O
�
(n+ )d log 1

✏

�
type computational complexity.

1.2 Motivating Examples

In this subsection we list some machine learning appli-
cations that naturally lead to convex-concave saddle
point problems.

Reinforcement Learning. For policy evaluation
task in reinforcement learning, we have data
{(st, rt, st+1)}nt=1 generated by a policy ⇡ where st

is the state at the t-th time step, rt is the reward and
st+1 is the state at the (t+ 1)-th step. We also have a
discount factor 0 < � < 1 and a feature function �(·)
which maps a state to a feature vector. Our goal is to
learn a linear value function V

⇡ (s) ⇡ x
>
� (s) which

represents the long term expected reward starting from
state s using the policy ⇡. A common way to estimate
x is to minimize the empirical mean squared projected
Bellman error (MSPBE):

min
x

(Ax� b)> C
�1 (Ax� b) , (3)

where A =
Pn

t=1 �(st) (�(st)� ��(st+1))
>, b =Pn

t=1 rt�(st) and C =
Pn

t=1 �(st)�(st)
>. Note that

directly using gradient descent to solve problem (3)
is expensive because we need to invert a matrix C.

1 may be di↵erent in the primal and the primal-dual
settings.
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Du et al. [2017] considered the equivalent saddle point
formulation:

min
x

max
y

L(x, y) = �y
>
Ax� 1

2
y
>
Cy + b

>
y.

The gradient of L can be computed more e�ciently
than the original formulation (3), and L has a finite-
sum structure.

Empirical Risk Minimization. Consider the clas-
sical supervised learning problem of learning a linear
predictor x 2 Rd given n data points (ai, bi) 2 Rd ⇥ R.
Denote by A 2 Rn⇥d the data matrix whose i-th row
is a

>
i . Then the empirical risk minimization (ERM)

problem amounts to solving

min
x2Rd

`(Ax) + f(x),

where ` is induced by some loss function and f

is a regularizer; both f and ` are convex func-
tions. Equivalently, we can solve the dual problem
maxy2Rn

�
�`

⇤(y)� f
⇤(�A

>
y)
 

or the saddle point
problem minx2Rd maxy2Rn

�
y
>
Ax� `

⇤(y) + f(x)
 
.

The saddle point formulation is favorable in many
scenarios, e.g., when such formulation admits a
finite-sum structure [Zhang and Lin, 2015, Wang and
Xiao, 2017], reduces communication complexity in
the distributed setting [Xiao et al., 2017] or exploits
sparsity structure [Lei et al., 2017].

Robust Optimization. The robust optimization
framework [Ben-Tal et al., 2009] aims at minimizing
an objective function with uncertain data, which natu-
rally leads to a saddle point problem, often with the
following form:

min
x

max
y

E⇠⇠P (y) [f(x, ⇠)] , (4)

where f is some loss function we want to minimize and
the distribution of the data is parametrized by P (y).
For certain special cases [Liu et al., 2017], Problem (4)
has the bilinear form as in (1).

1.3 Comparison with Previous Results

There have been many attempts to analyze the primal-
dual gradient method or its variants. In particu-
lar, Chen and Rockafellar [1997], Chambolle and Pock
[2011], Palaniappan and Bach [2016] showed that if
both f and g are strongly convex and have e�cient
proximal mappings, then the proximal primal-dual gra-
dient method achieves a linear convergence rate.2 In

2Chen and Rockafellar [1997], Palaniappan and Bach
[2016] considered a more general formulation than Prob-
lem (1). Here we specialize in the bi-linear saddle point
problem.

fact, even without proximal mappings, as long as both
f and g are smooth and strongly convex, Algorithm 1
achieves a linear convergence rate. In Appendix B we
give a simple proof of this fact.

Two recent papers show that it is possible to achieve
linear convergence even without strong convexity in
f . The key is the additional assumption that A has
full column rank, which helps “transfer” g’s strong
convexity to f . Du et al. [2017] considered the case
when both f and g are quadratic functions, i.e., when
Problem (1) has the following special form:

L(x, y) = x
>
Bx+ b

>
x+ y

>
Ax� y

>
Cy + c

>
y.

Note that B does not have to be positive definite (but C
has to be), and thus strong convexity is not necessary in
the primal variable. Their analysis is based on writing
the gradient updates as a linear dynamic system (c.f.
Equation (41) in [Du et al., 2017]):
"

xt+1 � x
⇤

q
⌘1

⌘2
(yt+1 � y

⇤)

#
= (I �G)

"
xt � x

⇤
q

⌘1

⌘2
(yt � y

⇤)

#
, (5)

where G is some fixed matrix that depends on A,B,C

and step sizes. Next, it su�ces to bound the spectral
norm of G (which can be made strictly less than 1) to

show that
⇣
xt � x

⇤
,

q
⌘1

⌘2
(yt � y

⇤)
⌘
converges to (0, 0)

at a linear rate. However, it is di�cult to generalize
this approach to general saddle point problem (1) since
only when f and g are quadratic do we have the linear
form (5).

Wang and Xiao [2017] considered the proximal primal-
dual gradient method. They construct a potential func-
tion (c.f. Page 15 in [Wang and Xiao, 2017]) and show
it decreases at a linear rate. However, this potential
function heavily relies on the proximal mappings so it
is di�cult to use this technique to analyze Algorithm 1.

In Table 1, we summarize di↵erent assumptions su�-
cient for linear convergence used in di↵erent papers.

1.4 Paper Organization

The rest of the paper is organized as follows. We give
necessary definitions in Section 2. In Section 3, we
present our main result for the primal-dual gradient
method and its proof. In Section 4, we extend our
analysis to the primal-dual stochastic variance reduced
gradient method. In Section 5, we use some prelimi-
nary experiments to verify our theory. We conclude in
Section 6 and put omitted proofs in the appendix.

2 Preliminaries

Let k·k denote the Euclidean (L2) norm of a vector, and
let h·, ·i denote the standard Euclidean inner product
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Paper f smooth f s.c. g smooth g s.c. A full column rank Other Assumptions

[Chen and Rockafellar, 1997] \ Yes \ Yes No Prox maps for f and g

[Du et al., 2017] Yes No Yes Yes Yes f and g are quadratic

[Wang and Xiao, 2017] \ No \ Yes Yes Prox maps for f and g

Folklore Yes Yes Yes Yes No No

This Paper Yes No Yes Yes Yes No

Table 1: Comparisons of assumptions that lead to the linear convergence of primal-dual gradient method for
solving Problem (1). When we have proximal mappings for f and g, we do not need their smoothness.

between two vectors. For a matrix A 2 Rm⇥n, let �i(A)
be its i-th largest singular value, and let �max (A) :=
�1(A) and �min(A) := �min{m,n}(A) be the largest and
the smallest singular values of A, respectively. For a
function f , we use rf to denote its gradient. Denote
[n] := {1, 2, . . . , n}. Let Id be the identity matrix in
Rd⇥d.

The smoothness and the strong convexity of a function
are defined as follows:

Definition 2.1. For a di↵erentiable function � : Rd !
R, we say

• � is �-smooth if kr�(u)�r�(v)k  � ku� vk
for all u, v 2 Rd;

• � is ↵-strongly convex if �(v) � �(u)+hr�(u), v�
ui+ ↵

2 ku� vk2 for all u, v 2 Rd.

We also need the definition of conjugate function:

Definition 2.2. The conjugate of a function � : Rd !
R is defined as

�
⇤(y) := sup

x2Rd

{hx, yi � �(x)} , 8y 2 Rd
.

It is well-known that if � is closed and convex, then
�
⇤⇤ = �. If � is smooth and strongly convex, its

conjugate �
⇤ has the following properties:

Fact 2.1. If � : Rd ! R is �-smooth and ↵-strongly
convex (� � ↵ > 0), then

(i) ([Kakade et al., 2009]) �
⇤ : Rd ! R is 1

↵ -smooth
and 1

� -strongly convex.

(ii) ([Rockafellar, 1970]) The gradient mappings r�

and r�
⇤ are inverse of each other.

3 Linear Convergence of the

Primal-Dual Gradient Method

In this section we show the linear convergence of Al-
gorithm 1 on Problem (1) under the following assump-
tions:

Assumption 3.1. f is convex and ⇢-smooth (⇢ � 0).

Assumption 3.2. g is �-smooth and ↵-strongly con-
vex (� � ↵ > 0).

Assumption 3.3. The matrix A 2 Rd2⇥d1 satisfies
rank(A) = d1.

While the first two assumptions on f and g are stan-
dard in convex optimization literature, the third one
is important for ensuring linear convergence of Prob-
lem (1). Note, for example, that if A is the all-zero
matrix, then there is no interaction between x and y,
and to solve the convex optimization problem on x we

need at least ⌦
⇣

1p
✏

⌘
iterations [Nesterov, 2013] instead

of O
�
log 1

✏

�
.

Denote by (x⇤
, y

⇤) 2 Rd1 ⇥ Rd2 the optimal solution
to Problem (1). For simplicity, we let �max := �max(A)
and �min := �min(A).

Recall the first-order optimality condition:
(
rxL(x⇤

, y
⇤) = rf(x⇤) +A

>
y
⇤ = 0,

ryL(x⇤
, y

⇤) = �rg(y⇤) +Ax
⇤ = 0.

(6)

Theorem 3.1. In the setting of Algorithm 1, define
at := kxt � x

⇤k and bt := kyt �rg
⇤(Axt)k. Let � :=

2��max·
✓
⇢+

�2
max
↵

◆

↵�2
min

and Pt := �at + bt. If we choose

⌘1 = ↵

(↵+�)

✓
�2
max
↵ +��max

◆ and ⌘2 = 2
↵+� , then we have

Pt+1 

0

@1� C · ↵
2
�
4
min

�3�2
max ·

⇣
⇢+ �2

max
↵

⌘

1

APt

for some absolute constant C > 0.

In this theorem, we use Pt = �at + bt as the poten-
tial function and show that this function shrinks at
a geometric rate. Note that from (6) and Fact 2.1
(ii) we have y

⇤ = (rg)�1(Ax
⇤) = rg

⇤(Ax⇤). Then
we have upper bounds kxt � x

⇤k = at  1
�Pt and

kyt � y
⇤k  kyt �rg

⇤(Axt)k + krg
⇤(Axt)� y

⇤k =
bt + krg

⇤(Axt)�rg
⇤(Ax

⇤)k  bt + �max
↵ at 
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max
�
1, �max

↵�

 
Pt, which imply that if Pt is small then

(xt, yt) will be close to the optimal solution (x⇤
, y

⇤).
Therefore a direct corollary of Theorem 3.1 is:

Corollary 3.1. For any ✏ > 0, after O⇤ �log P0
✏

�
itera-

tions, we have kxt � x
⇤k  ✏ and kyt � y

⇤k  ✏, where
O

⇤(·) hides polynomial factors in �, 1/↵,�max, 1/�min

and ⇢.

We remark that our theorem suggests that step sizes
depend on problem parameters which may be unknown.
In practice, we may try to use a small amount of data to
estimate them first or use the adaptive tuning heuristic
introduced in [Wang and Xiao, 2017].

3.1 Proof of Theorem 3.1

Now we present the proof of Theorem 3.1.

First recall the standard linear convergence guarantee
of gradient descent on a smooth and strongly convex
objective. See Theorem 3.12 in [Bubeck, 2015] for a
proof.

Lemma 3.1. Suppose � : Rd ! R is �-smooth and
�-strongly convex, and let x̄ := argminx2Rd�(x). For
any 0 < ⌘  2

�+� , x 2 Rd, letting x̃ = x� ⌘r�(x), we
have

kx̃� x̄k  (1� �⌘) kx� x̄k .

Step 1: Bounding the Decrease of kxt � x
⇤k via

a One-Step “Ghost” Algorithm.3 Our technique
is to consider the following one-step “ghost” algorithm
for the primal variable, which corresponds to a gradient
descent step for the primal problem (2). We define an
auxiliary variable x̃t+1: given xt, let

x̃t+1 := xt � ⌘1 (rf(xt) +rh(xt)) . (7)

where h(x) := g
⇤(Ax). Note that x̃t+1 is defined only

for the purpose of the proof. Our main idea is to use
this “ghost” algorithm as a reference and bound the
distance between the primal-dual gradient iterate xt+1

and this “ghost” variable x̃t+1. We first prove with
this “ghost” algorithm, the distance between the primal
variable and the optimum x

⇤ decreases at a geometric
rate.

Proposition 3.1. If ⌘1  2
⇢+�2

max/↵+�2
min/�

, then

kx̃t+1 � x
⇤k 

✓
1� �

2
min

�
⌘1

◆
kxt � x

⇤k .

Proof. Since (7) is a gradient descent step for the pri-
mal problem (2) whose objective is P (x) = h(x)+ f(x)
where h(x) = g

⇤(Ax), it su�ces to show that P

3kxt � x⇤k may not decrease as t increases. Here what
we mean is to upper bound kxt+1 � x⇤k using kxt � x⇤k
and an error term.

is smooth and strongly convex in order to apply
Lemma 3.1. Note that g⇤ is 1

↵ -smooth and 1
� -strongly

convex according to Fact 2.1.

We have rh(x) = A
>rg

⇤(Ax). Then for any x, x
0 2

Rd we have

krP (x)�rP (x0)k
 krf(x)�rf(x0)k+

��A>rg
⇤(Ax)�A

>rg
⇤(Ax0)

��

 ⇢ kx� x
0k+ �max krg

⇤(Ax)�rg
⇤(Ax

0)k

 ⇢ kx� x
0k+ �max

↵
kAx�Ax

0k

 ⇢ kx� x
0k+ �

2
max

↵
kx� x

0k

=(⇢+ �
2
max/↵) kx� x

0k ,

where we have used the ⇢-smoothness of f , the 1
↵ -

smoothness of g⇤, and the bound on �max(A). There-
fore P is (⇢+ �

2
max/↵)-smooth.

On the other hand, for any x, x
0 2 Rd we have

P (x0)� P (x)

= f(x0)� f(x) + g
⇤(Ax

0)� g
⇤(Ax)

�hrf(x), x0 � xi+ hrg
⇤(Ax), Ax

0 �Axi

+
1/�

2
kAx

0 �Axk2

= hrf(x) +A
>rg

⇤(Ax), x0 � xi+ 1

2�
kAx0 �Axk2

�hrP (x), x0 � xi+ 1

2�
�
2
min kx0 � xk2 ,

where we have used the convexity of f , the 1
� -strong

convexity of g⇤, and that A has full column rank. There-
fore P is �2

min/�-strongly convex.

With the smoothness and the strong convexity of P ,
the proof is completed by applying Lemma 3.1.

Proposition 3.1 suggests that if we use the “ghost” al-
gorithm (7), we have the desired linear convergence
property. The following proposition gives an upper
bound on kxt+1 � x

⇤k by bounding the distance be-
tween xt+1 and x̃t+1.

Proposition 3.2. If ⌘1  2
⇢+�2

max/↵+�2
min/�

, then

kxt+1 � x
⇤k 

✓
1� �

2
min

�
⌘1

◆
kxt � x

⇤k

+ �max⌘1 kyt �rg
⇤(Axt)k .

(8)

Proof. We have x̃t+1 � xt+1 = ⌘1A
>(yt �rg

⇤(Axt)),
which implies

kx̃t+1 � xt+1k  ⌘1�max kyt �rg
⇤(Axt)k .

Then the proposition follows by applying the triangle
inequality and Proposition 3.1.
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Step 2: Bounding the Decrease of
kyt �rg

⇤(Axt)k. One may want to show the
decrease of kyt � y

⇤k similarly using a “ghost” update
for the dual variable. However, the objective function
in the dual problem maxy

�
�g(y)� f

⇤(�A
>
y)
 
might

be non-smooth, which means we cannot obtain a
result similar to Proposition 3.1. Instead, we show
that kyt �rg

⇤(Axt)k decreases geometrically up to
an error term.

Proposition 3.3. We have

kxt+1 � xtk 
✓
⇢+

�
2
max

↵

◆
⌘1 kxt � x

⇤k

+ �max⌘1 kyt �rg
⇤(Axt)k .

Proof. Using the gradient update formula of the primal
variable, we have

1

⌘1
kxt+1 � xtk =

��rf(xt) +A
>
yt

��


��rf(xt) +A

>rg
⇤(Axt)

��+
��A>(yt �rg

⇤(Axt))
��


��rf(xt) +A

>rg
⇤(Axt)

��+ �max kyt �rg
⇤(Axt)k .

(9)

Recall that the primal objective function P (x) =
f(x) + g

⇤(Ax) is (⇢+ �
2
max/↵)-smooth (see the proof

of Proposition 3.1). So we have

��rf(xt) +A
>rg

⇤(Axt)
�� = krP (xt)k

= krP (xt)�rP (x⇤)k  (⇢+ �
2
max/↵) kxt � x

⇤k .

Plugging this back to (9) we obtain the desired result.

Proposition 3.4. If ⌘2  2
↵+� , then

kyt+1 �rg
⇤(Axt+1)k


✓
1� ↵⌘2 +

�
2
max

↵
⌘1

◆
kyt �rg

⇤(Axt)k

+
�max

↵

✓
⇢+

�
2
max

↵

◆
⌘1 kxt � x

⇤k .

Proof. For fixed xt, the update rule yt+1 = yt �
⌘2(rg(yt) � Axt) is a gradient descent step for the
objective function g̃(y) := g(y)� y

>
Axt which is also

�-smooth and ↵-strongly convex. By the optimality
condition, the minimizer ỹ

⇤ = argminy2Rd g̃(y) satis-
fies rg(ỹ⇤) = Axt, i.e., ỹ⇤ = rg

⇤(Axt). Then from
Lemma 3.1 we know that

kyt+1 �rg
⇤(Axt)k  (1� ↵⌘2) kyt �rg

⇤(Axt)k .
(10)

Since we want to upper bound kyt+1 �rg
⇤(Axt+1)k,

we need to take into account the di↵erence between
xt+1 and xt. We prove an upper bound on kxt+1 � xtk

in Proposition 3.3. Using Proposition 3.3 and (10), we
have

kyt+1 �rg
⇤(Axt+1)k

 kyt+1 �rg
⇤(Axt)k+ krg

⇤(Axt+1)�rg
⇤(Axt)k

 kyt+1 �rg
⇤(Axt)k+

�max

↵
kxt+1 � xtk

 (1� ↵⌘2) kyt �rg
⇤(Axt)k

+
�max

↵

✓
⇢+

�
2
max

↵

◆
⌘1 kxt � x

⇤k

+
�
2
max

↵
⌘1 kyt �rg

⇤(Axt)k .

Note that the upper bound on kxt+1 � xtk given in
Proposition 3.3 is proportional to ⌘1, not to ⌘2. This
allows us to choose a relatively small ⌘1 to ensure that

the factor 1 � ↵⌘2 +
�2
max
↵ ⌘1 in Proposition 3.4 is in-

deed less than 1, i.e., kyt �rg
⇤(Axt)k is approximately

decreasing.

Step 3: Putting Things Together. Now we are
ready to finish the proof of Theorem 3.1. From Propo-
sitions 3.2 and 3.4 we have

at+1 
✓
1� �

2
min

�
⌘1

◆
at + �max⌘1bt, (11)

bt+1  �max

↵

✓
⇢+

�
2
max

↵

◆
⌘1at

+

✓
1� ↵⌘2 +

�
2
max

↵
⌘1

◆
bt.

(12)

To prove the convergence of sequences {at} and {bt} to
0, we consider a linear combination Pt = �at+bt with a
free parameter � > 0 to be determined. Combining (11)
and (12), with some routine calculations, we can show
that our choices of �, ⌘1 and ⌘2 given in Theorem 3.1
can ensure Pt+1  cPt for some 0 < c < 1, as desired.
We give the remaining details in Appendix A.1.

4 Extension to Primal-Dual SVRG

In this section we consider the case where the saddle
point problem (1) admits a finite-sum structure:4

min
x2Rd1

max
y2Rd2

L(x, y) =
1

n

nX

i=1

Li(x, y), (13)

where Li(x, y) := fi(x) + y
>
Aix� gi(y). Optimization

problems with finite-sum structure are ubiquitous in

4For ease of presentation we assume f , g and K can be
split into n terms. It is not hard to generalize our analysis
to the case where f , g and A can be split into di↵erent
numbers of terms.
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machine learning, because loss functions can often be
written as a sum of individual loss terms corresponding
to individual observations.

In this section, we make the following assumptions:

Assumption 4.1. Each fi is ⇢-smooth (⇢ � 0), and
f = 1

n

Pn
i=1 fi is convex.

Assumption 4.2. Each gi is �-smooth, and g =
1
n

Pn
i=1 gi is ↵-strongly convex (� � ↵ > 0).

Assumption 4.3. Each Ai satisfies �max(Ai)  M ,
and A = 1

n

Pn
i=1 Ai has rank d1.

Note that we only require component functions fi

and gi to be smooth; they are not necessarily con-
vex. However, the overall objective function L(x, y) =
f(x)+y

>
Ax�g(y) still has to satisfy Assumptions 3.1-

3.3.

Given the finite-sum structure (13), we denote the
individual gradient of each Li as

Bi (x, y) :=


rxLi(x, y)
ryLi(x, y)

�
=


rfi(x) +A

>
i y

Aix�rgi (y)

�
,

and the full gradient of L as

B (x, y) :=
1

n

nX

i=1

Bi(x, y) =


1
n

Pn
i=1

�
rfi(x) +A

>
i y

�
1
n

Pn
i=1 (Aix�rgi (y))

�
.

A naive computation of Aix or A
>
i y takes O(d1d2)

time. However, in many applications like policy evalu-
ation [Du et al., 2017] and empirical risk minimization,
each Ai is given as the outer product of two vectors
(i.e., a rank-1 matrix), which makes Aix and A

>
i y com-

putable in only O(d) time, where d = max {d1, d2}. In
this case, computing an individual gradient Bi(x, y)
takes O(d) time while computing the full gradient
B(x, y) takes O(nd) time.

We adapt the stochastic variance reduced gradient
(SVRG) method [Johnson and Zhang, 2013] to solve
Problem (13). The algorithm uses two layers of loops.
In an outer loop, the algorithm first computes a full
gradient using a “snapshot” point (x̃, ỹ), and then the
algorithm executes N inner loops, where N is a param-
eter to be chosen. In each inner loop, the algorithm
randomly samples an index i from [n] and updates the
current iterate (x, y) using a variance-reduced stochas-
tic gradient:

Bi(x, y, x̃, ỹ) = Bi(x, y) +B(x̃, ỹ)�Bi(x̃, ỹ). (14)

Here, Bi(x, y) is the stochastic gradient at (x, y) com-
puted using the random index i, and B(x̃, ỹ)�Bi(x̃, ỹ)
is a term used to reduce the variance in Bi(x, y) while
keeping Bi(x, y, x̃, ỹ) an unbiased estimate of B(x, y).
The full details of the algorithm are provided in Algo-
rithm 2. For clarity, we denote by (x̃t, ỹt) the snapshot

Algorithm 2 Primal-Dual SVRG

Inputs: initial points x̃0 2 Rd1 , ỹ0 2 Rd2 , step sizes
⌘1, ⌘2 > 0, number of inner iterations N 2 N

1: for t = 0, 1, . . . do
2: Compute B(x̃t, ỹt)
3: (xt,0, yt,0) = (x̃t, ỹt)
4: for j = 0 to N � 1 do
5: Sample an index ij uniformly from [n]
6: Compute Bij (xt,j , yt,j) and Bij (x̃t, ỹt)

7:


xt,j+1

yt,j+1

�

=


xt,j

yt,j

�
�

⌘1Id1 0
0 �⌘2Id2

�
Bij (xt,j , yt,j , x̃t, ỹt),

where Bij (xt,j , yt,j , x̃t, ỹt) is defined in (14)
8: end for
9: (x̃t+1, ỹt+1) = (xt,jt , yt,jt), where jt is an index

sampled uniformly from {0, 1, . . . , N � 1}
10: end for

point in the t-th epoch (outer loop), and denote by
(xt,0, yt,0), (xt,1, yt,1), . . . all the intermediate iterates
within this epoch.

The following theorem establishes the linear conver-
gence guarantee of Algorithm 2.

Theorem 4.1. There exists a choice of pa-
rameters ⌘1, ⌘2 = poly (�, ⇢,M, 1/↵, 1/�min(A))�1

and N = poly (�, ⇢,M, 1/↵, 1/�min(A)) in Al-
gorithm 2, as well as another number µ =
poly (�, ⇢,M, 1/↵, 1/�min(A)), such that if we define

Qt = E
h
kx̃t � x

⇤k2 + µ kỹt �rg
⇤(Ax̃t)k2

i
, then Al-

gorithm 2 guarantees Qt+1  1
2Qt for all t.

Since computing a full gradient takes O(nd) time and
each inner loop takes O(d) time, each epoch takes
O(nd+Nd) time in total. Therefore, the total running
time of Algorithm 2 is O

�
(n+N)d log 1

✏

�
in order to

reach an ✏-close solution, which is the desired running
time of SVRG (note that N does not depend on n).

The proof of Theorem 4.1 is given in Appendix A.2. It
relies on the same proof idea in Section 3 as well as the
standard analysis technique for SVRG by Johnson and
Zhang [2013].

5 Preliminary Empirical Evaluation

We perform preliminary empirical evaluation for the fol-
lowing purposes: (i) to verify that both the primal-dual
gradient method (Algorithm 1) and the primal-dual
SVRG method (Algorithm 2) can indeed achieve linear
convergence, (ii) to investigate the convergence rates of
Algorithms 1 and 2, in comparison with their primal-
only counterparts (i.e., the usual gradient descent and
SVRG algorithms for the primal problem), and (iii) to
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Figure 1: Comparison of batch gradient methods for smoothed-L1-regularized regression with d = 200, n = 500.

Number of epochs
0 10 20 30 40 50 60

lo
g 10

(p
rim

al
 o

pt
im

al
ity

 g
ap

)

-14

-12

-10

-8

-6

-4

-2

0

2 Primal-dual SVRG
Primal SVRG

(a) Data ⇠ N (0, Id)

Number of epochs
0 50 100 150 200 250

lo
g 10

(p
rim

al
 o

pt
im

al
ity

 g
ap

)

-14

-12

-10

-8

-6

-4

-2

0

2 Primal-dual SVRG
Primal SVRG

(b) Data ⇠ N (0,⌃), ⌃ij = 2�|i�j|/2

Number of epochs
0 500 1000 1500 2000

lo
g 10

(p
rim

al
 o

pt
im

al
ity

 g
ap

)

-14

-12

-10

-8

-6

-4

-2

0

2 Primal-dual SVRG
Primal SVRG

(c) Data ⇠ N (0,⌃), ⌃ij = 2�|i�j|/10

Figure 2: Comparison of SVRG methods for smoothed-L1-regularized regression with d = 200 and n = 500.

compare the convergence rates of Algorithms 1 and 2.

We consider the linear regression problem with
smoothed-L1 regularization, formulated as

min
x2Rd

1

2n
kAx� bk2 + �Ra(x), (15)

where A 2 Rn⇥d, b 2 Rn , and Ra(x) :=Pd
i=1

1
a (log(1 + e

axi) + log(1 + e
�axi)) is the

smoothed -L1 regularization [Schmidt et al., 2007].5

Note that Ra(x) is smooth but not strongly convex,
and does not have a closed-form proximal mapping.
As discussed in Section 1.2, Problem (15) admits a
saddle point formulation:

min
x2Rd

max
y2Rn

⇢
1

n

✓
�1

2
kyk2 � b

>
y + y

>
Ax

◆
+ �Ra(x)

�
.

In this experiment we choose a = 10 and � = 0.01/n.

We generate data (i.e. rows of A) from a Gaussian
distribution N (0,⌃), where we consider three cases:
(a) ⌃ = Id, (b) ⌃ij = 2�|i�j|/2, and (c) ⌃ij = 2�|i�j|/10.
These three choices result in small, medium, and large
condition numbers of A, respectively.6 In Figures 1

5When a > 0 is large we have Ra(x) ⇡ kxk1 for all
x 2 Rd.

6The condition number of a matrix A is defined as
�max(A)/�min(A).

and 2, we plot the performances of batch gradient
and SVRG algorithms, where we choose d = 200 and
n = 500. We tune the step sizes in every case in order
to observe the optimal convergence rates.

These plots show that: (i) both Algorithm 1 and Algo-
rithm 2 can indeed achieve linear convergence, verify-
ing our theorems; (ii) in all our examples, primal-dual
methods always converge slower than the correspond-
ing primal methods, but they are only slower by no
more than 3 times; (iii) Algorithm 2 has a much faster
convergence rate than Algorithm 1, especially when
the condition number is large, which verifies the theo-
retical result that SVRG can significantly reduce the
computational complexity.

6 Conclusion

We prove that the vanilla primal-dual gradient method
can achieve linear convergence for convex-concave sad-
dle point problem (1) without strong convexity in the
primal variable. We develop a novel proof strategy and
further use this proof strategy to show the linear con-
vergence of the primal-dual SVRG method for saddle
point problems with finite-sum structures. It would be
interesting to study whether our technique can be used
to analyze non-convex problems.
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