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Abstract

To learn a Bayesian network structure from
data, one popular approach is to maximize a
decomposable likelihood-based score. While
various scores have been proposed, they usu-
ally assume a uniform prior, or “penalty,”
over the possible directed acyclic graphs
(DAGs); relatively little attention has been
paid to alternative priors. We investigate em-
pirically several structure priors in combina-
tion with different scores, using benchmark
data sets and data sets generated from bench-
mark networks. Our results suggest that, in
practice, priors that strongly favor sparsity
perform significantly better than the uniform
prior or even the informed variant that is con-
ditioned on the correct number of parents for
each node. For an analytic comparison of dif-
ferent priors, we generalize a known recur-
rence equation for the number of DAGs to
accommodate modular weightings of DAGs,
a result that is also of independent interest.

1 INTRODUCTION

Learning a graphical model consists of learning the
model structure and inferring the model parame-
ters (Koller and Friedman 2009). It is popular to
formulate structure learning as a model selection prob-
lem, which is solved by some model selection criterion.
Common criteria take a form of a scoring function that
associates every admissible structure a score; one se-
lects a structure that maximizes the score.

To learn the structure of a Bayesian network (BN),
namely a directed acyclic graph (DAG), various scor-
ing functions have been derived under different sta-
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tistical paradigms. For instance, taking a Bayesian
approach, every DAG G is assigned a prior probabil-
ity P (G), the relationship to data set D is captured
by the marginal likelihood P (D |G), and the score
is the posterior probability P (G |D) (or its mono-
tone transformation) obtained by the Bayes rule. The
marginal likelihood is an average over a parameter
prior, different choices of which result in different scor-
ing functions, such as the Bayesian Dirichlet (BD)
family for categorical data (Heckerman et al. 1995).
The Bayesian Information Criterion (BIC) (Schwarz
1978), in turn, is a large-sample approximation of the
marginal likelihood; the BIC score also has an interpre-
tation in the (two-part) minimum description length
(MDL) framework (Rissanen 1978). Likewise, the
more recent fNML and qNML scores (Silander et al.
2010; 2018), which approximate the so-called normal-
ized maximum likelihood (Barron et al. 1998), can be
viewed as substitutes to the marginal likelihood.

In contrast to the large variety in instantiating, ap-
proximating, or replacing the marginal likelihood
P (D |G), the structure prior P (G) has received less at-
tention in the literature. While some alternative forms
of structure priors have been proposed (Heckerman
et al. 1995, Friedman and Koller 2003, Angelopoulus
and Cussens 2008), there has been no systematic em-
pirical comparison and none of the priors has reached
universal acclaim. Indeed, the commonly employed
scoring functions simply ignore the structure prior;
in Bayes scores this is equivalent to assigning a uni-
form prior. A potential concern with a uniform prior
is that it assigns a large probability mass on complex
(i.e., dense) structures, for they vastly outnumber sim-
pler structures. While the effect of the prior vanishes
as the size of the data grows (Koller and Friedman
2009; p. 804), one might benefit from preferring sim-
pler models when there are little data.

This paper investigates the role of structure priors in
score-based structure learning of BNs. Unlike some
previous work, we do not address the issues of elicit-
ing and expressing a modeller’s, possibly sophisticated,
background knowledge (Angelopoulus and Cussens
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2008). Instead, we study what kind of a structure prior
is a robust choice in a setting where no actual prior
knowledge is available, beyond maybe some vague idea
about the sparsity of the “true DAG.” We will mea-
sure the accuracy of structure learning using the pop-
ular structural Hamming distance (SHD) (Tsamardi-
nos et al. 2006). The recent Intersection–Validation
method (Viinikka et al. 2018) allows us to estimate
SHD not only using data generated from benchmark
BNs, but also on large benchmark data sets.

The specific questions we address revolve around the
concepts of uniformness and sparsity. From a practi-
tioner’s point of view, it is relevant that the available
software for BN structure learning typically allow the
user to set the maximum indegree of the DAG and
to choose the scoring function, but not a non-uniform
structure prior. The usual procedure is to set the max-
imum indegree as high as is computationally feasible,
and then search for the highest scoring DAG. We ask,
whether in this black-box setting, one can achieve bet-
ter structure learning accuracy by deviating from the
usual routine. Our answer is in the affirmative: we
give such a procedure, search space penalization (SSP),
which also has an interpretation as a structure prior.

As SSP still has a flavor of uniform priors, it is fair to
ask, whether the non-uniform priors proposed in the
literature further enhance structure learning. To an-
swer this question, we conduced an extensive empirical
study to compare different priors. The results support
the view that the uniform structure prior is inferior to
those that favor simpler structures. Furthermore, we
show that it would not not help, but rather harm, if
the prior (unrealistically) concentrated on DAGs with
the correct indegree for each node.

To shed light on the empirical results, we also present
an analytical study. Specifically, we examine the
marginal probability distribution on the indegree of
a fixed node under different structure priors; to cal-
culate these distributions, we generalize a recurrence
formula known for counting unweighted DAGs (Robin-
son 1973). One might suspect that under the uniform
prior, the marginal distribution concentrates at large
indegrees (i.e., at the smaller of the maximum indegree
and a half of the number of nodes). We confirm this
hypothesis for the case of bounded indegree, but re-
fute it for unbounded indegree. We discuss the results
further at the end of the paper.

2 MODULAR PRIORS

This section gives a brief review of some structure pri-
ors presented in the literature. We exclusively focus
on so-called modular priors, which are composed as a
product of local terms. This sacrifice in generality is

motivated by the fact that modular priors cover a large
class of priors. Furthermore, modularity is needed for
obtaining a decomposable scoring function, a require-
ment of most state-of-the-art learning algorithms. (See
Supplement for the definition and examples of decom-
posable scoring functions.)

We will consider graphs on a node set {1, 2, . . . , n},
denoted by [n] for short, for some natural number n.
If G is a DAG on [n], we write Gi for the set of parents
of i in G, i.e.,

Gi =
{
j : G contains an arc from j to i

}
.

For brevity, we usually call |Gi| the indegree rather
than the number of parents of i. We denote by Gn
the set of all DAGs on [n] and by Gdn the set of DAGs
G ∈ Gn whose maximum indegree is at most d, i.e.,
|Gi| ≤ d for all i ∈ [n].

We say a probability distribution P on Gn is modular
if, for each i ∈ [n], there exists a set function ρi from
the subsets of [n] \ {i} to nonnegative reals such that

P (G) = c

n∏
i=1

ρi(Gi) for all G ∈ Gn ,

with some normalizing constant c. We call the set
functions factors. The reader may note that introduc-
ing the constant c is redundant in the definition, for
the constant could be absorbed into the factors. How-
ever, the formulation is convenient, as it allows us to
specify the factors without the trouble of ensuring that
the normalizing constant equals unity.

Even if modular priors can express node-specific pref-
erences, such as inclusion or exclusion certain nodes as
parents, there is an interest in general-purpose priors
that treat all nodes uniformly. Then a prior is specified
by giving the maximum indegree d and an expression
of ρi that only depends on the indegree s := |Gi|. Ta-
ble 1 collects several forms of priors proposed in the
literature; we assign each prior a name that captures
some distinctive characteristic of the prior.

Some remarks on the structure priors listed in Table 1
are in order; see Angelopoulus and Cussens (2008)
for historical notes, some variants, and discussion.
Clearly, Unif is a special case of Edge with β = 1.
Equivalent to Edge is the random graph model that
contains an arc from node i to node j with probabil-
ity p independently for all (i, j), however, disregarding
graphs with a directed cycle (Madigan and Raftery
1994); the parameters are related by β = p/(1 − p).
Buntine (1991) and Cooper and Herskovits (1992) con-
sidered variants of the Edge model, where the selec-
tion of arcs is conditional on a given node ordering.
Friedman and Koller (2003) introduced the prior we
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Table 1: Forms of modular structure priors over DAGs on n nodes.

Name Factor, indegree s Notes Exemplary reference

Unif 1 Uniform over DAGs —

Edge βs Equivalent to the random graph model ps(1− p)n−1−s Heckerman et al. (1995)

Fair 1/
(
n−1
s

)
Balances the probabilities of different indegree Friedman and Koller (2003)

Data exp[−(1 + τ)s lnN ] Depends on the data size N ; by default τ = 0.5 Pensar et al. (2016)

dub Fair similarly conditionally on a node ordering.
When averaged over all orderings it results in a prior
that is not modular but order-modular (Koivisto and
Sood 2004). The prior stems from the idea of “fair”
allocation of probability mass to different numbers
of parents, whence the name. Apparently, Fair has
rarely been included in empirical studies on score-and-
search algorithms; an exception is a recent work on lo-
cal structures (i.e., context-specific independence) by
Talvitie et al. (2018). The Data prior is introduced in
another work on local structures (Pensar et al. 2016).
Unlike the other priors, Data is not a Bayesian prior
as it depends on the sample size N , whence the name.

3 SEARCH SPACE PENALTY

Not all state-of-the-art software packages (Scutari
2010) allow the user to specify a structure prior; they
offer a limited number of pre-implemented scoring
functions, which assume a uniform prior. They do
allow the user to control the maximum indegree, how-
ever. We next show how that enables implementing a
nontrivial prior we call search space penalty (SSP).

Recall that we denote by Gdn the set of DAGs on [n]
with maximum indegree at most d. Clearly, these po-
tential search spaces are nested:

G0n ⊂ G1n ⊂ · · · ⊂ Gn−1n = Gn .

For a DAG G ∈ Gn, let d(G) denote the maximum
indegree of G. Now, define a prior PSSP by letting the
probability of G be inversely proportional to the size
of the smallest search space Gdn that contains G:

PSSP(G) ∝ 1
/∣∣Gd(G)

n

∣∣ .
In contrast to the variants discussed in the previous
section, this structure prior is not modular.1 How-
ever, the non-modularity of the prior does not cause a
computational obstacle: finding a DAG G that maxi-
mizes a scoring function f(G) under PSSP(G) reduces
to maximizing the score under the uniform prior sep-
arately for each possible maximum indegree d:

1Alternatively, but with little difference in practice, one
could consider a prior that is proportional to the inverse of

|Gd(G)
n \ Gd(G)−1

n |. Neither this prior is modular.

Algorithm Search Space Penalization

S1 For each d = 0, 1, . . . , n− 1, let

Ĝ(d) ∈ arg max
{
f(G) : G ∈ Gdn

}
.

“Find an optimal DAG for each subclass.”

S2 Let

d̂ ∈ arg max
{
f(Ĝ(d))/|Gdn| : d = 0, 1, . . . , n− 1

}
.

“Penalize large subclasses.”

S3 Output Ĝ(d̂).

We get the following (the proof is left to the reader):

Proposition 1. Search Space Penalization outputs a
DAG G that maximizes PSSP(G)f(G).

From an MDL (Rissanen 1978) point of view, the SSP
prior corresponds to encoding a DAG G by first en-
coding the maximum indegree d(G) with about log2 n

bits, and then encodingG using about log2 |G
d(G)
n | bits.

The algorithm can be slower than the standard pro-
cedure by a factor of n in the worst case, a seemingly
significant additional computational burden. However,
in many practical settings, the complexity of step S1 is
dominated by the time needed to search through the
largest search space; and, furthermore, for that largest
search space one could set the maximum indegree d to
a value much smaller than n− 1, e.g., d = 5.

It remains to show how we obtain the numbers |Gdn|.
In the next section we give a recurrence (Corollary 4)
that enables efficient computation of these numbers.

SSP readily applies for any baseline scoring function
using exact or heuristic search algorithms. We also
have the following result concerning equivalent DAGs,
i.e., DAGs that encode exactly the same set of condi-
tional independence relations:

Proposition 2. SSP assigns the same score to equiv-
alent DAGs, if the baseline scoring function does so.

We omit the proof, which is straightforward and uses
the fact that equivalent DAGs have the same maxi-
mum indegree (Chickering 1995; Thm. 9).
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4 ANALYTICAL RESULTS

A modular prior can express, separately for each node
i, which of the possible parents are a priori preferred
as the actual parents of the node. The expression cap-
tured by the corresponding factor ρi in the modular
function is, however, only approximate because the
parents of different nodes are not independent: the
actual parents must yield an acyclic graph. For this
reason, e.g., a constant factor results in a non-uniform
prior over parent sets for each node. We next inves-
tigate more closely the relationship of the factors and
the resulting marginal prior probabilities.

We focus on a setting that is more special than the
framework of modular priors, yet general enough to
cover all the concrete priors listed in the previous sec-
tion. Specifically, we assume that factors are sym-
metric in the sense that they are invariant under rela-
belling of the nodes. Equivalently, we assume that for
each node i and potential parent set Gi we have that

ρi(Gi) = w(|Gi|) ,

for some function w. It is easy to see that the factors
listed in the previous section indeed are of this form.

How does a given weight function w map to a prior
P (|Gi|) on the indegree of node i? Due to the sym-
metry in w, these distributions are identical for all i.
We have that, for r = 0, 1, . . . , n− 1, the probabilities
P (|Gi| = r) are proportional to the weighted sum of
DAGs G where |Gi| = r. More precisely, by defining

Zn(w) =
∑
G∈Gn

w(G) and Zn,r(w) =
∑
G∈Gn

G1={2,3,...,r+1}

w(G) ,

we have that P (|Gi| = r) =
(
n−1
r

)
Zn,r(w)/Zn(w).

Write St :=
∑t

s=0

(
t
s

)
w(s). We find the following:

Theorem 3 (Recurrence). Let Z0 = Z0,0 = 1 and
Z0,r = 0 for r ≥ 1. For all n ≥ 1 we have that

Zn =

n∑
k=1

(−1)k−1
(
n

k

)
Sk
n−k Zn−k ,

Zn,r =

n−r∑
k=1

(−1)k−1
(
n− r − 1

k − 1

)
w(r)Sk−1

n−k Zn−k

+

n−r−1∑
k=1

(−1)k−1
(
n− r − 1

k

)
Sk
n−k Zn−k,r .

The proof (Supplement) uses the inclusion–exclusion
method (Robinson 1973, Stanley 1973) and exploits
the symmetry in w.

Corollary 4. Let an(d) := |Gdn| be the number of la-
belled DAGs with n ≥ 1 nodes and maximum indegree
d ≥ 0. Let a0(d) = 1. We have that

an(d) =

n∑
k=1

(−1)k−1
(
n

k

)( d∑
s=0

(
n− k
s

))k

an−k(d) .

Proof. Apply Theorem 1 for the function w defined by
w(s) = 1 if s ≤ d and w(s) = 0 otherwise.

The recurrence formulas provide us with a means for
efficient computation of the marginal prior distribu-
tions even for large numbers of nodes n. If the number
of parents is bounded above by d (i.e., w(s) vanishes
for s > d), then the values P (|G1| = r), for 0 ≤ r ≤ d,
can be computed with O(n2d) arithmetic operations.

Figure 1 shows the marginal distribution of the number
of parents under different modular priors, for n = 32
and n = 128 nodes with maximum indegree d = 5 and
with unbounded indegree. We see that Unif yields a
non-uniform marginal. If we set the maximum inde-
gree to 5, then having five parents is more probable
than having zero parents; for n = 32 the ratio is about
10 and for n = 128 about 100. In contrast, if the in-
degree is unbounded, then the distribution is nearly
uniform up to around n/2 parents, after which the
probabilities rapidly decrease close to zero. Indeed, if
we wished to support large parent sets, we should as-
sign larger weights to larger numbers of parents; this
is demonstrated in Fig. 1 by the Fact prior.

However, it is not possible to choose the factors so that
the distribution would be exactly uniform:

Proposition 5. For every modular distribution P (G)
on Gn with symmetric factors, the distribution P (|Gi|)
is non-uniform on {0, 1, . . . , n− 1} for each node i.

The proof, by the probabilistic method (Supplement),
is based on the observation that a uniform distribution
would imply existence of a DAG with so a large average
number of parents that it contradicts acyclicity.

The rest of the priors, Edge, Fair, and Data, favor
smaller numbers of parents. Under Data, five (or
more) parents is several orders of magnitude less prob-
able than zero or one parent. Edge is sensitive to the
product of β and n: if the product is large (say, at least
10), the prior favors larger indegrees, up to around
five, whereas if it is small, the prior renders larger in-
degrees very unlikely. Fair differs from the others in
that it exhibits a mild preference for smaller indegrees
in all scenarios. In summary, the priors Edge, Fair,
and Data are similar in that they assign a relatively
large probability to the smallest indegrees, from 0 to
3, unlike Unif ; however, at larger indegrees the priors
differ from each other significantly.
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n = 32, d = 5 n = 32, d = 31 n = 128, d = 5 n = 128, d = 127
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Figure 1: Probability distribution of the number of parents of a fixed node under different modular structure
priors. In the Data prior the data size N is set to 200. The Fact prior is defined by letting w(s) = s!.

5 EMPIRICAL STUDIES

We investigate the practical effect of structure priors
on structure learning by using both benchmark net-
works and real data. For searching through the space
of DAGs, we generally prefer a globally optimal ap-
proach due to superior performance (Malone et al.
2015), but also employ a heuristic search algorithm
when the network size demands it (Section 5.5).

Unless stated explicitly otherwise, we use throughout
this section as baseline scoring function the BDeu score
with an equivalent sample size of 1, which is despite re-
cent criticism (Suzuki 2017) one of the most commonly
used scoring functions. For structure prior Edge, we
choose β = 0.1, since it performed best in prelimi-
nary studies, whereas for Data, we follow Pensar et al.
(2016) and set τ = 0.5.

In Sections 5.1–5.4, we evaluate structure priors based
on four popular benchmark networks of a size that al-
lows finding a globally optimal DAG (Table 2), under
a maximum indegree of 5. For each network and sam-
ple size we generate ten data sets. For all data sets,
we then learn a DAG for each method, i.e., for each

Table 2: Benchmark networks used in this study.
MaxIn is the maximum indegree, Param is the number
of free parameters of the network, and Opt indicates
whether the search guarantees global optimality.

Network Nodes Arcs MaxIn Param Opt

Child 20 25 2 230 Yes
Insurance 27 52 3 984 Yes
Water 32 66 5 10083 Yes
Alarm 37 46 4 509 Yes

Hailfinder 56 66 4 2656 No
Hepar2 70 123 6 1453 No
Win95pts 76 112 7 574 No
Andes 223 338 6 1157 No

combination of baseline score and structure prior. We
compute all local scores using bene (Silander and Myl-
lymäki 2006), add the penalties arising from the struc-
ture priors, and compute the globally optimal DAG
using GOBNILP (Cussens 2011, Bartlett and Cussens
2013). For each resulting DAG, we compute the struc-
tural Hamming distance (SHD) of Tsamardinos et al.
(2006) to the ground truth and average the SHDs for
each method over the ten independent samples.

5.1 Structure Priors for BDeu

First, we compare the effect of the different structure
priors using BDeu as scoring function (Fig. 2). All
non-uniform variants improve on Unif when the sam-
ple size is small in relation to the number of variables,
which confirms that the BDeu score is indeed unsuit-
able for relatively small data sets. We also observe
that Fair, Data, and Edge perform better than SSP
and similar in direct comparison, which is in agree-
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Figure 2: Effect of structure priors on benchmark net-
work recovery for BDeu baseline score.
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ment with the results of Section 4: unlike Unif, these
priors assign relatively large probabilities to small
indegrees—even if the priors diverge at larger inde-
grees (i.e., four or more), the differences have little
effect at small data sets, because small data sets are
insufficient for learning larger parent sets regardless
of the prior. Justified by these observations, we now
focus on structure prior Fair in what follows.

Next, we decompose the SHD into the individual con-
tributions of spurious edges, missing edges, and incor-
rect edge orientations. We find that Fair dramatically
reduces spurious edges; see Fig. 3 for one example.
This error reduction comes at a cost, as missing edges
are slightly increased. While these two effects are pre-
dictable, we also observe that structure priors reduce
incorrect edge orientations. This can be explained as
a side-effect of the generally reduced number of edges,
which entails less acyclicity constraints.
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Figure 3: Error types for Alarm.

5.2 Utopian Priors

As complexity penalization can be viewed as a trade-
off between spurious and missing edges, it is natural to
ask whether the studied structure priors penalize com-
plexity optimally already or whether there is substan-
tial room for improvement. To study this question, we
consider, in contrast to the general scope of this arti-
cle, informative priors that we obtain directly from the
ground-truth. Suppose we know the correct indegree
di for each node i. We can set it as hard constraint to
obtain a “utopian” prior (Utop) defined as

PUtop(G) ∝
{

1 if |Gi| = di for all nodes i ,
0 otherwise .

The practical effect of this prior may surprise at first
glance: guiding the learning algorithm towards the
correct solution may yield a substantial increase in
SHD (Fig. 4). It can be explained by the fact that Utop
forces each node to a (possibly large) indegree, whereas
selecting the correct parent nodes remains challenging
when the sample size is small. From the perspective
of SHD, choosing a wrong parent counts twice: once
as a spurious edge and once as a missing edge.

A less harsh constraint is obtained by just bounding
the indegree from above, i.e., replacing the equalities
in the definition of Utop by the inequalities |Gi| ≤ di.
This improved utopian prior, dubbed Utop+, is more
conservative as it allows for learning smaller indegrees
in the case of doubt, i.e., when only little data is avail-
able. However, even this variant never performs sub-
stantially better than Fair, suggesting relatively little
room for improvement over Fair and the similarly per-
forming Edge and Data priors.
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Figure 4: Effect of utopian priors.

5.3 Different Baseline Scores

We now study, in addition to BDeu, also BIC (Schwarz
1978), fNML (Silander et al. 2010), and qNML (Silan-
der et al. 2018), as baseline scores, show summarizing
results for comparing Unif and Fair in Fig. 5, and pro-
vide the full results with all structure prior variants in
the Supplement. We observe that adding a structure
prior decreases SHD dramatically for fNML, moder-
ately for qNML, and has no visible effect for BIC.
Moreover, we find that BIC with or without structure
prior is not optimal, especially for Alarm. Interestingly,
the errors of BIC in spurious edges and missing edges
are comparable to the other well-performing methods
such as BDeu+Fair. The difference is that BIC pro-
duces a much larger number of incorrectly oriented
edges. This is due to the heavy penalty for the num-
ber of free parameters, which strongly prefers a chain
or a common cause over a v-structure. Hence, there
are comparably many undirected edges in the equiva-
lence class representation of the learned DAG.

5.4 Other Aspects

The results of two further studies are shown only in the
Supplement due to space constraints; we here briefly
summarize the main findings. First, we also investi-
gated the effects of structure priors on the recently
proposed structural intervention distance (Peters and
Bühlmann 2015). For this evaluation metric, penaliz-
ing complexity with structure priors or SSP gives no
benefits. Second, we also studied different hyperpa-
rameter choices for priors Edge and Data. We observe
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Figure 5: Comparison of different baseline scores.

that our default values perform well, only in the case
of Water we could have obtained a better performance
with favoring sparsity more (lower β and higher τ).

5.5 SSP for Heuristic Search

All previous studies used a globally optimal algorithm
for searching through the space of DAGs that can
take pre-computed local scores as input and thus eas-
ily permits to add modular structure priors to arbi-
trary baseline scoring functions. Now, we the setting,
where the user does not have the flexibility of speci-
fying own scoring functions, but can choose only from
a set of pre-implemented variants. For this purpose,
we use the tabu search algorithm from the bnlearn

software package (Scutari 2010) and apply it to four
common benchmark networks that are too large for
finding the globally optimal DAG (Table 2) and thus
require heuristic search for structure recovery.

We compare Unif with SSP for the BDeu baseline
score, and also include plain BIC in the comparison
(Fig. 6). We observe that SSP is effective for BDeu,
yielding an equal or lower SHD than Unif with the
exception of two sample sizes for Hepar2. We also find
that BIC is often more effective than BDeu+SSP at
small sample sizes, unless the lowest SHD is achieved
by the empty network. However, BIC has the down-
side of a much slower convergence, whereas SSP be-
haves at large sample sizes identical to BDeu.

5.6 Evaluation on Real Data

All previous studies did rely on existing benchmark
networks that can be treated as ground-truth. We now
evaluate the effect of structure priors on the structure
learning performance based on real data.
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Figure 6: SSP for heuristic search.

Here, SHD cannot be used for evaluation as no ground
truth network is available. Hence, we employ the
Intersection-Validation (InterVal) method (Viinikka
et al. 2018). It allows to approximate the SHD by
the so-called Partial Hamming Distance (PHD), which
can be computed even if no ground-truth DAG is avail-
able. The central idea of InterVal is to consider only
structural features (presence/absence and orientation
of edges) that all methods agree upon when learning
from the full data set. Treating these features as surro-
gate ground truth then allows to compare the methods
at smaller subsamples of the original data set.

For the following study, we use data sets from Mal-
one et al. (2018), which originate from the UCI ma-
chine learning repository 2 and are already processed
for learning discrete BNs. We choose eight data sets
that are large enough for applying the InterVal method
(at least 1000 data points), but still permit learning
a globally optimal DAG with GOBNILP when assuming
an maximum indegree of three (Splice, Mushroom, Kr-
vs-Kp, Optdigits) or four (remaining data sets).

Fig. 7 shows average PHDs for all data sets at 1
2 , 1

4 , 1
8 ,

etc., of the full sample size. The observations from the
the benchmark network study (Fig. 2) are confirmed:
Adding a structure prior reduces errors at small sam-
ple sizes. Moreover, we find evidence that Fair is on
real data slightly superior to the other modular priors.
The PHDs for the other baseline scoring functions are
shown in the Supplement, and confirm the previously
observed trend: structure priors improve on Unif dra-
matically for fNML, moderately for qNML, and imper-
ceptibly for BIC. Since they also never perform sub-
stantially worse, using a structure prior is a robust
choice that can be generally recommended.

2http://archive.ics.uci.edu/ml
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Figure 7: Evaluation of structure priors on real world data sets using the InterVal method.

6 CONCLUSIONS

We have studied the popular score-and-search ap-
proach to structure learning in BNs. Previous research
has shown that the chosen scoring function matters
when one seeks a DAG that is structurally similar to
the ground truth DAG, as measured by SHD. Our ob-
servations concur with that (Fig. 5). However, most
previous studies have effectively assumed a structure
prior that is uniform over all DAGs, restricted by some
maximum indegree.

In this work we challenged the uniform prior. Our
empirical findings suggest that the uniform prior is
inferior to various sparsity favoring priors; such pri-
ors have so far been employed mainly in the full
Bayesian averaging framework, which deviates from
the score-and-search approach. Adding a sparsity-
favoring prior boosts the performance of all tested
scores, except BIC, and render their differences rela-
tively small (Fig. 5). In this light, it is more important
to choose an appropriate structure prior than tuning
the likelihood part of the score.

A tempting explanation for the inferiority of the uni-
form prior is that sparsity-favoring priors better match
the actual sparsity of the ground truth DAG. This
explanation is flawed. Indeed, our study (with the
utopian prior) showed that conditioning on the correct
indegree for each node rather harms. Another expla-
nation could be that SHD simply favors the sparsest
DAG: it is best to output the DAG with no arcs. Also
this conclusion is flawed. The empty DAG, for which
SHD equals the number of arcs in the ground truth
(cf. Table 2), would perform well only at very small
data samples, but no longer on moderate size samples

where sparsity-favoring priors still show a significant
advantage over the uniform prior.

The correct explanation appears to stem from balanc-
ing the two extremes. Sparsity-favoring priors are su-
perior because they assign a relatively large prior prob-
ability on small indegrees, and yet allow learning larger
indegrees as the size of the data grows. It is crucial
to avoid assigning too large prior on large indegrees,
which would force a highest-scoring DAG include arcs
that are likely to be spurious at smaller data sizes.

Among the alternative sparsity-favoring structure pri-
ors, our empirical results on data generated from
benchmark BNs show little difference. However, the
analytical results suggest that the Fair prior is perhaps
the most robust; the empirical results on benchmark
data sets also provide some support for this conclusion.

Motivated by the fact that many existing software
packages do not allow the user to choose a non-uniform
structure prior, we also introduced the search space
penalization (SSP) method. SSP appears to perform
better than the uniform prior, even if not being com-
petitive to the sparsity-favoring priors. It is worth
noting that SSP is not only applicable to BNs, but to
any model family that is nested in relation to some
natural complexity parameter.
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of learning strategies on the quality of Bayesian net-
works: An empirical evaluation. In Proc. UAI, pages
562–571, 2015.

B. Malone, K. Kangas, M. Järvisalo, M. Koivisto, and
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