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Abstract

Banded matrices can be used as precision
matrices in several models including linear
state-space models, some Gaussian processes,
and Gaussian Markov random fields. The
aim of the paper is to make modern infer-
ence methods (such as variational inference or
gradient-based sampling) available for Gaus-
sian models with banded precision. We show
that this can efficiently be achieved by equip-
ping an automatic differentiation framework,
such as TensorFlow or PyTorch, with some
linear algebra operators dedicated to banded
matrices. This paper studies the algorithmic
aspects of the required operators, details their
reverse-mode derivatives, and show that their
complexity is linear in the number of observa-
tions.

1 Introduction

Gaussian process (GP) modelling is a popular frame-
work for predicting the value of a (latent) function f
given a limited set of input/output observation tuples.
It encapsulates several common methods such as lin-
ear regression, smoothing splines and the reproducing
kernel Hilbert space approximation (Rasmussen and
Williams, 2006). The popularity of this framework
can be explained by its efficiency when little data is
available (Sacks et al., 1989), the existence of an ana-
lytical solution for the posterior when the likelihood is
Gaussian, and the control over the prior that is offered
by the choice the covariance function (i.e. the kernel).

Two practical limitations of GP models are that algo-
rithms for computing the posterior distribution typ-
ically scale in O(n2) space and O(n3) time where n
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is the number of observations, and that the posterior
distribution is not tractable when the likelihood is not
conjugate. These two limitations have been thoroughly
studied over the past decades and several approaches
have been proposed to overcome them. The most pop-
ular method for reducing computational complexity is
the sparse GP framework (Candela and Rasmussen,
2005; Titsias, 2009), where computations are focussed
on a set of “inducing variables”, allowing a trade-off
between computational requirements and the accuracy
of the approximation. To cope with non-conjugacy
in these models, several approximation methods such
as the Laplace approximation, variational inference
(VI) or expectation propagation have been proposed
to approximate non-Gaussian posteriors by Gaussian
distributions (Nickisch and Rasmussen, 2008).

Another angle to tackle the complexity inherent to GP
models is to choose a class of covariance functions that
lead to particular structures that can be exploited for
storage and/or computational gain. Although several
efficient methods are based on structured covariance
matrices K (Gneiting, 2002; Nickson et al., 2015; Wil-
son and Nickisch, 2015), state space models (SSM,
see Särkkä, 2013)—including the iconic Kalman fil-
ter (Kalman, 1960)—and Gaussian Markov random
fields (GMRF, Rue and Held, 2005) are using sparse
structure in the precision matrix Q = K−1. We will
refer to these methods using sparsity in the precision
matrix as Gaussian Markov models. Exploiting this
sparsity can bring orders of magnitude speed-ups com-
pared to naive implementations based on covariance
matrices. Furthermore, it can be proved that some
classical covariance functions have an equivalent state
space representation that leads to a sparse precision (see
Section 2 and Solin, 2016).

Learning the hyper-parameters of GP models param-
eterised by their precision can be challenging, and it
is common to resort to Markov chain Monte Carlo
(MCMC) sampling Rue and Held (2005). In this con-
text, it is however recognized that typical MCMC sam-
plers such as Metropolis Hastings or Gibbs sampling
suffer from high correlation between the latent vari-
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ables (Rue et al., 2009). Deterministic approximations
based on the Laplace approximation have been derived,
such as the widely used integrated nested Laplace ap-
proximations (Rue et al., 2009). Our aim however is to
provide general inference methods that can be applied
to a broader class of models (e.g. beyond the scope of
the classical combination of a Gaussian latent function
with an associated likelihood).

The main contribution of this article is to show that the
limitations of current inference methods for precision-
based models can be overcome by implementing a small
set of low level linear algebra operators dedicated to
banded matrices and their derivatives in an automatic
differentiation framework such as TensorFlow (Abadi
et al., 2016). We propose a general framework that
allows us to perform marginal likelihood estimation for
models with conjugate likelihoods, Hamiltonian Monte
Carlo (HMC) and VI in linear complexity both in time
and space in the non-conjugate setting.

Most inference and learning algorithms in Gaussian
models involve a small set of linear algebraic opera-
tions, such as matrix product, Cholesky factorisation
or triangular solve. For general Gaussian models, ef-
ficient implementations of these operations and their
derivatives have been proposed (Murray, 2016; Seeger
et al., 2017; Giles, 2008). Tailored primitives have
been designed for SSMs (Nickisch et al., 2018; Grig-
orievskiy et al., 2017). These however lack derivations
of their reverse-mode differentiation, which prevents
their use in automatic differentiation libraries. With
this paper we fill this gap by introducing a set of linear
algebra operations for Gaussian models with banded
precisions. Compared to the dense case (i.e. precisions
without band structure), our framework also includes
dedicated algorithms to compute subsets of the inverses
of sparse matrices (Takahashi, 1973; Zammit-Mangion
and Rougier, 2018).

In this paper, we revisit and develop inference and
learning algorithms in GP models with banded preci-
sions following the wide adoption of end-to-end training
of generative models using automatic differentiation.
The paper is organised as follows: Section 2 gives some
context and background on precision matrices with
a focus on the banded case. In Section 3 we survey
inference and learning algorithms for Gaussian mod-
els with banded precision and identify the basic linear
algebraic operations they require. In Section 4 we de-
scribe how these operations (and their derivatives) can
be efficiently implemented. In Section 5 we show on
two experiments based on SSMs and GMRFs that the
proposed framework scales to large problems and is
proven to be attractive for real-world scenarios.

2 Background on banded precision
matrices

For a Gaussian random vector g of length N with co-
variance matrix K, the element Ki,j of the covariance
matrix corresponds to the covariance between gi and
gj . Elements of covariance matrices thus correspond
to marginal distributions, all other variables being
marginalised out. The interpretation of the elements of
a precision matrix Q = K−1 is not as straightforward,
but it is still possible: Qi,j is a function of the condi-
tional distribution of gi, gj given all other variables.
More precisely, let I be a subset of {1, . . . , N} and let
QI,I and gI be the restriction of Q and g to the indices
in I, then QI,I = (cov(gI , gI | gk, k /∈ I))−1. Taking
I = {i} shows that Qi,i = (var(gi | gj , j 6= i))−1:
contrary to the covariance case where extracting a sub-
covariance amounts to marginalisation, a sub-precision
corresponds to the inverse of a conditional covariance.
Similarly, choosing I = {i, j}, one can show that condi-
tional independence between gi and gj (given all other
variables) implies Qi,j = 0. This means that random
vectors with conditional independences will lead to
sparse precision matrices.

Banded matrices are sparse matrices that only have non-
zero values within a small “band” around their diagonal.
The lower and upper bandwidths of a banded matrix B
are defined as the smaller integers ll and lu such that
i + lu < j < i − ll implies Bi,j = 0. For example, a
tridiagonal matrix has ll = lu = 1. The bandwidth of
a matrix is l = max(ll, lu).

In one dimension, a typical example of conditional
independence resulting in banded precisions is given
by random vectors with the Markov property. For
example if g corresponds to the evaluations of a one-
dimensional GP f with Brownian or Matérn1⁄2 covari-
ance at increasing input locations (gi = f(xi) with
xi < xj for i < j), then Q is banded with lower and
upper bandwidths equal to one. In a similar fashion,
one dimensional GPs with higher order Matérn ker-
nels can also lead to banded precision matrices, but
it is necessary to augment the state-space dimension
by adding some derivatives. For example, the vec-
tor g = (f(x0), f ′(x0), f(x1), f ′(x1), . . . , f ′(xn)) where
f is a GP with Matérn3⁄2 covariance will result in a
precision with lower (and upper) bandwidth equal to
three (Grigorievskiy et al., 2017).

Other kernels such as the squared exponential do not
result in banded precision matrices. It is however possi-
ble to find a good approximation of the covariance such
that the precision is banded as discussed by Särkkä
and Piché (2014). A final one-dimensional example
resulting in banded precisions are autoregressive mod-
els (Jones, 1981).
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In higher dimensions, when the GP input is x ∈ Rd,
there is no direct equivalent of the Markov prop-
erty. The classical approach is to consider a set
V = {x1, . . . , xN} of points xi ∈ Rd and to define
a set of undirected edges E between these points to
obtain a graph structure. Now, let g be a Gaussian
random vector corresponding to the evaluation of a GP
h indexed by the nodes of the graph gi = h(xi). It is
then possible to have an equivalent of the Markov prop-
erty where, given the values of g at the neighbouring
nodes {k, (i, k) ∈ E}, gi is independent of the rest of
the graph. Assuming that, given all other entries, gi
and gj are independent is equivalent to considering a
precision matrix Qi,j satisfying Qi,j = 0 if (i, j) /∈ E.
One example is the Laplacian precision Q = D − A,
where D is a diagonal matrix with Di,i = degree(i)
called the degree matrix, and A is the adjacency ma-
trix: Ai,j = 1 if (i, j) ∈ E and 0 otherwise (Belkin
et al., 2004). Although this leads to a sparse precision
Q, the associated bandwidth depends on the ordering
of the nodes and it is possible to use heuristics such as
the Cuthill McKee algorithm to find a node ordering
associated to a thin bandwidth (Rue and Held, 2005).

3 Fast inference with banded
precisions

In this section we look at three inference techniques
and investigate the banded matrix operations that are
required for each case. Let X = [x1, . . . xn]T with
xi ∈ D ⊆ Rd and Y = [y1, . . . , yn]T with yi ∈ R

denote matrices corresponding to input and output
values of the data. We consider the following type of
models: a latent function f is defined over D; the prior
on the latent function is parameterised by θ; given
the latent function, an observation model provides a
likelihood that factorises as p(Y |f) =

∏n
i=1 p(yi|Fi),

with F = f(X).

3.1 Marginal likelihood computation in
tractable problems

In the case where the likelihood is Gaussian with vari-
ance τ2, the common approach for estimating the model
parameters θ is to maximise the marginal likelihood
p(Y |θ). This requires computing the prior distribution
of the latent function at locations where observations
are provided. This is straightforward when the la-
tent function is parameterised by its covariance, as
in a Gaussian process model, but it scales cubically
with the number of observations. Grigorievskiy et al.
(2017) show that it is possible to do this computation
efficiently for an SSM with banded precision. The
formulation of the SSM allows them to compute the
precision matrix for an arbitrary subset of the total

input locations. In the case of GMRF, the precision
matrix Q is specified for the all the nodes of the graph,
it thus has a size N ×N even if the n observations are
only associated to a subset of nodes. We show below
that the approach of Grigorievskiy et al. (2017) can be
generalised to this case. The covariance matrix of f(X)
is K = EQ−1ET where E is an n×N matrix of 0 and
1 that selects the appropriate rows of Q−1. Using the
matrix inversion and the matrix determinant lemma,
we obtain:

log p(Y |θ) = −n
2

log(2π)− 1

2
log |EQ−1ET + τ2I|

− 1

2
Y T (EQ−1ET + τ2I)−1Y

= −n
2

log(2π)− 1

2
log |Q+ τ−2ETE|

+
1

2
log |Q| − 1

2
log |τ2I| − 1

2τ2
Y TY

+
1

2τ4
Y TE(Q+ τ−2ETE)−1ETY. (1)

The definition of E implies that ETE is a diagonal
matrix so Q+ τ−2ETE has the same bandwith as Q.
The Cholesky factors of banded positive-definite matri-
ces are lower triangular banded matrices that can be
computed efficiently (see Section 4). We thus introduce
LLT = (Q+ τ−2ETE) and LQL

T
Q = Q to obtain the

following expression of the marginal likelihood:

log p(Y |θ) = −n
2

log(2π)− log |L|+ log |LQ|

− n

2
log τ2 − 1

2τ2
Y TY

+
1

2τ4
Y TEL−TL−1ETY. (2)

As a consequence, the computation of the marginal
likelihood requires the efficient computation of the
Cholesky factorisation of banded matrices and the effi-
cient solution of linear systems with banded triangular
matrices such as L−1(ETY ) in Eq. 2.

3.2 Gradient-based MCMC

Asymptotically exact inference in non-conjugate mod-
els is achievable through MCMC sampling. Among
available algorithms, the most empirically effective are
HMC (see e.g., Neal et al., 2011) and its variants (Hoff-
man and Gelman, 2014). These samplers require the
log joint density of the latent variables and the data,
log p(F, Y |θ), as well as its derivatives with respect to
the latent variables. Here we investigate which opera-
tions involving banded matrices are required for this
purpose.

To avoid strong correlations in the joint distribution,
which reduces the effectiveness of the sampler, whiten-
ing of the latent variables is often employed (see e.g.,
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Filippone et al., 2013). Let v ∼ N (0, I) be a random
vector of length N . One can generate samples of f(X)
by computing F = LKv where LK is the Cholesky fac-
tor of the covariance matrix K of f(X). When working
with a precision Q, we can instead write F = L−TQ v,
resulting in p(F ) = N (0, Q−1) as required.

The log joint density is then:

log p(v, θ, Y ) = log p(v) + log p(θ)

+

n∑
i=1

log p(yi|θ, (L−TQ v)i). (3)

The first two terms of this expression are straightfor-
ward to compute. The main computational challenge
is the Cholesky decomposition of the precision ma-
trix Q and solving the linear system f(X) = L−TQ v.
We discuss in Section 4 how these operators (and their
derivatives) can be implemented to make HMC efficient
for banded precision matrices.1

3.3 Variational inference

Variational inference achieves approximate inference by
maximising a lower bound to the marginal likelihood
over a family of tractable distributions (Blei et al.,
2017). We here derive the necessary banded matrix
operations that are needed for VI.

Let F = f(X) ∈ Rn. We assume a Gaussian prior
F ∼ N (mp, Q

−1
p ) with banded precision, where mp

and Qp = LpL
T
p may depend on parameters θ. We

also choose a Gaussian distribution N (mq, Q
−1
q ) with

banded precision to approximate the posterior F |Y . We
denote its probability density by q, and we parameterise
it by its mean mq and the Cholesky factor Lq of Qq.

We finally assume that the likelihood factorises to ob-
tain the following log-likelihood lower bound as our
variational objective:

log p(Y ) ≥ Eq(F ) log
p(Y, F )

q(F )

=

n∑
i=1

Eq(Fi) log p(Yi|Fi)−KL[q ‖ p]. (4)

The first term of Eq. 4 only depends on the marginal
distributions q(Fi), which are described by mq and
the diagonal values of Q−1q . Although Q−1q is typically

1Faulkner and Minin (2018) report that they successfully
used HMC for sampling from GMRF models using the
probabilistic programming language Stan (Carpenter et al.,
2017). Their approach does not take advantage of the
sparsity that is found in GMRF precision matrices, so this
sampling is not efficient for large models. This specific
topic is however currently under discussion between the
Stan developers (Simpson and Vehtari, 2017).

a dense matrix, its diagonal values can be obtained
efficiently with the sparse inverse subset method dis-
cussed in Section 4.1. Depending on the likelihood,
log p(Yi|Fi) may or may not have a closed form. If
no analytical expression is available, the problem typ-
ically boils down to the numerical approximation of
one-dimensional integrals which can be done via Monte
Carlo sampling or quadrature methods (Hensman et al.,
2015). Regarding the Kullback–Leibler divergence term
in Eq. 4, it can be expressed as:

KL[q ‖ p] =
1

2

(
tr(Q−1q Qp) + 2

∑
i

log[Lq]ii − log[Lp]ii

+ (mp −mq)
TLpL

T
p (mp −mq)−N

)
. (5)

The trace term in this expression can be computed as
the sum of an element-wise product between Q−1q and
Qp. Since Qp is banded, it is sufficient to compute
only the elements of Q−1q that lie inside the band of
Qp. Here again, we can use the sparse inverse subset
operator.

4 Banded low level operators

In the previous section we collected a list of the op-
erators needed to perform efficient inference for GP
models with banded precisions. We now show that
these operators can be implemented efficiently with
a complexity at most O(Nl2) for N × N matrices of
bandwidth l. Furthermore, we derive expressions for
the reverse mode differentiation of these operators that
also have linear complexity in N .

4.1 Description of operators

Cholesky decomposition. C : Q→ L s.t. LLT =
Q. One fundamental property of the Cholesky decom-
position of a banded matrix B (assumed symmetric and
positive-definite) is that it returns a lower triangular
matrix with the same number of sub-diagonals as B.
Its implementation for a banded matrix is similar to
the dense case (see Algorithm 1 in Appendix B) but
its complexity is O(Nl2) instead of O(N3), as detailed
by Rue and Held (2005).

Triangular solve. S : (L, v)→ L−1v. It turns out
that the algorithm is similar to a classic triangular
solve algorithm running in nested loops through all
rows and columns of L, but the inner loops on columns
can be started at the beginning of the band. This leads
to a O(Nl) complexity instead of O(N2) for dense
matrices (Rue and Held, 2005, p.45).

Sparse inverse subset. I : L→ (Q−1). Although
the inverse of a banded matrix is often a dense matrix,
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Takahashi’s algorithm (Takahashi, 1973) shows that
it is possible to compute only the band elements of
Q−1. The pseudo code for this operator is given by
Algorithm 3 in Appendix B, and it results in a O(Nl2)
complexity.

Products. The matrix product is another operation
that preserves bandedness: the resulting lower band-
width is the sum of the lower bandwidths of the inputs
(and similarly for the upper bandwidth). This operator
is denoted by P : B1, B2 → B1B2 and its complexity
is O(Nl2). We additionally need the following basic
linear algebra operations: product between a banded
matrix and a vector P : B, v → Bv, that is O(Nl);
and outer product of two vectors (O : m, v → mvT ).
The latter typically yields a dense matrix and it has a
O(N2) complexity. Although this may seem problem-
atic, we only require in our applications a small band
of this dense matrix, which can be computed with a
cost that is linear in N .

Note, also, that although we are primarily interested in
lower-banded matrices, various operations require some
matrix transposes (examples below with the expressions
for various gradients). This forces the implementation
to deal with several variants of each algorithm, such
as solving linear systems with lower-banded or upper-
banded matrices.

4.2 Derivatives of the operators

We endow each operator with a method implement-
ing its reverse-mode differentiation (see Appendix A).
Given a chain of operations resulting in a scalar value
(say X → Y → c), it consists in propagating a down-
stream gradient ( dcdY ) to an upstream gradient ( dcdX ).
This approach has two main advantages: (1) it is com-
positional, which allows the gradients to be obtained
for arbitrarily complex models based on our banded
matrix operators; (2) it is efficient : the execution time
of the reverse mode differentiation of a model takes a
time proportional to its forward evaluation.

Following the literature (Giles, 2008; Murray, 2016),
we denote by X̄ the “reverse-mode sensitivities”, or
gradients computed in reverse-mode on the output X
of an operator. In our previous example, X̄ = dc

dX .

Basic operators The expressions of the gradients
of all product and solve operators are derived in Ap-
pendix A and summarised in Table 1. They can all be
defined as a simple composition of the forward evalua-
tion of banded operators. For example, the gradient of
a solve is defined using solve and product operations
only.

A few points are worth noting: (1) The notation intro-

duced in Table 1 is overloaded: P denotes, for instance,
a banded product where the right-hand side denotes ei-
ther a banded matrix or a vector, which is clear from the
context. (2) All intermediate terms in the expressions
of the reverse-mode sensitivities column can be kept
banded, throughout their evaluation. Consequently,
the gradients of all operations can be computed in time
proportional to the forward evaluation, which means
that the gradients in Table 1 have at most a O(Nl2)
complexity.

Cholesky and sparse subset inverse. To define
the gradients of the Cholesky and subset inverse oper-
ators, we had to use a different approach. For both op-
erators, one can define an analytical expression for the
reverse-mode sensitivities (−2S(L,P(Σ̄T , (LLT )−1))
for subset inverse; see Murray (2016) for Cholesky).
However, evaluating these terms requires the computa-
tion of dense matrices and scales as O(N3). Such an
approach would thus lead to a computational bottle-
neck and render our scheme less efficient.

For the Cholesky reverse-mode differentiation we used
an existing gradient computation algorithm that was
easy to adapt to a banded representation (Giles, 2008),
and is described as Algorithm 2 in our Appendix. For
the sparse subset inverse operator, we did not find a
gradient computation algorithm in the literature that
could be customized for banded matrices. We there-
fore used the Tangent software package (van Merriën-
boer et al., 2018), to generate a gradient computation
algorithm from the forward computation code. We
then hand-curated the generated code, obtaining Algo-
rithm 4 in Appendix B. Both algorithms have a O(Nl2)
complexity.

4.3 Storage footprint

Using Gaussian process models usually requires the
storage of covariance matrices of size n× n, where n is
the number of observations. This is usually the limit-
ing factor, and the maximum number of observations
that can be handled on currently available desktop
computers is typically in the range n ∈ [104, 105].

When working with symmetric or lower triangular
banded matrices, it is of course sufficient to store only
the non-zero elements of the lower half of the matrix.
In our implementation of the operators described above,
all the operators use the following convention for their
inputs and outputs: let B be a banded matrix of size
n× n which has lower and upper bandwidths equal to
(ll, lu), we store B as an (ll + lu + 1) × n matrix B′
with Bi,j = B′i−lu−j+1,j for 1 ≤ i, j ≤ n. Note that the
values of B′ located in the upper-left and lower-right
corners may not be defined but they are never accessed
by algorithms in practice.
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Table 1: Summary of the reverse mode sensitivities with analytical expression.

Operator Symbol Input Forward Reverse Mode Sensitivities
product matrix-matrix P B1, B2 P = B1B2 B̄1 = P(P̄ , BT2 ) B̄2 = P(BT1 , P̄ )

product matrix-vector P B, v p = Bv B̄ = O(p̄, v) v̄ = P(BT , p̄)

vector outer product O m, v O = mvT m̄ = P(Ō, v) v̄ = P(ŌT ,m)

solve matrix-vector S L, v s = L−1v
v̄ = S(LT , s̄)

L̄T = −O(S(L, v),S(LT , s̄))

solve matrix-matrix S L, B S = L−1B
B̄ = S(LT , S̄)

L̄T = −P(S(L,B),S(LT , S̄)T )

5 Experiments

5.1 Implementation

We have implemented the banded operators described
in Section 4 as custom operators for TensorFlow. This
allowed us to experiment with complex GP models
using these operators together with the functionalities
of the GPflow library (Matthews et al., 2017).

Our implementation is based on TensorFlow’s extensi-
bility mechanism referred to as “custom ops”: the code
for the forward evaluation of each operator is written
in C++ and registered to TensorFlow, together with
a mix of Python and C++ code that implements the
gradients of each operator. The C++ code for forward
evaluation is a direct implementation of the algorithms
detailed in Appendix B. Most gradients can be written
in Python by calling other operators, following Table
1. The Cholesky and sparse subset operators require
dedicated C++ code, as explained in Section 4.2 and
detailed in Appendix B.

5.2 Computational time

The aim of this section is to confirm that models writ-
ten using our operators are faster to train than existing
alternatives. We have seen previously that the com-
plexity of the proposed operators is O(Nl2) where N
is the size of the precision and l is the bandwidth. We
now illustrate the influence of these parameters on
the time required for computing the log-likelihood and
its gradient for a GP regression model with Gaussian
likelihood.

The weekly average atmospheric CO2 concentrations
recorded at the Mauna Loa Observatory, Hawaii, by
Keeling andWhorf (2005) are commonly used to demon-
strate how different patterns observed in the data
(e.g. periodicity, increasing trend) can be encoded
in a GP prior by designing compositional kernel func-
tions (Rasmussen and Williams, 2006). We ensure in
this example the bandedness of the precision matrix

by working within the class of kernels that have a
state-space representation (Grigorievskiy et al., 2017).
Conveniently, finite sums and products of such ker-
nels belong to this class (with each composition in-
creasing the resulting state-space dimension). For this
experiment, we design our kernel as follows: to cap-
ture the slow varying trend we use a Matérn3⁄2 kernel
ks(τ) parameterized by a lengthscale ls and a vari-
ance σ2

s ; for the quasi-periodic trend, we follow Solin
and Särkkä (2014) and use the quasi-periodic kernel
kq-per(τ) = kq(τ)

∑J
j=1 cos(2πjf0τ), where f0 is the

frequency of the periodic trend and kq is a Matérn1⁄2
kernel with lengthscale lq and variance σ2

q . These ker-
nels have state-space dimensions of respectively 2 and
2J , so the state dimension of k = ks + kq−per is 2J + 2
and the bandwith of the resulting precision matrix is
4J + 3.

The regression model using this kernel can be imple-
mented in three different ways that we are going to
compare: the first one is a Kalman filter implementa-
tion using loops in TensorFlow; the second one is based
on our custom operators and uses the bandedness of
the model’s precision matrix; and the third one is the
GPflow implementation of classic GP regression which
uses the dense covariance matrix. Note that the first
two implementations exploit the Markov property of
the model and are thus expected to scale linearly with
the amount of data points, whereas the third is known
to scale cubically. These algorithms are implemented
using TensorFlow and are detailed in Appendix C.

The dataset contains n = 3082 observations and we
consider subsets of increasing sizes to time the evalu-
ation of the marginal likelihood and its gradient with
respect to the model parameters (Figure 1, left). As
expected, the computational time for the naive GP
regression models quickly becomes prohibitively large
whereas the implementations based on the state-space
representation are linear in time. The computational
speed-up for custom operators is of three orders of
magnitude for the full dataset.
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Figure 1: Mean execution time for three implementations of a GP regression model as a function of the number
of data points (left) and of the bandwidth (middle). The right panel shows the model predictions when the data
points after 2015 are excluded from the training dataset.

Similarly, we show in the middle panel the influence of
the bandwidth l (which is twice the state-space dimen-
sion d minus one) on the execution time, restricting the
dataset to the first n = 1500 points. To do so we vary
the state dimension of the model by increasing J , that
is by adding more harmonics to our quasi-periodic ker-
nel. One can see that our banded operators are much
faster than the Kalman implementation, and that it
favourably compares to the GPflow implementation
when the bandwidth is smaller than 45. Furthermore,
this threshold would increase quickly as the dataset
gets larger. With our operators, the likelihood evalua-
tion scales as O(Nl2), but we now have N = nd so the
operators complexity is O(nl3). Note that this is the
same complexity as the classic implementation of the
Kalman filter.

Finally, Figure 1 (right) shows the model predictions
(J = 2, l = 11) for the years from 2015 to 2020. We
use the implementation based on our custom opera-
tors and we learn the kernel parameters by optimizing
the marginal likelihood of the model given the data
from 1958 until 2015. This illustrates that the model
can account for complex patterns even with a small
bandwidth. The mean test log-likelihood of this model
is -1.75 whereas we obtain -1.56 with the reference
implementation (Rasmussen and Williams, 2006, Eq.
5.19). Although, this is slightly to the advantage of
the later, it means that a model with small bandwith
can have good prediction abilities, even when it is not
finely tuned for the dataset at hand.

5.3 Gaussian Markov random field

In this section we illustrate our ability to perform
inference on a GMRF with non-conjugate likelihood.
To this aim, we consider the Porto dataset that gathers
the GPS locations of taxi pick-ups in the city of Porto
for the period July 2013 - June 2014. We use the first
three weeks of the data as our training set and the
following three weeks as our test set. This dataset has
already been modeled successfully with GP based Cox

processes by John and Hensman (2018) but we choose
a different approach here: we consider a GP based
Cox process model defined on a graph representing
the road network and each data point is projected
onto the closest node (if it is within a 10m radius).
The main advantage of this approach is that the GP
covariances are using the graph distance, which are
more meaningful that the Euclidian distance (think
about two locations separated by the river).

The graph is an undirected graph obtained from open
street map, it is denoted by G = (V = {1, . . . , N}, E)
and it consists of N = 11284 nodes and #V = 12185
edges. The length (in meters) of the edge (i, j) ∈ E is
denoted by di,j .

Let f ∼ N (0, Q−1) be a latent GMRF indexed by the
nodes v ∈ V . Our generative model assumes that the
number of pick-up associated to a node i follows a
Poisson distribution with parameter exp(fi)wi, where
wi is the length of the edges associated to the node i:
wi =

∑
j,(i,j)∈E max(10, di,j/2).

Since Q can also be interpreted as an inner product
for vectors g, h ∈ RN : 〈g, h〉 = gTQh, we define Q
such that it corresponds to the sum of Matérn1⁄2 inner
products over all the edges (Durrande et al., 2016):

gTQh =
1

σ2

∑
(i,j)∈E

1

1− λi,j
(gi gj)

(
1 −λi,j
−λi,j 1

)(
hi
hj

)
− 1

2
gihi −

1

2
gjhj (6)

where λi,j = σ2 exp(−di,j/`) with σ2 = 10, ` = 104.

We now compare three methods for predicting the val-
ues of the latent function f given the observations of
yv for v ∈ V : a Hamiltonian Monte-Carlo sampler, a
variational inference method, and a baseline consisting
in estimating the rate of a Poisson random variable
independently for each node. In the first two cases, we
use our implementation based on the GPflow frame-
work together with the specialised operators for banded
matrices described in Section 4. The first step before
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actually building the models consists in finding a good
ordering of the nodes in order to reduce the bandwidth
of the precision matrix. Using the Cuthill McKee al-
gorithm from the Scipy library, we found an ordering
corresponding to a lower bandwidth of l = 117 for
matrix Q.

Since our inference methods has a runtime of O(Nl2),
as opposed to O(N3) for a dense representation, the
settings N = 11284 and l = 117 imply that our banded
framework saves runtime by a factor of roughly 104.
Similarly, having to store only the band of the matrices
instead of their dense versions allows us to save almost
two orders of magnitude on the storage footprint.

Figure 2 (bottom) shows the mean prediction of the
model trained using variational inference. One can see
that the model successfully extracts a smooth trend for
the latent variable f . However the non-linear mapping
from the latent function to the rate λi = exp(fi)wi
leads to a large range of predicted rates: for most
nodes, the predicted rate is below 5, but its maximum
value is 149. We investigated some of the locations
with large predicted rate and they all correspond to
particular landmarks such as hotels or hospitals where
the taxi demand is naturally high and sharp. The plots
we obtain for the HMC and the baseline predictions
are very similar so we do not reproduce them here.

Finally, we compare the likelihood of the three models
on the test set. The values of the log-likelihood for the
VI, HMC and the baseline are -15778.5, -15873.6 and
-17146.6 respectively. This shows that even for this
challenging dataset, the proposed model has powerful
predictive power.

6 Discussion and conclusion

This work has examined how some Gaussian Markov
models can be expressed using banded matrices. We in-
vestigated some inference and end-to-end learning pro-
cedures for these models and identified the shared set of
general banded operators—endowed with their reverse-
mode derivatives—necessary to implement them.

The framework we propose is general in the sense that
it covers a large class of models (Kalman, SSM, GMRF)
for which it provides several state of the art inference
methods such as variational inference, gradient-based
samplers and maximum likelihood estimation when a
subset of the variables are observed. More inference
algorithms such as expectation propagation readily fit
into this paradigm.

The only algorithm we could not find in the literature is
the differentiation of the sparse inverse subset I. Given
that all others were readily available, we believe that
the implementation of a few low level operators is a

small price to pay for the huge benefit they provide in
practice. Although we focused on matrices where the
precisions are banded, similar work could be carried
out for matrices with other sparsity patterns such as
the ones obtained when the nested dissection is used
for the graph node ordering (Rue and Held, 2005).

We anticipate two main outcomes for the present work.
The first one is a strong incentive for a better sup-
port for the sparse algebra in automatic differentiation
frameworks, and the second is a renewal of the pop-
ularity of Gaussian Markov models now that state of
the art inference methods are available.

(a) Data: number of pick-ups per node.

(b) Predicted latent.

Figure 2: Graphs of the Porto experiment. (a) Number
of pick-ups after clipping them to the graph. The range
of the data is [0, 160] but we choose a non-linear color
map. (b) Predicted latent function for the VI model.
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