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Abstract

Estimating conditional dependence graphs
and precision matrices are some of the most
common problems in modern statistics and
machine learning. When data are fully ob-
served, penalized maximum likelihood-type
estimators have become standard tools for
estimating graphical models under sparsity
conditions. Extensions of these methods to
more complex settings where data are con-
taminated with additive or multiplicative
noise have been developed in recent years.
In these settings, however, the relative per-
formance of different methods is not well
understood and algorithmic gaps still exist.
In particular, in high-dimensional settings
these methods require using non-positive
semidefinite matrices as inputs, presenting
novel optimization challenges. We develop
an alternating direction method of multipli-
ers (ADMM) algorithm for these problems,
providing a feasible algorithm to estimate
precision matrices with indefinite input and
potentially nonconvex penalties. We com-
pare this method with existing alternative
solutions and empirically characterize the
tradeoffs between them. Finally, we use
this method to explore the networks among
US senators estimated from voting records
data.

1 Introduction

Undirected graphs are often used to describe high-
dimensional distributions. Under sparsity conditions,
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these graphs can be estimated using penalized meth-
ods such as

Θ̂ ∈ arg min
Θ�0

{
tr(Γ̂nΘ)− log det(Θ) + gλ(Θ)

}
, (1)

where Γ̂n is the sample covariance or correlation
matrix and gλ is a separable (entry-wise) sparsity-
inducing penalty function. Although this approach
has proven successful in a variety of application areas
such as neuroscience and genomics, its soundness
hinges on the positive semidefiniteness (PSD) of Γ̂n.
If Γ̂n is indefinite, the objective may be unbounded
from below.

In order to ensure this penalized M -estimator is well-
behaving, Loh and Wainwright (2015) impose a side
constraint of the form ρ(Θ) < R, where ρ is a convex
function. Here we focus on the estimator using the
operator norm as a side constraint

Θ̂ ∈ arg min
Θ�0,‖Θ‖2≤R

{
tr(Γ̂nΘ)− log det(Θ) + gλ(Θ)

}
.

(2)
Loh and Wainwright (2017) adopt this method and
show in theory the superior statistical properties of
this constrained estimator. Their results suggest that
the addition of a side constraint is not only sufficient
but also almost necessary to effectively untangle the
aforementioned complications.

Unfortunately, this additional constraint precludes
using existing methods to solve the penalized ob-
jective with non-PSD input. To close this gap, we
develop an alternating direction method of multipli-
ers (ADMM) algorithm to implement (2) efficiently.
We conduct empirical studies comparing this new
method to several other precision matrix estimators.
Our simulation study reveals several trends that are
not present in the fully observed case. Finally, we
illustrate the performance of our methods in ana-
lyzing the US senate voting data, uncovering both
known and novel phenomena from the modern polit-
ical landscape.
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The remainder of this paper is organized as follows.
In Section 2, we provide an overview of existing re-
lated work and describe in detail the optimization
issues that arise from indefinite inputs and noncon-
vex penalties. In Section 3, we present the proposed
ADMM algorithm and present some convergence re-
sults. Section 4 provides numerical examples and
comparisons. Section 5 presents an exploratory anal-
ysis of US Senate voting records data using this
method and details several interesting conclusions
that can be drawn from the estimated graphs. Fi-
nally, we summarize the empirical results and their
practical implications regarding choice of method in
Section 6.

2 Problem formulation and existing
work

There is a wide body of work proposing methods
to perform precision matrix estimation in the fully
observed case, including Meinshausen and Bühlmann
(2006), Yuan and Lin (2007), Rothman et al. (2008),
Friedman et al. (2008), Banerjee et al. (2008), and
Zhou et al. (2010), most of which are essentially a
`1-penalized likelihood approach (1) which we will
refer to as the graphical Lasso.

Recent work has focused on using nonconvex regu-
larizers such as SCAD and MCP for model selection
in the regression setting (Fan and Li, 2001; Zhang,
2010; Breheny and Huang, 2011; Zhang and Zhang,
2012). Loh and Wainwright (2015, 2017) extend this
analysis to general M -estimators, including variants
of the graphical Lasso objective, and show their sta-
tistical convergence and support recovery properties.
Estimators with these penalties have been shown to
attain model selection under weaker theoretical con-
ditions, but require more sophisticated optimization
algorithms to solve, such as the local linear approxi-
mation (LLA) method of Fan et al. (2014).

In a fully observed and noiseless setting, Γ̂n is the
sample covariance and guaranteed to be at least pos-
itive semidefinite. Then, if gλ is the `1-penalty, the
objective of (1) is convex and bounded from below.
In this setting, one can show that for λ > 0 a unique
optimum Θ̂ exists with bounded eigenvalues and that
the iterates for any descent algorithm will also have
bounded eigenvalues (for example, see Lemma 2 in
Hsieh et al., 2014).

When working with missing, corrupted, and depen-
dent data, the likelihood is nonconvex, and the
expectation-maximization (EM) algorithm has tra-
ditionally been used to perform statistical inference.

However, in these noisy settings, the convergence of
the EM algorithm is difficult to guarantee and is often
slow in practice. For instance, Städler and Bühlmann
(2012) implement a likelihood-based method for in-
verse covariance estimation with missing values, but
their EM algorithm requires solving a full graphical
Lasso optimization problem in each M-step.

An alternative approach is to develop M -estimators
that account for missing and corrupted data. For
graphical models, Loh and Wainwright (2015) es-
tablish that the graphical Lasso, including a version
using nonconvex penalties, can be modified to ac-
commodate noisy or missing data by adjusting the
sample covariance estimate.

These modified estimators depend on the observa-
tion that statistical theory for the graphical Lasso
generally requires that ‖Γ̂n − Σ‖∞ converges to zero
at a sufficiently fast rate (e.g. Rothman et al., 2008;
Zhou et al., 2010; Loh and Wainwright, 2017). When
considering missing or corrupted data, it is often
possible to construct covariance estimates Γ̂n that
satisfy this convergence criteria but are not necessar-
ily positive semidefinite. In fact, in high-dimensional
settings Γ̂n may even be guaranteed to be indefinite.
Attempting to input these indefinite covariance es-
timates into the graphical Lasso, however, presents
novel optimization issues.

Unbounded objective. When attempting to move
beyond the `1 penalized case with positive semidefi-
nite input, the problem in (1) becomes unbounded
from below, so an optimum may not necessarily ex-
ist. This issue comes from two potential sources: 1)
negative eigenvalues in Γ̂n, or 2) zero eigenvalues
combined with the boundedness of the nonconvex
penalty gλ. For example, consider the restriction of
the objective in (1) to a ray defined by an eigenvalue-
vector pair σ1, v1 of Γ̂n:

f(I + tv1v
T
1 )

= tr(Γ̂n) + t tr(Γ̂nv1v
T
1 )− log(1 + t) + gλ(tv1v

T
1 )

= tr(Γ̂n) + tσ1 − log(1 + t) + gλ(tv1v
T
1 ).

(3)
If σ1 < 0, we see that f is unbounded from below due
to the tσ1 and − log(1 + t) terms. In fact, if σ1 = 0
and gλ is bounded from above, as is the case when
using standard nonconvex penalties, the objective is
also unbounded from below.

So unboundedness can occur anytime there is a neg-
ative eigenvalue in the input matrix, or whenever
there are zero eigenvalues combined with a noncon-
vex penalty function gλ. Unboundedness creates opti-
mization issues, as an optimum no longer necessarily
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exists.

Handling unboundedness. In order to guarantee
that an optimum exists for (1), an additional con-
straint of the form ρ(Θ) ≤ R can be imposed, where
ρ is some convex function. In this paper, we consider
the estimator (2), which uses a side constraint of
the form ‖Θ‖2 ≤ R. Loh and Wainwright (2017)
show the rates of convergence of this estimator (2)
and show that it can attain model selection consis-
tency and spectral norm convergence without the
incoherence assumption when used with a nonconvex
penalty (see Appendix E therein), but do not dis-
cuss implementation or optimization aspects of the
problem.

To our knowledge, there is currently no feasible op-
timization algorithm for the estimator defined in
(2), particularly when the input is indefinite. Loh
and Wainwright (2015) present a composite gra-
dient descent method for optimizing a subset of
side-constrained versions of (1). However, their
algorithm requires a side constraint of the form
ρ(Θ) = 1

λ (gλ(Θ) + µ
2 ‖Θ‖

2
F ), which does not include

the spectral norm constraint and therefore cannot
attain the better theoretical results it achieves (Sec-
tion C.7 compares the performance of different side
constraints). It may be possible to develop heuris-
tic algorithms that alternate performing a proximal
gradient update ignoring the side constraint and pro-
jecting to the constraint set, but as far as we know
there has not been any analysis of algorithms of this
type (we discuss this in more detail in Section C.4).

An alternative approach to solving this unbounded
issue is to project the input matrix Γ̂n to the positive
semidefinite cone before inputting into (1). We dis-
cuss this further in Section 4.1, but this only solves
the unbounded issue when using the `1 penalty; non-
convex penalties still require a side constraint to have
a bounded objective and therefore our algorithm is
still useful even for the projected methods.

3 ADMM Algorithm

Our algorithm is similar to the algorithm in Guo and
Zhang (2017), which applies ADMM to the closely re-
lated problem of condition number-constrained sparse
precision matrix estimation using the same splitting
scheme as below. We discuss their method in more
detail in Section A.6. The following algorithm is spe-
cialized to the case where the spectral norm is used
as the side constraint. In Section B we derive a simi-
lar ADMM algorithm that can be used for any side
constraint with a computable projection operator.

Algorithm 1: ADMM for graphical Lasso with a
side constraint
Input: Γ̂n, ρ, gλ, R
Output: Θ̂
Initialize V 0 = Θ0 � 0, Λ0 = 0 ;
while not converged do

V k+1 = Proxgλ/ρ
(
ρΘk+Λk

ρ

)
Θk+1 = Tρ

(
ρV k+1−Γ̂n−Λk

ρ

)
Λk+1 = Λk + ρ(Θk+1 − V k+1)

end

Rewrite the objective from (2) as

f(Θ) = tr(Γ̂nΘ)− log det(Θ)+gλ(Θ)+1XR(Θ) (4)

where XR = {Θ : Θ � 0, ‖Θ‖2 ≤ R} and 1X (Θ) =
0 if Θ ∈ X and ∞ otherwise.

Let ρ > 0 be a penalty parameter and let Proxgλ/ρ be
the prox operator of gλ/ρ. We derive these updates
for SCAD and MCP in Section A.2. Let Tρ(A) be
the following prox operator for − log det Θ +1XR(Θ),
which we derive in Section A.3,

Tρ(A) = Tρ(UMUT ) = UD̃UT

where D̃ii = min

{
Mii + (M2

ii + 4
ρ )1/2

2
, R

}
,

where UMUT is the eigendecomposition of A. Then
the ADMM algorithm for solving (4), which we derive
in Section A.2, is described in Algorithm 1. Compu-
tationally this algorithm is dominated by the eigen-
decomposition used to evaluate Tρ, and therefore has
a complexity of O(m3), which matches the scaling of
other graphical Lasso solvers (e.g. Meinshausen and
Bühlmann, 2006; Friedman et al., 2008; Hsieh et al.,
2014).

3.1 Convergence

The following proposition applies standard results
on the convergence of ADMM for convex problems
to show convergence when the `1 penalty is used.
Details are in Section A.4.

Proposition 1. If the penalty is convex and satisfies
the conditions in Section A.1, Algorithm 1 converges
to a global minimum of (4).

Remark. Regarding the nonconvex penalty, recent
work has established ADMM convergence results in
some nonconvex settings (see Hong et al., 2016; Wang
et al., 2015), but to our knowledge there is no conver-
gence result that encompasses this nonsmooth and
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nonconvex application. We can show convergence if
a fairly strong assumption is made on the iterates,
but we are currently working on extending existing
results to this case.

Proposition 2 shows that any limiting point of Algo-
rithm 1 is a stationary point of the original objective
(4). This is proved in Section A.5. When using the
`1 penalty or a nonconvex penalty with R ≤

√
2/µ,

where µ is the weak convexity constant of gλ, the
objective f is convex and therefore any stationary
point is unique and also the global optimum. See
Section C.5 for a more detailed discussion.

Proposition 2. Assume that the penalty gλ satisfies
the conditions in Section A.1. Then for any limit
point (Θ∗, V ∗,Λ∗) of the ADMM algorithm defined
in Algorithm 1, Θ∗ is also a stationary point of the
objective f as defined in (4).

The assumptions on gλ in Section A.1 are the same as
those assumed in Loh and Wainwright (2015, 2017),
and are satisfied by the Lasso, SCAD, and MCP
functions.

Note that if a limiting point is found to exist when
using a nonconvex penalty the result in Proposition 2
will still hold. Empirically we find that the algorithm
performs well and converges consistently when used
with nonconvex penalties, but there is no existing
theoretical guarantee that a limiting point of ADMM
will exist in that setting.

4 Simulations

We evaluate the proposed estimators using the rela-
tive Frobenius norm and the sum of the false positive
rate and false negative rate (FPR+FNR). We present
results over a range of λ values, noting that all the
compared methods would use similar techniques to
perform model tuning. Section C.1 presents an ex-
ample of how to use BIC or cross-validation to tune
these methods. We present results using covariance
matrices from auto-regressive and Erdős-Rényi ran-
dom graph models. See Section C for descriptions of
these models as well as additional simulation results.

4.1 Alternative methods

When faced with indefinite input, there are two al-
ternative graphical Lasso-style estimators that can
be used besides (2), which involve either `∞ projec-
tion to the positive semidefinite cone or nodewise
regression in the style of Meinshausen and Bühlmann
(2006).

Projection. Given an indefinite input matrix Γ̂n,
Park (2016) and Greenewald et al. (2017) propose per-
forming the projection Γ̂+

n = arg minΓ�0‖Γ− Γ̂n‖∞.
They then input Γ̂+

n into the optimization problem
(1). This is similar to the projection done in Datta
and Zou (2017). In terms of the upper bound on
statistical convergence rates, this method pays a con-
stant factor cost, though in practice projection may
result in a loss of information and therefore a decrease
in efficiency.

After projecting the input, existing algorithms can
be used to optimize (1) with the `1 penalty. However,
as mentioned in Section 2, using a nonconvex penalty
still leads to an unbounded objective and therefore
still requires using our ADMM algorithm to solve
(2).

Nodewise regression. Loh and Wainwright (2012)
and Rudelson and Zhou (2017) both study the statis-
tical and computational convergence properties of us-
ing errors-in-variables regression to handle indefinite
input matrices in high-dimensional settings. Follow-
ing the nodewise regression ideas of Meinshausen and
Bühlmann (2006) and Yuan (2010), we can perform
m Lasso-type regressions to obtain estimates β̂j and
form estimates âj , where

β̂j ∈ arg min
‖β‖1≤R

{
1

2
βT Γ̂n,−j,−jβ − 〈Γ̂n,−j,j , β〉+ ‖β‖1

}
âj = −(Γ̂n,j,j − 〈Γ̂n,−j,j , β̂j〉)−1

(5)
and combine to get Θ̃ with Θ̃−j,j = âj β̂j and Θ̃j,j =
−âj . Finally, we symmetrize the result to obtain
Θ̂ = arg minΘ∈Sm‖Θ− Θ̃‖1, where Sm is the set of
symmetric matrices.

These types of nodewise estimators have gained pop-
ularity as they require less restrictive incoherence
conditions to attain model selection consistency and
often perform better in practice in the fully observed
case. They have not, however, been as well studied
when used with indefinite input.

4.2 Data models

We test these methods on two models that result in
indefinite covariance estimators, the non-separable
Kronecker sum model from Rudelson and Zhou (2017)
and the missing data graphical model described in
Loh and Wainwright (2015). In the main paper
we focus on the missing data model, but Section C
contains a detailed description of the Kronecker sum
model as well as simulation results using it.
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(a) `1, ζ = 0.95
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(b) MCP, ζ = 0.95
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(c) `1, ζ = 0.7

−4

−3

−2

−1

0

0 200 400 600
iterations

lo
g 

re
la

ti
ve

 F
ro

be
ni

us
 e

rr
or

(d) MCP, ζ = 0.7

Figure 1: Convergence of the ADMM algorithm for several initializations. Blue lines show the relative optimization
error (‖Θk − Θ̂‖F /‖Θ

∗‖F , where Θ̂ is the result of running our algorithm to convergence) while red lines show the
statistical error (‖Θk − Θ∗‖F /‖Θ

∗‖F ). All panels use an AR1(0.7) covariance with m = 300 and n = 125 and set
ρ = 12. The left panels use an `1 penalty, while the right panels use MCP with a = 2.5. R is set to be three times the
oracle spectral norm.

Missing data (MD). As discussed above, Loh and
Wainwright (2013, 2015) propose an estimator for a
graphical model with missing-completely-at-random
observations.

Let W ∈ Rn×m be a mean-zero subgaussian ran-
dom matrix. Let U ∈ {0, 1}n×m where Uij ∼
Bernoulli(ζj) are independent of W . This corre-
sponds to entries of the jth column of the data matrix
being observed with probability ζj . Then we have an
unobserved matrix Z and observed matrix X gener-
ated by Z = WA1/2 and X = U ◦X, where ◦ denotes
the Hadamard, or element-wise, product. Here the
covariance estimate for A is

Γ̂n =
1

n
XTX �M where Mk` =

{
ζk if k = `

ζkζ` if k 6= `

(6)
where � denotes element-wise division. As we divide
off-diagonal entries by smaller values, Γ̂n will not
necessarily be positive semidefinite.

4.3 Simulation results

Optimization performance. Figure 1 shows the
optimization performance of Algorithm 1 using non-
projected input matrices from the missing data model
with both `1 and nonconvex penalties (MCP). The
top two panels present an “easy” scenario with a
higher sampling rate, while the bottom two have a
more challenging scenario with significant missing
data. Blue lines report the optimization error while

red lines are the statistical error.

All the plots in Figure 1 have their optimization
error quickly converge to below the statistical error.
These plots also suggest that our algorithm can attain
linear convergence rates. We find that the algorithm
consistently converges well over a range of tested
scenarios.

Comparing the statistical error of the top two plots,
we see that MCP achieves significantly lower error
for the easier scenario. But in the bottom two plots,
where there is more missing data, it struggles relative
to the `1 penalty. This is a common trend through
our simulations, as the performance of estimators
using MCP degrades as missingness increases while
the `1-penalized versions are more robust.

Method comparisons. Figure 2 demonstrates the
statistical performance along the full regularization
path. Across the panels from left to right, the sam-
pling rate decreases and therefore the magnitude of
the most negative eigenvalue increases (see Table 4).

In terms of Frobenius error, both projected methods
and the nonprojected estimator with the `1 penalty
get slightly worse across panels, but the nodewise
regression and the nonprojected MCP estimator react
much more negatively to more indefinite input. The
nodewise regression in particular goes from being
among the best to among the worst estimators as
the sampling rate decreases.
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Figure 2: The performance of the various estimators for the missing data model in terms of relative Frobenius
error (‖Θ̂ − Θ∗‖F /‖Θ

∗‖F ) and model selection as measured by FPR + FNR. We use an AR(0.6) covariance and
set m = 1200. Settings are chosen so that the effective sample size (nζ2) is roughly equivalent. The MCP penalty
uses a = 2.5. We set R to be 1.5 times the oracle value for each method and set ρ = 24. Our convergence criteria is
‖Θk+1 −Θk‖F /‖Θ

k‖F < 5e−5.

Comparing the projected and nonprojected curves in
Figure 2, we see that the optimal value of λ, as well as
the range of optimal values, shrinks for the projected
method as the sampling rate decreases. This pattern
is consistently repeated across models and scenarios,
likely because the `∞ projection is shrinking the off-
diagonal entries of the input matrix. We find that
the nonprojected graphical Lasso performs slightly
better than the projected version when used with the
`1 penalty, likely due to the information lost in this
shrinkage.

Figure 2 also shows how these methods perform in
terms of model selection. We can see that the noncon-
vex penalties perform essentially identically to their
`1 penalized counterparts. In particular, the degrada-
tion of the nonprojected MCP estimator in terms of
norm error does not seem to affect its model selection
performance. The nodewise regression, however, still
demonstrates this pattern, as its model selection per-
formance degrades across the panels. For scenarios
with more missing data, the nonprojected estimators
seem to be easier to tune, maintaining a wider range
of λ values where they perform near-optimally. In
Section C of the supplement we perform similar ex-
periments in a variety of different noise and model

settings.

Sensitivity to R. Figure 3 demonstrates the sensi-
tivity of the nonprojected estimators to the choice
of R, the size of the side constraint. We can see that
all these methods are sensitive to the choice of R for
small values of λ in terms of norm error. None of the
methods are sensitive in terms of model selection.

The nonprojected graphical Lasso with MCP is the
most sensitive to R and is also sensitive for larger
choices of λ, which is important since it never reaches
its oracle minimum norm errors when R is chosen to
be larger than the oracle. The nonprojected graphi-
cal Lasso with `1 and the projected graphical Lasso
with MCP both still achieve the same best-case per-
formance when R is misspecified, though tuning λ
becomes more difficult.

The nodewise regression results are also plotted here.
Here R is the `1 side constraint level in (5). For
smaller values of λ the nodewise estimator levels off,
corresponding to when the side constraint becomes
active over the penalty. Different values of R change
when this occurs and, if R is chosen large enough, do
not significantly affect ideal performance. Note that
these use a stronger oracle that knows each column-
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Figure 3: The performance of missing data estimators
over different choices of R. The non-nodewise estimators
set R = R_scale× ‖A‖2, while each node’s regression in
the nodewise estimator sets R to be R_scale times that
node’s oracle `1 value. We use an AR(0.6) covariance,
set m = 1200, n = 130, and choose a sampling rate of
ζ = 0.7. The MCP penalty is chosen with a = 2.5.

wise `1 norm, but do show that this method can be
improved with careful tuning.

5 Senate voting analysis

Based on the missing data model from Section 4.2,
we estimate the conditional dependence graph among
senators using the ADMM algorithm from Section 3.
The dataset includes voting records from the United
States Senate during the 112th Congress (2011-2013).
We drop senators who serve partial terms and unani-
mous votes, resulting in a dataset of voting records
for 99 senators over 426 votes. Appendix D contains
further details regarding data processing and the
methods used as well as additional analysis.

Missing values in this data correspond to votes that
are missed by senators and consist of roughly 2.6% of
total votes. Note that only 109 of the votes are fully
observed, so some type of correction or imputation
should be used instead of omitting rows.

A major story at this time was the rise of the tea
party movement in the Republican party. Across the
US government tea party challengers rose to promi-

nence. Though it was not an official party, politicians
associated with the tea party movement tended to be
more conservative and less likely to compromise than
establishment Republicans, leading to a particularly
politically polarized period of government.

Figure 4 plots the estimated graph among senators.
As expected the distinction between Republicans
and Democrats is stark. Both independent senators
caucus with the Democrats, so as expected they are
part of the Democratic component of the graph.

We identify senators who were present at the inaugu-
ral meeting of the unofficial Senate Tea Party Caucus
as well as those elected in 2010 with significant tea
party support.1 These senators are colored in black,
and we can see that within the Republican party
they are clustered together.

In Figure 4a we can see that the sole connection
between parties runs through the tea party (Rand
Paul) and Jeff Merkley, a Democratic senator. This
may be surprising, as Rand Paul is one of the most
conservative senators and Merkley one of the most
liberal. Paul is, however, regarded as a relatively
libertarian conservative. So though he is extremely
conservative in some dimensions, he may share liberal
views with Merkeley on others.

Figure 4b plots the same graph estimated at a lower
penalization level. The Republicans who have cross-
party connections include some of both the most
conservative (Paul) and the most moderate (Thad
Cochran, Lisa Murkowski).2 On the Democratic
side the cross-connected senators also include both
the most liberal (Sanders, Merkley, Tom Udall) and
relatively moderate (Claire McCaskill). As expected,
moderates are among those most connected opposing
party, but this shows that the most extreme members
of a party can also be linked to the opposing party.
Appendix D discusses these cross-party links in more
detail.

Figure 4c shows the Republican subgraph from Fig-
ure 4a. Here we can identify other senators who are
closely associated with the tea party. In particular,
two nodes near the tea party cluster are marked ‘H’
and ‘C,’ corresponding to Senators Orrin Hatch and
Tom Coburn. Both have been linked to the tea party
in the media, either as candidates supported by it or

1The marked tea party senators are Marco Rubio,
Mike Lee, Jerry Moran, Jim DeMint, Rand Paul, Ron
Johnson, and Pat Toomey.

2Here we are measuring ideology by NOMINATE,
a standard method in political science for assessing a
representative’s position on the political spectrum (Poole,
2005). See Appendix D for more details.
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(a) λ = 0.21
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(b) λ = 0.15
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(c) λ = 0.15, Republican subgraph

Figure 4: Graphs among senators estimated on Senate
voting records from the 112th US Congress using an `1
penalty with penalty λ as indicated. We set R = 10
and the ADMM algorithm was run with ρ = 10. After
estimation, the precision matrix is thresholded at 0.04
for the top panel and 0.055 for the bottom two.

as being supportive of the movement.

It is also of interest that one marked senator is not
clustered with the others, Jerry Moran. This suggests
that he is not as closely connected to the tea party
movement as the others we have identified.

6 Summary and discussion

In this paper, we study the estimation of sparse pre-
cision matrices from noisy and missing data. To close
an existing algorithmic gap, we propose an ADMM
algorithm that allows for fast optimization of the
side-constrained graphical Lasso, which is needed to
implement the graphical Lasso with either indefinite
input and/or nonconvex penalties. We investigate its
convergence properties and compare its performance
with other methods that handle the indefinite sample
covariance matrices that arise with dirty data.

We find that methods with nonconvex penalties are
quite sensitive to the indefiniteness of the input co-
variance estimate, and are particularly sensitive to
the magnitude of its negative eigenvalues. They may
have better existing theoretical guarantees, but in
practice we find that with nontrivial missingness
or noise they perform worst than or, at best, re-
cover the performance of their `1-normalized coun-
terparts. The nonconvex methods can outperform
the `1-penalized ones when there is a small amount
of missingness or noise, but in these cases we often
find the nodewise estimator to perform best.

In difficult settings with significant noise or missing-
ness, the most robust and efficient method seems to
be using the graphical Lasso with nonprojected input
and an `1 penalty. As the application becomes easier
– with more observations or less missing data – the
nodewise estimator becomes more competitive, just
as it is understood to be with fully observed data.

The projected graphical Lasso estimator with an `1
penalty seems to be slightly worse than its nonpro-
jected counterpart. Projection does, however, allow
for the use of nonconvex penalties in more difficult
settings without the large degradation in performance
we have observed. This may be desired in some sce-
narios when the nonzero off-diagonal precision matrix
entries are expected to be large.

Finally, we also use this new algorithm to estimate
conditional dependence graphs among US senators
using voting records data. We identify several inter-
esting patterns in these graphs, especially regarding
the rise of the tea party movement and cross-party
connections between senators.
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