
A Supplementary material

This is the supplementary material for the paper Model
Consistency for Learning with Mirror-Stratifiable Reg-
ularizers, submitted to AiStats 2019. It contains the
detailed proofs of the propositions 2 and 3 of which
are, as explained in Section 4, the building blocks of
our two main results (Theorems 1 and 2). The sup-
plementary is structured in three sections: Section A.1
gathers key technical lemmas; Section A.2 presents the
proof of Proposition 2; Section A.3 presents the one
of Proposition 3.

We use the same notations here as introduced at the
beginning of Section 4. We also introduce what can
viewed as the limit of (Pλ,n) as n→ +∞:

wλ ∈ Argmin
w∈Rp

λR(w) +
1

2
〈Cw, w〉 − 〈u, w〉. (1)

For any positive semi-definite matrix A, we also note
the seminorm || · ||A =

√
〈A·, ·〉.

A.1 Useful technical lemmas

Here we present a few technical lemmas. The first gives
us some control on how Ĉn converges to C (resp. ûn
converges to u) when the amount of data n tends to
+∞, and the second provides us with some essential
compactness on these sequences. The third provides
us an important variational characterization of the set
to which belongs η0. Finally, the last Lemma gives a
useful estimate between ŵλ,n and wλ.

Lemma 1. If λn
√
n/ log log n → +∞ and E

[
|y|4

]
+

E
[
||x||4

]
< +∞, then the following holds almost surely:

(i) max{‖ûn − u‖, ‖Ĉn − C‖} = o(λn),

(ii) for n large enough, Im Ĉn = ImC,

(iii) Ĉ†n → C† as n→ +∞.

Proof. It can be seen (use the Young inequality) that

E
[
||xy||2

]
= E

[
|y|2||x||2

]
6

1

2
E
[
|y|4

]
+

1

2
E
[
||x||4

]
< +∞

and E
[
||xx>||2

]
= E

[
||x||4

]
< +∞.

We are then in a position to invoke the law of iterated
logarithm (Van der Vaart, 1998, Proposition 2.26) to
obtain that, with probability 1,

rn := max{‖ûn−u‖, ‖Ĉn−C‖} = O
(
n−1/2

√
log log n

)
.

Our assumption that λn
√
n/ log log n→ +∞ then en-

tails item (i).

We now turn to item (ii). Consider w ∈ KerC; it
verifies by definition Eρ[x〈x, w〉] = 0. By taking the
scalar product of this equality with w, we see that
(∀x ∼ ρ), P(〈x,w〉 = 0) = 1. Let (w1, ..., wd) be a
basis of KerC, where d = dim(kerC). Then we deduce
that (∀x ∼ ρ), P((∀i ∈ {1, . . . , d}) 〈x,wi〉 = 0) = 1.
In other words, x ∈ (KerC)⊥ a.s., or, equivalently:

(∀x ∼
i.i.d.

ρ) P(x ∈ ImC) = 1. (2)

Now, observe that Im Ĉn = Im ({xi}ni=1), so the follow-
ing implication holds:

[(∀i ∈ {1, . . . , n}) xi ∈ ImC]⇒ Im Ĉn ⊂ ImC. (3)

Since the xi are drawn i.i.d. from ρ, and are in finite
number, we can combine (10) and (11) to obtain that

P(Im Ĉn ⊂ ImC) > P((∀i ∈ {1, . . . , n}) xi ∈ ImC)

=

n∏
i=1

P(xi ∈ ImC) = 1.

We deduce then that Im Ĉn ⊂ ImC a.s., from which
we get that rank Ĉk 6 rankC a.s. This, together with
lower semi-continuity of the rank, yields that with
probability 1,

rank(C) 6 lim inf
k→+∞

rank(Ĉk) 6 lim sup
k→+∞

rank(Ĉk)

6 rankC

meaning that rank(Ĉk) → rank(C) a.s. Because
the rank takes only discrete values, this means that
rank Ĉk = rankC a.s. for all k large enough. We can
then trivially deduce from the inclusion Im Ĉk ⊂ ImC
a.s., that the equality Im Ĉk = ImC holds a.s. for k
large enough.

Assertion (iii) follows from (ii) and (Stewart, 1977,
Theorem 3.3).

Lemma 2. Assume that (HM) holds, and

• Im Ĉn = ImC for n large enough,

• supn∈N Ĉ
†
n < +∞.

Then, the sequences (ŵλn,n)n∈N and (wλn
)n∈N are

bounded.

Proof. Introduce fλ(w) := R(w) + (1/2λ)||Cw − u||2C†

and fλ,n(w) := R(w) + (1/2λ)||Ĉnw− ûn||2Ĉ†
n
which, by

definition, verify

wλn
∈ Argmin fλn

and ŵλn,n ∈ Argmin fλn,n.



Define λ := supn λn > 0, and use the optimality of
ŵλn,n to derive

fλ,n(ŵλn,n) 6 fλn,n(ŵλn,n) 6 fn(w0)

By making use of Lemma 1.(iii) and Lemma 1.(i), we
have the bound

fn(w0) 6 R(w0) +
||Ĉ†n||
2λn
||Ĉnw0 − ûn||2,

6 R(w0) +O

(
||Ĉn − C||+ ||u− ûn||

λn

)2

,

6 R(w0) + o(1).

We can make a similar reasoning on the sequence
(wλn)n∈N, and deduce that

fλ(wλn) 6 R(w0) + o(1), (4)
and fλ,n(ŵλn,n) 6 R(w0) + o(1). (5)

To prove the boundedness of (ŵλn,n)n∈N and (wλn
)n∈N,

we will use arguments relying on the notion of asymp-
totic or recession function; see (Bauschke and Com-
bettes, 2011, Definition 10.32) for a definition. Define
f0(w) := R(w) + ι{u}(Cw), where ι{u} is the indica-
tor function1 of the singleton {u}. The hypothesis
(HM) indicates that argmin f0 = {w0}, so in particular
argmin f0 is compact. We can then invoke (Auslender
and Teboulle, 2003, Proposition 3.1.2 and 3.1.3) to
deduce that f∞0 (w) > 0 for all w ∈ Rp \ {0}, where
f∞0 is the recession function of f0. From the sum
rule (Auslender and Teboulle, 2003, Proposition 2.6.1),
we deduce that f∞0 = R∞ + (ι{u} ◦ C)∞. Moreover,
we know from (HM) that u ∈ ImC, so we can use
(Auslender and Teboulle, 2003, Proposition 2.6.1) to
get (ι{u} ◦ C)∞ = ι{0} ◦ C = ιKerC . We deduce from
all this that R∞(w) > 0 for all w ∈ KerC \ {0}, which
can be equivalently reformulated as

KerR∞ ∩KerC = {0}. (6)

Let us start with the boundedness of (wλn
)n∈N.

Combining (Auslender and Teboulle, 2003, Proposi-
tion 2.6.1), (Auslender and Teboulle, 2003, Exam-
ple 2.5.1) and the fact that u ∈ ImC, the recession
function of fλ reads f∞

λ
(w) = R∞(w) if w ∈ kerC and

+∞ otherwise. Thus, (14) is equivalent to f∞
λ

(w) > 0
for all w 6= 0. This is equivalent to saying that fλ
is level-bounded (see (Auslender and Teboulle, 2003,
Proposition 3.1.3)), from which we deduce boundedness
of (wλn)n∈N via (12) and (13).

1The indicator function ιΩ of a set Ω ⊂ Rp is by defini-
tion equal to 0 when evaluated on Ω, and +∞ elsewhere.

We now turn on (ŵλn,n)n∈N. We write ûn = Cp̂n since
ûn ∈ Im Ĉn ⊂ ImC. We first observe that (12) and
(13) can be rewritten as:

1

2λ
||Ĉn(ŵλn,n − p̂n)||2

Ĉ†
n

+R(ŵλn,n) 6 R(w0) + o(1).

Let Vn diag(sn,i)V
>
n be a (reduced) eigendecompo-

sition of Ĉn. By our assumptions, we have s :=

infn,16i6r sn,i =
(

supn ||Ĉn||
)−1

> 0. In addition, the
columns of Vn form an orthonormal basis of ImC for
n large enough. Thus, for all such n, we have

s|| projImC(ŵλn,n − p̂n)||2

= s||V >n (ŵλn,n − p̂n)||2

6
r∑
i=1

sn,i|〈vn,i, ŵλn,n − p̂n〉|2

= 〈Ĉn(ŵλn,n − p̂n), ŵλn,n − p̂n〉
= ||Ĉn(ŵλn,n − p̂n)||2

Ĉ†
n
.

Altogether, we get the bound

s

2λ
|| projImC(ŵλn,n− p̂n)||2 +R(ŵλn,n) 6 R(w0)+o(1)

for n sufficiently large. Arguing as above, the reces-
sion function of g := s

2λ
|| · −p̂n||2 ◦ projImC +R is again

g∞(w) = R∞(w) if w ∈ kerC and +∞ otherwise,
independently of p̂n2. Our assumption plugged into
(Auslender and Teboulle, 2003, Proposition 3.1.3) en-
tails that g is level-bounded and thus boundedness for
(ŵλn,n)n∈N.

Lemma 3. Assume that (HM) holds. Then

Argmin
η∈ImC

R∗(η)− 〈C†u, η〉 = ∂R(w0) ∩ ImC.

Proof. Using (Bauschke and Combettes, 2011, Propo-
sition 13.23 & Theorem 15.27), one can check that
problem

min
η∈ImC

R∗(η)− 〈C†u, η〉

is the Fenchel dual of (P0). Moreover, (w?, η?) is a
primal-dual (Kuhn-Tucker) optimal pair if and only if(

w?

η?

)
∈
(

C†u+ kerC
∂R(w?) ∩ ImC

)
.

As we assumed in (HM) that w0 is the unique minimizer
of (P0), the claimed identity follows.

Lemma 4. Let n ∈ N and assume that Im Ĉn ⊂ ImC.
Denote rn := max{||ûn − u||, ||Ĉn − C||}. Then,

||C(ŵλ,n − wλ)|| 6 (||C||||C†||)1/2(1 + ||ŵλ,n||)rn.
2This reflects the geometric fact that the recession func-

tion is unaffected by translation of the argument.



Proof. The first-order optimality conditions for both
ŵλ,n and wλ yield{

0 ∈ λ∂R(ŵλ,n) + Ĉnŵλ,n − ûn
0 ∈ λ∂R(wλ) + Cwλ − u.

In view of monotonicity of ∂R, we deduce that

0 6 〈ûn − u+ Cwλ − Ĉnŵλ,n, ŵλ,n − wλ〉.

Rearranging the terms, we get

〈C(ŵλ,n − wλ), ŵλ,n − wλ〉 (7)

6 〈ûn − u+ (C − Ĉn)ŵλ,n, ŵλ,n − wλ〉.

By virtue of standard properties of the Moore-Penrose
pseudo-inverse and the fact that ûn − u and C − Ĉn
both live in ImC ⊃ Im Ĉn, we obtain

〈C†(Cŵλ,n − Cwλ), Cŵλ,n − Cwλ〉
6 〈C†(ûn − u+ (C − Ĉn)ŵλ,n), Cŵλ,n − Cwλ〉.

Applying the Cauchy-Schwarz and triangle inequalities,
we arrive at

||Cŵλ,n − Cwλ||C†

6 ||ûn − u||C† + ||(C − Ĉn)ŵλ,n||C†

6 ||C†||1/2
(
||ûn − u||+ ||C − Ĉn||||ŵλ,n||

)
6 ||C†||1/2(1 + ||ŵλ,n||)rn.

On the left side of this inequality, we exploit the fact
that ||C||−1 is the smallest nonzero eigenvalue of C† on
Im(C) to conclude

||Cŵλ,n − Cwλ||C† 6 ||C||1/2||Cŵλ,n − Cwλ||C†

6 (||C||||C†||)1/2(1 + ||ŵλ,n||)rn.

A.2 Proof of Proposition 2

Convergence of the primal variable. To lighten
notations, we will write ŵn := ŵλn,n. From Lemma 2
we know that (ŵn)n∈N is bounded a.s., so it admits a
cluster point, say w?. Let ŵn be a subsequence (we do
not relabel for simplicity) converging a.s. to w?. Now,
let εn := ûn − Ĉnw0, for which we know that both εn
and εn/λn are o(1), thanks to Lemma 1(i) and the fact
that u = Cw0. From the optimality of ŵn, we obtain

λnR(ŵn) +
1

2
〈Ĉnŵn, ŵn〉 − 〈ûn, ŵn〉

6 λnR(w0) +
1

2
〈Ĉnw0, w0〉 − 〈ûn, w0〉,

which can be equivalently rewritten as

1

2
〈Ĉn(ŵn − w0), ŵn − w0〉 − 〈ŵn − w0, εn〉 (8)

6 λn(R(w0)−R(ŵn)).

Passing to the limit in (16) and using the fact that R
is bounded from below, we obtain

〈C(w? − w0), w? − w0〉 = 0 a.s. ,

or equivalently, that Cw? = Cw0 = u a.s. since C
is positive semi-definite. In addition, as Ĉn is also
positive semi-definite, so we can rewrite (16) as

R(ŵn) 6 R(w0) + 〈ŵn − w0,
εn
λn
〉. (9)

Passing to the limit in (17), using lower-semicontinuity
of R and that εn/λn = o(1) a.s., we arrive at

R(w?) 6 lim inf
n

R(ŵn) 6 lim sup
n

R(ŵn) 6 R(w0) a.s.

Clearly R(w?) 6 R(w0) and w? obeys the constraint
Cw? = u, which implies that w? is a solution of (P0)
a.s. But since this problem has a unique solution, w0,
by assumption (HM), we conclude that w? = w0 a.s.
This being true for any a.s. cluster point means that
ŵn → w0 as n→ +∞ a.s.

Convergence of the dual variable. Here we omit
systematically mentioning that the bounds and conver-
gence we obtain hold almost surely.

It can be verified, using for instance (Bauschke and
Combettes, 2011, Proposition 13.23 & Theorem 15.27),
that the Fenchel dual problem of (Pλ,n) is

{η̂λ,n} := Argmin
η∈Im Ĉn

R∗(η) +
λ

2
〈Ĉ†nη, η〉 − 〈Ĉ†nûn, η〉.

(10)
For any fixed λ > 0, we also introduce its limit prob-
lem3, as n→ +∞ (which is the dual of (9)):

{ηλ} := Argmin
η∈ImC

R∗(η) +
λ

2
〈C†η, η〉 − 〈C†u, η〉. (11)

Both problems are strongly convex thanks to positive
semi-definiteness of Ĉn and C, hence uniqueness of the
corresponding dual solutions η̂λ,n and ηλ. Moreover,
from the primal-dual extremality relationships, see
(Bauschke and Combettes, 2011, Proposition 26.1.iv.b),
η̂λ,n and ηλ can be recovered from the corresponding
primal solutions as

η̂λ,n :=
ûn − Ĉnŵλ,n

λ
and ηλ :=

u− Cwλ
λ

. (12)

In what follows, we prove that η̂n converges to η0
when n → +∞. To lighten notation, we will denote

3By Lemma 1, we indeed have C†
n → C† a.s. under our

hypotheses.



rn := max{‖ûn − u‖, ‖Ĉn − C‖}, and note η̂n = η̂λn,n.
We have

||η̂n − η0|| 6 ||η̂n − ηλn ||+ ||ηλn − η0||. (13)

By using (20) and the definition of rn, we write

||η̂n − ηλn
|| =

∣∣∣∣∣∣ ûn − u
λn

+
Cwλn − Ĉnŵn

λn

∣∣∣∣∣∣
6 O

(
rn
λn

)
+
∣∣∣∣∣∣Cwλn

− Ĉnŵn
λn

∣∣∣∣∣∣.
The second term on the right hand side can also be
bounded as∣∣∣∣∣∣Cwλn

− Ĉnŵn
λn

∣∣∣∣∣∣ =
∣∣∣∣∣∣C(wλn

− ŵn)

λn
+
Cŵn − Ĉnŵn

λn

∣∣∣∣∣∣
6

∣∣∣∣∣∣C(wλn
− ŵn)

λn

∣∣∣∣∣∣+ ||ŵn||
rn
λn

= O

(
rn
λn

)
,

where we used Lemma 4, and Lemma 2 with Lemma 1
in the last inequality. Combining the above inequalities
with the fact that rn = o(λn) by Lemma 1.(i), we obtain

||η̂n − ηλn || = O

(
rn
λn

)
n→+∞−→ 0. (14)

It remains now to prove that ηλ converges to η0 when
λ→ 0. To do so, we start by using optimality of ηλ and
η0 for problems (19) and (D0), together with Lemma
3, to write

R∗(ηλ) +
λ

2
〈C†ηλ, ηλ〉 − 〈C†u, ηλ〉 (15)

6 R∗(η0) +
λ

2
〈C†η0, η0〉 − 〈C†u, η0〉

6 R∗(ηλ) +
λ

2
〈C†η0, η0〉 − 〈C†u, ηλ〉,

from which we deduce that

〈C†ηλ, ηλ〉 6 〈C†η0, η0〉. (16)

Since ηλ ∈ ImC = (kerC†)⊥ (see (19)), we can infer
from (24) that (ηλ)λ>0 is bounded. Let η? be any
cluster point of this net, and let us verify that η? must
be equal to η0. First, passing to the limit in (24) shows
that

〈C†η?, η?〉 6 〈C†η0, η0〉. (17)

Second, taking the limit in (23) and using lower semi-
continuity of R∗, we get

R∗(η?)− 〈C†u, η?〉 (18)

6 lim inf
λ→0

R∗(ηλ) +
λ

2
〈C†ηλ, ηλ〉 − 〈C†u, ηλ〉

6 lim
λ→0

R∗(η0) +
λ

2
〈C†η0, η0〉 − 〈C†u, η0〉

= R∗(η0)− 〈C†u, η0〉.

From ηλ ∈ ImC we know that η? ∈ ImC as well, so
we can then deduce from (26) and Lemma 3 that

η? ∈ ∂R(w0) ∩ ImC. (19)

Putting together (25) and (27) shows that η? is a solu-
tion of (D0), hence η? = η0 by uniqueness of η0. This
being true for any cluster point shows convergence of
ηλ to η0.

A.3 Proof of Proposition 3

We use here the notations hn and ξ̂k introduced in Sec-
tion 4, and we read directly from hypothesis (HA) that
d̂k = ∇hn(ŵk) + ξ̂k, E

[
ξ̂k|Fk

]
= 0, E

[
‖ξ̂k‖2|Fk

]
6

σ2
k and ξ̂k converges a.s. to 0.

Let us start by showing that ŵk converges to ŵλn,n.
For this, let w be any solution of (Pλ,n). We can
write, using standard identities (e.g. (Bauschke and
Combettes, 2011, Corollary 2.14)), that

||ŵk+1 − w||2 (20)
= ||(1− αk)(ŵk − w) + αk(ẑk − w)||2

= (1− αk)||ŵk − w||2 + αk||ẑk − w||2

−αk(1− αk)||ẑk − ŵk||2.

Since w is a solution of (Pλ,n), it is a fixed point
for the operator proxλnγkR

◦(Id− γk∇hn) for any k ∈
N. Use then the definition of ẑk together with the
nonexpansiveness of the proximal mapping to obtain

||ẑk − w||2 6 ||ŵk − w + γk(∇hn(w)−∇hn(ŵk)− ξk)||2

6 ||ŵk − w‖2 + γ2k‖∇hn(w)−∇hn(ŵk)− ξk||2

+ 2γk〈ŵk − w, ∇hn(w)−∇hn(ŵk)− ξk〉.

Taking the conditional expectation w.r.t. Fk in
the above inequality, and using the assumptions
E(ξk|Fk) = 0 and E(‖ξk‖2|Fk) 6 σ2

k, leads to

E(||ẑk − w||2|Fk)

6 ||ŵk − w||2 + γ2k||∇hn(w)−∇hn(ŵk)||2 + γ2kσ
2
k

+2γk〈ŵk − w, ∇hn(w)−∇hn(ŵk)〉.

Since ∇hn is 1/L-cocoercive, we obtain

E(||ẑk − w||2|Fk)
6 ||ŵk − w||2 + γ2kσ

2
k

−γk(2/L− γk)||∇hn(w)−∇hn(ŵk)||2

After taking the conditional expectation in (28) and
combining with the last inequality, we obtain

E(||ŵk+1 − w||2|Fk)

6 ||ŵk − w||2 + αkγ
2
kσ

2
k

−γk(2/L− γk)||∇hn(w)−∇hn(ŵk)||2

−αk(1− αk)E(||ẑk − ŵk||2|Fk).



The inequality above means that (ŵk)k∈N is a stochas-
tic quasi-Féjer sequence, and hypothesis (HA) allows
us to use invoke (Combettes and Pesquet, 2015, Propo-
sition 2.3), from which we deduce that (ŵk)k∈N is
bounded a.s. Thus ŵk has a cluster point. Let w̄
be a sequential cluster point of (ŵk)k∈N, and ŵk be a
subsequence (that we do not relabel for simplicity) that
converges a.s. to w̄. Recalling (8) and (7), and in view
of assumption (HA) and continuity of the gradient, we
deduce that

v̂k → −∇hn(w̄) and ẑk → w̄ a.s.

Since (ẑk, v̂k) ∈ gph(λn∂R) and λn∂R is maximally
monotone, we conclude that 0 ∈ ∇hn(w̄) + λn∂R(w̄),
i.e., w̄ is minimizer of (Pλ,n). Since this is true for any
cluster point, we invoke (Combettes and Pesquet, 2015,
Proposition 2.3(iv)) which yields that ŵk converges a.s.
to a minimizer of (Pλ,n). Using again (7), we see that
ẑk converges a.s. to this same minimizer.
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