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Abstract

We consider parameter estimation and statis-
tical inference of high-dimensional undirected
graphical models for mixed data comprising
both ordinal and continuous variables. We
propose a flexible model called Latent Mixed
Gaussian Copula Model that simultaneously
deals with such mixed data by assuming that
the observed ordinal variables are generated
by latent variables. For parameter estima-
tion, we introduce a convenient rank-based
ensemble approach to estimate the latent cor-
relation matrix, which can be subsequently
applied to recover the latent graph structure.
In addition, based on the ensemble estima-
tor, we develop test statistics via a pseudo-
likelihood approach to quantify the uncer-
tainty associated with the low dimensional
components of high-dimensional parameters.
Our theoretical analysis shows the consis-
tency of the estimator and asymptotic nor-
mality of the test statistic. Experiments on
simulated and real gene expression data are
conducted to validate our approach.

1 Introduction

Graphical models have become a fundamental tool to
study the complex dependence structures over random
variables. In a wide variety of applications such as so-
cial science, genetics, statistical physics and image pro-
cessing, learning high dimensional undirected graphi-
cal models is of great interest. As a class of popu-
lar tools, Gaussian graphical models (GGMs) assume
X ∈ Rd follows a zero mean multivariate Gaussian
distribution with covariance Σ, in which the condi-
tional independence structure of variables is encoded
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by the precision matrix Ω = Σ−1: Xi and Xj are con-
ditionally independent given remaining variables if and
only if Ωji = 0 (Lauritzen, 1996). There has been a
large number of methods proposed for learning GGMs
in high dimension, including the neighborhood selec-
tion (Meinshausen and Bühlmann, 2006), the penal-
ized likelihood approach (Yuan and Lin, 2007; Fried-
man et al., 2008; Banerjee et al., 2008; Rothman et al.,
2008), CLIME (Cai et al., 2011, 2016), among others.
At the same time, the statistical inferential problems
for high-dimensional GGMs attract increasing atten-
tion (Liu et al., 2013; Ren et al., 2015; Jankova et al.,
2015; Janková and van de Geer, 2017). We refer to Cai
et al. (2016); Fan et al. (2016); Drton and Maathuis
(2017) for a more complete list of references on graph-
ical models and Zhang and Zhang (2014); Javanmard
and Montanari (2014); Van de Geer et al. (2014); Gu
et al. (2015); Barber and Kolar (2015); Ning et al.
(2017); Cai et al. (2017) for the recent advance in high-
dimensional inference.

GGMs are not appropriate for modeling mixed data
(i.e., a combination of categorical and continuous
data), yet such type of data is ubiquitous in practice,
particularly the mix of ordinal and continuous data
(referred as ordinal-mixed data) are . For instance, in
genetics the data may contain both continuous gene
expression values as well as ordinal disease stages and
phenotypic effects. In food sensory analysis, continu-
ous rating and ordinal scales are commonly combined
to describe different aspects of a food product. Di-
rectly treating the ordinal levels as numerical values
may not truly reflect the dependence structure be-
tween ordinal and continuous variables. Nevertheless,
high dimensional graphical models tailored to ordinal-
mixed data have attracted less attention. Moreover,
how to perform statistical inference on this type of
model is largely unknown.

In this paper we propose a unified framework for esti-
mation and statistical inference of the graphical model
named Latent Mixed Gaussian Copula Model, which
unifies and extends the models in (Ashford and Sow-
den, 1970; Amemiya, 1974; Guo et al., 2015; Fan et al.,
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2017; Suggala et al., 2017) for higher flexibility and
generality, particularly for ordinal-mixed data. This
model assumes that the observed ordinal data are gen-
erated by discretizing a set of latent continuous vari-
ables at a set of unknown cutoffs, and that the la-
tent continuous variables together with the observed
continuous variables jointly satisfy the nonparanormal
distribution Liu et al. (2009, 2012); Xue et al. (2012).

Our main contributions can be summarized as follows.
(1) We propose the Latent Mixed Gaussian Copula
Model for modeling ordinal-mixed data, along with a
convenient ensemble rank-based approach for param-
eter estimation. To our knowledge, such a simple but
very practical procedure has not been proposed in the
related literature. (2)Based upon the ensemble rank-
based estimator, we propose a pseudo-score statistic
for hypothesis testing and constructing confidence in-
tervals. (3) Theoretically, we show rate of convergence
of the ensemble rank-based estimator and prove the
asymptotic normality of the proposed test statistics
with a special U-statistic structure under mild assump-
tions.

Compared to existing work on learning and inference
for ordinal and mixed graphical models, our method
is different. For ordinal data, Guo et al. (2015) pro-
posed a probit graphical model and an EM algorithm
by maximizing a penalized log likelihood based on the
observed data. For the same model, Suggala et al.
(2017) proposed a direct estimation method that max-
imizes the marginal likelihood for each entry indepen-
dently. In contrast, the latent variables in our model
follow a more flexible semiparametric distribution. In
another strand of research, the mixed graphical mod-
els in Chen et al. (2014); Yang et al. (2014a,b); Lee
and Hastie (2015); Cheng et al. (2017) are generally
based on modeling the conditional distribution of each
node given all the others as an exponential family. In
contrast, our model is generative and based on an en-
semble estimator. As for the inferential problem, the
methods in Liu et al. (2013); Ren et al. (2015); Jankova
et al. (2015); Janková and van de Geer (2017) for
GGMs and Gu et al. (2015); Barber and Kolar (2015)
for transelliptical graphical models reply on their par-
ticular modeling structures, such as specifying Gaus-
sian likelihood or pseudo-likelihood. Thus, these meth-
ods cannot be directly applied to the proposed model.

The rest of the paper is organized as follows. In section
2 we define the latent mixed Gaussian copula model for
ordinal-mixed data. We introduce the methods for la-
tent graph estimation and inference in section 3. The-
oretical properties are analyzed in section 4. Simula-
tion studies and a real data analysis are conducted in
sections 5 and 6.

2 Background

2.1 Notation.

Let A = (Ajk) ∈ Rd×d and v = (v1, . . . , vd)
T ∈

Rd. We use vS as the subvector of v with entries
indexed by the set S. For a vector v, we define
||v||1 =

∑d
i=1 vi, ||v||2 = (

∑d
i=1 v

2
i )1/2 and ||v||∞ =

max1≤i≤d{|vd|}. For a matrix A, we define the matrix

`1 norm ||A||1 = max1≤j≤d
∑d
i=1 |Aij | and the matrix

elementwise maximum norm ||A||max = max{|A|ij}.
We use A � 0 to indicate that A is positive definite.
We use an . bn if an ≤ Cbn for some constant C > 0.
We use λmin(A) and λmax(A) to denote the smallest
and largest eigenvalues of A.

2.2 Latent Gaussian Copula Model

Given a d-dimensional continuous variable Z, we say
Z satisfies the Gaussian copula model (Liu et al., 2009,
2012; Xue et al., 2012), i.e., Z ∼ NPN(0,Σ, f), if
f(Z) := (f1(Z1), . . . , fd(Zd))

T ∼ Nd(0,Σ) with Σjj =
1 and some monotonic transformations (f1, ..., fd),
where Nd(µ,Σ) denotes the multivariate Gaussian dis-
tribution with dimension d, mean µ and covariance Σ.
To deal with ordinal-mixed data, we consider the fol-
lowing extension.

Definition 1. Latent Mixed Gaussian Copula
Model Assume that X = (X1,X2), where X1 rep-
resents d1−dimensional ordinal variables and X2 rep-
resents d2− dimensional continuous variables. Sup-
pose Xj ∈ {0, . . . , Nj} for 1 ≤ j ≤ d1. The ran-
dom vector X satisfies the latent mixed Gaussian cop-
ula model, if there is a d1−dimensional random vec-
tor Z1 = (Z1, . . . , Zd1)T such that Z := (Z1,X2) ∼
NPN(0,Σ, f) and

Xj =

Nj∑
k=1

1(Zj > Ckj ) ∀ j = 1, . . . , d1

where C1
j < C2

j < . . . < C
Nj

j is a sequence of
constants. Let C = (C1, . . . ,Cd1) where Cj =

(C1
j , . . . , C

Nj

j ) and N = (N1, . . . , Nd1). We denote
X ∼ LMNPN(0,Σ, f, C,N ).

The proposed model accounts for the ordinal-mixed
data by assuming a latent continuous vector Z that
generates the ordinal vector X1 via some unknown
cutoffs C. Let Ω = Σ−1 be the precision matrix. The
zero pattern of Ω encodes the underlying conditional
independence among latent variables Z, even if the
latent variables are not directly observable. There-
fore it suffices to estimate the sparsity pattern of the
latent precision matrix Ω. The proposed model is in-
variant to re-ordering the ordinal variables. Specifi-
cally, if X is a vector of ordinal variables and denote
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X∗j = Nj −Xj , the latent correlation matrix Σ is in-
variant in the sense that ifX ∼ LMNPN(0,Σ, f, C,N )
then X∗ ∼ LMNPN(0,Σ, f∗, C∗,N ) for some f∗ and
C∗. In addition, the model parameters are not fully
identifiable; only the transformed unknown cutoffs
fj(C

p
j ) rather than the original cutoffs Cpj are iden-

tifiable for the ordinal entries. To ease notation, we

define 4(p)
j = fj(C

p
j ).

We note that when the input only contains ordinal
data, and the monotonic transformations are trivial in
the sense that f(x) = x, the proposed model is equiv-
alent to the probit graphical model (Ashford and Sow-
den, 1970; Amemiya, 1974; Guo et al., 2015; Suggala
et al., 2017). In addition, when all ordinal variables
only contain two levels, the proposed model reduces to
the model for binary-mixed data in Fan et al. (2017).
We can see that the family of latent mixed Gaussian
copula models is strictly larger then the aforemen-
tioned ones.

3 Methodology

3.1 Estimate the Latent Correlation Matrix

Given n independent observations X1, . . . ,Xn ∼
LMNPN(0,Σ, f, C,N ), in this section we introduce a
procedure to estimate the latent covariance matrix Ω.
Our main idea is to firstly estimate the latent correla-
tion matrix, which is then plugged into a quadratic op-
timization framework to reconstruct the sparsity pat-
tern of Ω.

Due to the existence of ordinal data, direct estimation
of ordinal-ordinal and ordinal-continuous correlations
become difficult. Under the framwork of GGMs, Chen
et al. (2014); Yang et al. (2014a,b); Lee and Hastie
(2015); Cheng et al. (2017) resolve this issue by im-
posing additional distributional assumptions. How-
ever, under the proposed Latent Mixed Gaussian Cop-
ula Models, such methods are infeasible. Rank-based
approach, on the other hand can be applied under the
proposed framework (Liu et al., 2012; Xue et al., 2012;
Fan et al., 2017), where in brief, the authors connect
the latent correlation that is hard to estimate to a rank
correlation coefficient such as Kendall’s τ or Spear-
man’s ρ, which are convenient to estimate.

Nevertheless, constructing an explicit connection be-
tween the rank correlation coefficients and the param-
eter of interest is complicated for ordinal variables, es-
pecially when the number of levels within the ordinal
variable becomes large. More importantly, the conver-
gence rate of the estimator cannot be derived when
the connection function becomes involved. We there-
fore propose an ensemble approach: we firstly binarize
the ordinal variable at each level and construct a set of

preliminary rank-based estimators. At the next stage,
we combine the preliminary estimators into a single
but strong estimator, of which the theoretical prop-
erty and empirical advantage over a single preliminary
estimator is confirmed in section 4 and 5.

Formally, given an ordinal variable Xij for the ith ob-
servation, we consider the binary form with respect

to level p as X
(p)
ij = 1(Xij ≥ p), p = 1, . . . , Nj . In

the case where Xij and Xik are both ordinal, consider
the Kendall’s τ calculated from the binarized observed
data

τ̂
(p,q)
jk =

1(
n
2

) ∑
1≤i<i′≤n

sign{(X(p)
ij −X

(p)
i′j )(X

(q)
ik −X

(q)
i′k )},

with sign(0) = 0.

Define Φ2(u, v, s) =
∫
x1<u

∫
x2<v

φ2(x1, x2; s)dx1dx2 as
the cumulative distribution function of the standard
bivariate Gaussian distribution with correlation s, and
Φ(·) as the cumulative distribution of the standard
Gaussian distribution. To recover the (latent) corre-

lation between variable j and k from τ̂
(p,q)
jk , it can be

shown that

τ
(p,q)
jk := E[τ̂

(p,q)
jk ] = F (Σjk;4(p)

j ,4(q)
k ),

where

F (s;4j ,4k) = 2{Φ2(4j ,4k, s)− Φ(4j)Φ(4k)}

is an invertible function with respect to s.

In practice, 4(p)
j and 4(q)

k are unknown. Using the

first moment condition, 4(p)
j can be estimated by

4̂(p)
j = Φ−1(1− 1

n

∑n
i=1X

(p)
ij ), and similarly for 4(q)

k .
Thus, we define the base estimate of Σjk with respect
to levels p and q as

R̂
(p,q)
jk = F−1(τ̂

(p,q)
jk ; 4̂(p)

j , 4̂(q)
k ). (1)

Similarly, in the case where variable Xj is ordinal and
variable Xk is continuous, the base estimate with re-
spect to level p is given by

R̂
(p)
jk = F−1(τ̂

(p)
jk , 4̂

(p)
j ), (2)

where

τ̂
(p)
jk =

1(
n
2

) ∑
1≤i<i′≤n

sign{(X(p)
ij −X

(p)
i′j )(Xik −Xi′k)}

and

F (s;4j) = 4Φ2(4j , 0, s/
√

2)− 2Φ(4j).

Finally, when both Xij and Xik are continuous, the
estimator of Σjk is given by

R̂jk = sin(
π

2
τ̂jk), (3)
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where τ̂jk is the original Kendall’s τ estimator Kendall
(1948).

Apparently, the base estimates in (1) and (2) depend
on the levels at which the data are binarized. When
the ordinal data only contain two levels , the binarizing

step is unnecessary and R̂
(p,q)
jk is independent of (p, q).

However, for the ordinal data, one may construct mul-

tiple base estimators
{
R̂

(p,q)
jk : p = 1, . . . , Nj , q =

1, . . . , Nk
}

for the same target Σjk. The final esti-
mator can be potentially more efficient when the base
estimators are properly aggregated.

The ensemble estimator for the ordinal-by-ordinal en-
try can be generally defined as

R̂jk =
∑

1≤p≤Nj1≤q≤Nk

w
(p,q)
jk R̂

(p,q)
jk ,

where for each (j, k) the weight w
(p,q)
jk is defined as

0 ≤ w(p,q)
jk ≤ 1, and

∑
1≤p≤Nj1≤q≤Nk

w
(p,q)
jk = 1. (4)

Similarly, the ensemble estimator for the ordinal-by-
continuous entry is defined as

R̂jk =
∑

1≤p≤Nj

w
(p)
j R̂

(p)
jk .

In the following, we illustrate two concrete examples
for aggregating the base estimators.

Example 1. Simple Average Ensemble A nat-
ural idea is to take simple average of base estimators
for each entry. This is equivalent to the ensemble esti-

mator with the uniform weight w
(p,q)
jk = 1/(NjNk) and

w
(p)
j = 1/Nj . Such simple approach is known to be ef-

ficient when the base estimators are calculated from
independent data, see (Battey et al., 2015; Lee et al.,
2015). However, our base estimators are possibly cor-
related and therefore the simple average estimator may
not be optimal. As confirmed in section 5 ensemble es-
timators with a non-uniform weight may outperform
the simple average method.

Example 2. Data Adaptive Ensemble Con-
sider the following weighted ensemble rank-based es-
timator, where the weights are determined by the bi-
variate log likelihood with plug-in estimates of cutoffs.
Intuitively, the base estimators associated with higher
likelihood should enjoy higher weights, because the es-
timate is likely to be closer to the truth. Specifically,
in the case where Xij and Xik are both ordinal, we
define the weight as

w
(p,q)
jk =

exp
{
l(R̂

(p,q)
jk )

}
∑

1≤m≤Nj

1≤n≤Nk

exp
{
l(R̂

(m,n)
jk )

} ,

where

l(R̂
(p,q)
jk ) =

n∑
i=1

log

(∫
Ûij

∫
Ûik

φ2(x1, x2; R̂
(p,q)
jk )dx1dx2

)
is the bivariate log likelihood function and

Ûij = [4̂(Xij)
j , 4̂(Xij+1)

j ]

with 4̂(0)
j = −∞ and 4̂(Nj+1)

j = ∞. The weight

w
(p,q)
jk is proportional to the bivariate likelihood func-

tion of (Xij , Xik) evaluated at the estimate R̂
(p,q)
jk .

Thus, unlike the simple average method, we can adap-

tively reweight the base estimator R̂
(p,q)
jk according to

whether it provides a good fit to the data. Similarly,
when Xij is ordinal and Xik is continuous we have

w
(p)
jk =

exp
{
l(R̂

(p)
jk )
}

∑
1≤m≤Nj

exp
{
l(R̂

(m)
jk )

} ,
where

l(R̂
(p)
jk ) =

n∑
i=1

log

(∫
Ûij

φ2(x1, Xik; R̂
(p)
jk )dx1

)
.

3.2 Learning and testing the latent graph
structure

To learn the latent graph structure, it suffices to esti-
mate the sparsity pattern of the precision matrix Ω.
Write Ω = (β1, . . . ,βd) and denote the true value of
Ω by Ω∗ = (β∗1 , . . . ,β

∗
d). We estimate βk by the fol-

lowing quadratic loss with `1 penalty

β̂k = argmin
β
{1

2
βT R̃β − eTk β + λ||β||1}, (5)

where ek is vector with a 1 in the kth coordinate and
0’s elsewhere. λ is a tuning parameter and R̃ is the
projection of R̂ onto the cone of positive definite ma-
trices, that is, R̃ = argminR�0 ||R̂ − R||max. Similar
to Liu and Luo (2012); Cai et al. (2011), the final es-

timator Ω̂ is obtained after a symmetrization step

Ω̂jk = Ω̂kj = β̂jk1(|β̂jk| < |β̂kj |)+β̂kj1(|β̂kj | < |β̂jk|).

We note that similar to the Gaussian copula model, we
may modify many existing procedures by plugging R̂
into these methods , such as graphical lasso Friedman
et al. (2008) and CLIME Cai et al. (2011), to learn the
latent precision matrix. However these methods do not
provide a good framework for statistical inference for
our model. In contrast, the proposed method not only
gives a consistent estimator but for testing and con-
structing confidence region, our approaches also build
upon the estimator defined in (5).
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A similar quadratic optimization approach to (5) with
the sample covariance matrix is called SCIO (Liu and
Luo, 2012). In our approach, we plug in the projected

estimator R̃ rather than the ensemble estimator R̂ it-
self, since R̂ may not be positive semidefinite. In prac-
tice, we find that the optimization (5) tends to be more

robust than that with R̂. More importantly, with the
projected estimator R̃, one can establish a variety of
error bounds for β̂, which are essential for the sta-
tistical inference. The theoretical properties of β̂ are
established in section 4.

In the following, we consider how to quantify the es-
timation uncertainty of the conditional independence
between two pre-specified variables of interest. In par-
ticular, we aim to test the null hypothesis H0 : Ω∗jk =
0. The existing high-dimensional inference methods for
Gaussian (or transelliptical) graphical models rely on
the Gaussian (or elliptical) structures and are not di-
rectly applied to our problem. In general, the max-
imum likelihood estimation is the default approach
for statistical inference. However, our likelihood func-
tion is highly intractable due to the presence of high-
dimensional integral for the ordinal data, which makes
the likelihood based inference infeasible. To tackle this
challenge, we borrow the loss function (5) in the pro-
posed estimation procedure and view it as a pseudo-
likelihood, and extend the likelihood based inference
using the score function along the Stein’s least fa-
vorable direction (Ning et al., 2017) to our pseudo-
likelihood.

To simplify notation, denote the kth column of Ω as β,
which is further partitioned as β = (θ,γT )T . Consider
a partitioning of Σ as

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Σ11 is scalar and Σ22 is (d− 1)× (d− 1). It can
be shown that v∗ = (1,−w∗T )T is the least favorable
direction for the pseudo-likelihood (5), where w∗ =
Σ−122 Σ21. The gradient of the pseudo-likelihood (i.e,
pseudo-score) is simply R̃β − ek.

To construct the test statistic, one has to analyze the
stochastic structure of the estimator R̃. However, this
analysis seems mathematically intractable due to the
projection of the estimator. To get around this issue,
when defining the test statistic based on the pseudo-
score in (5), we replace R̃ in the loss function by the

ensemble estimator R̂. With a nice U-statistics struc-
ture of R̂, the pseudo-score function with R̂ is more
convenient.

We define the pseudo-score function in the direction of
v∗ as

S(β) = v∗T (R̂β − ek).

By the definition of v∗, one can estimate v∗ by v̂ =
(1,−ŵT )T , where

ŵ = argmin ||w||1 s.t. ||R̃12 −wT R̃22||∞ ≤ λ′, (6)

where λ′ is a tuning parameter. Since w is a sparse
vector by ||w∗||0 = ||Ω∗21||0, the estimator ŵ in (6)
is a sparse approximation of the true parameter w∗.
Denote Φ∗ = limn→∞Varβ∗(n

1/2(R̂β∗ − ek)) and

σ∗ = v∗TΦ∗v∗. Let β̂0 = (0, γ̂T )T be the estimate
under the null hypothesis and σ̂ be a consistent esti-
mator of σ∗. Our score test statistic is defined as

Tn =
√
nŜ(β̂0)/σ̂1/2,

where Ŝ(β) = v̂T (R̂β − ek). In the next section, we
will show that Tn →d N(0, 1) under H0, and thus it
can be used to evaluate the validity of the null hypoth-
esis. The test statistic Tn can be equivalently used to
construct confidence interval for θ; due to space limit
please see the supplementary materials for details.

4 Theoretical properties1

In this section we analyze the theoretical properties of
the ensemble rank-based estimator of Σ and pseudo-
score test statistic. Here we focus on the simple av-
erage estimator, and the theory can be easily general-
ized to the weighted case. We consider the following
assumptions:

Assumption 1. |Σ∗jk| ≤ 1 − δ, ∀1 ≤ j < k ≤ d1 for
some constant δ > 0.

Assumption 2. |4(p)
j | ≤ M, ∀j = 1, . . . , d1, p =

1, . . . , Nj for some constant M .

Assumption 3. ||Ω∗||1 ≤Mn.

Assumption 4. 1
τ ≤ λmin(Σ∗) for some constant τ >

0.

Assumptions 1 and 2 are mild technical assumptions.
Assumption 1 makes sure that there is no perfect
collinearity for any pair of fj(Zj) and fk(Zk). As-
sumption 2 is mainly used to control the variation of
F−1(τ,4j ,4k) with respect to (τ,4j ,4k). It can be
shown that under these assumptions F−1(τ,4j ,4k) is
Lipschitz in τ uniformly (Fan et al., 2017). Assump-
tion 3 controls the magnitude of Ω∗, which is com-
monly used for the precision matrix estimation (Cai
et al., 2011). Note that we allow Mn to increase with
n. Assumption 4 implies the standard restricted eigen-
value (RE) condition.

Proposition 1. Under Assumption 1 and 2, it holds
that

P(||R̂−Σ∗||max ≤ C
√

log d

n
) ≥ 1− d−1,

1The proofs are given in the supplementary material.
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where C is a constant independent of n and d.

Theorem 1. Let s∗ be the maximum degree of the

graph and λ � Mn

√
log d
n . Under Assumption 1 - 4,

with probability as least 1− d−1, we have

||β̂ − β∗||1 .Mns
∗
√

log d

n
, (7)

(β̂ − β∗)T R̃(β̂ − β∗) .M2
n

s∗ log d

n
. (8)

Theorem 1 shows that our estimator β̂ achieves the
same convergence rate as the SCIO estimator Liu and
Luo (2012) and CLIME Cai et al. (2011) for GGMs.

To establish the asymptotic distribution of the test
statistic Tn, we additionally make the following as-
sumption:

Assumption 5. λmax(Σ∗) ≤ κ for some constant κ >
0.

This assumption has been made in Ren et al. (2015);
Jankova et al. (2015); Janková and van de Geer (2017)
to study the testing problems for GGMs. It is natu-
ral for many important classes of covariance matrices,
e.g., bandable, Toeplitz, and sparse covariance matri-
ces. The following theorem validates the asymptotic
normality of the test statistic.

Theorem 2. Suppose Assumption 1 - 5 hold. If λ �
λ′ � Mn

√
log d
n , M2

ns
∗ log d/

√
n = o(1) and σ∗ ≥ K

for some constant K, then under the null hypothesis
we have

Tn →d N(0, 1).

When Mn is a constant, our condition M2
ns
∗

log d/
√
n = o(1) is identical to the best possible scal-

ing under GGMs established by Ren et al. (2015). In
general, our condition appears to be stronger, as Mn

may increase with n. This can be viewed as the price
paid for estimating the mixed graphical model, due to
the sophisticated U-statistic structure of R̂. In partic-
ular, we show in the proof that the remainder term in
the expansion of Tn scales with M2

ns
∗ log d/

√
n, which

needs to be small enough to prove the normal approx-
imation result.

5 Simulation study

In this section we evaluate the empirical performance
of our methods on a set of synthetic datasets. Our
data generating procedure is similar to that in (Liu
et al., 2012). Specifically, for the precision matrix
Ω, we set Ωjj = 1, and Ωjk = tajk, where t is
chosen to ensure the positive definiteness of Ω and

ajk is a Bernoulli random variable with success prob-
ability pjk = (2π)−1/2 exp{||zj − zk||2/2s}. Here

zj = (z
(1)
j , z

(2)
j ) is sampled from a bivariate uniform

distribution on [0, 1], and s is chosen to control the
sparsity level of Ω. In our case we choose s to make
sure there are about 200 edges in each latent graph.
After the latent precision matrix Ω is created, we
take the inverse and rescale it to obtain the corre-
lation matrix Σ, where the diagonal elements are 1.
To generate the observed ordinal data, for Xj with

Nj + 1 levels, we sample a sequence of cutoffs C
(k)
j ∼

Uniform[Φ−1((k − 0.5) 1
Nj+1 ),Φ−1((k + 0.5) 1

Nj+1 )] for

k = 1, . . . , Nj . This procedure ensures the random-
ness of the simulated cutoffs and guarantees that the
difference of the number of samples at each level is
not too large. In the following we fix the sample size
n = 200, choose t = 0.15 and repeat the simulation 50
times for each scenario in low dimensional case d = 50
and high dimensional case d = 250:

(a) Simulate X = (X1, . . . , Xd), where Xj =∑2
i=1 1(Zj > C

(i)
j ) and Z ∼ N(0,Σ).

(b) Simulate X = (X1, . . . , Xd), where Xj =∑4
i=1 1(Zj > C

(i)
j ) and Z ∼ N(0,Σ).

(c) Simulate X = (X1, . . . , Xd), where Xj =∑2
i=1 1(Zj > C

(i)
j ) for j = 1, . . . , d/2, Z ∼

N(0,Σ), and Xj = Zj for j = d/2 + 1, . . . , d.

(d) Simulate X = (X1, . . . , Xd), where Xj =∑2
i=1 1(Zj > C

(i)
j ) for j = 1, . . . , d/2, Z ∼

NPN(0,Σ, f), where fj(x) = x3 for j = d/2 +
1, . . . , d.

To investigate the empirical estimation error of the
latent correlation and precision matrix, we compare
our method LMNPN2 with (1) the rank-based estima-
tor RBE (Fan et al., 2017) and (2) the elementwise
maximum likelihood approach EMLE with plug-in es-
timates of cutoffs (Suggala et al., 2017). Since both
method can not be directly applied to ordinal-mixed
data, we adapt both methods to this case with sim-
ple extension. Due to space limit please refer to the
supplementary material for more details.

Notice that the precision matrix estimation problem
for mixed data is not considered in the class of node-
wise regression methods (Lee and Hastie, 2015; Chen
et al., 2014; Cheng et al., 2017; Yang et al., 2014a). We
will only compare this class of methods for the graph
recovery properties .

2In Table 1 and 2 LMNPN1 stands for the LMNPN
method with simple average ensemble and LMNPN2 stands
for data adaptive ensemble. The numbers in the parenthe-
ses are the simulation standard errors.
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Table 1: Average estimation error of latent correlation
matrix

d Scenario Estimation errors

LMNPN1 LMNPN2 RBE EMLE

50 (a)
4.58
(0.08)

4.45
(0.10)

5.81
(0.11)

10.21
(0.48)

(b)
4.02
(0.09)

3.87
(0.11)

6.37
(0.17)

7.01
(0.26)

(c)
4.15
(0.10)

4.16
(0.09)

4.80
(0.12)

5.54
(0.23)

(d)
4.10
(0.11)

4.18
(0.10)

4.78
(0.18)

5.14
(0.14)

250(a)
23.16
(0.06)

21.82
(0.09)

29.46
(0.15)

50.60
(0.87)

(b)
20.00
(0.10)

19.38
(0.05)

32.48
(0.15)

72.01
(0.62)

(c)
20.49
(0.08)

19.10
(0.11)

23.92
(0.03)

21.06
(0.34)

(d)
20.45
(0.04)

19.39
(0.07)

23.89
(0.03)

21.12
(0.36)

Table 2: Average estimation error of latent precision
matrix

d Scenario Estimation errors

LMNPN1 LMNPN2 RBE EMLE

50 (a)
2.66
(0.09)

2.65
(0.11)

2.81
(0.09)

3.04
(0.09)

(b)
2.43
(0.11)

2.41
(0.14)

2.78
(0.12)

2.98
(0.14)

(c)
2.50
(0.14)

2.51
(0.11)

2.65
(0.14)

2.76
(0.12)

(d)
2.55
(0.09)

2.55
(0.10)

2.72
(0.09)

2.86
(0.11)

250(a)
2.77
(0.10)

2.77
(0.11)

2.81
(0.10)

2.84
(0.10)

(b)
2.03
(0.07)

2.04
(0.05)

2.08
(0.07)

2.09
(0.07)

(c)
1.96
(0.14)

1.94
(0.15)

1.99
(0.15)

1.98
(0.17)

(d)
2.05
(0.05)

2.04
(0.05)

2.08
(0.06)

2.08
(0.06)

Tables 1 and 2 report the mean estimation error in
terms of the Frobenius norm. It suggests that the en-
semble rank-based estimator suffers less loss of infor-
mation than the RBE estimator and the EMLE esti-
mator in terms of both correlation and precision ma-
trix estimation. The improvement upon the RBE es-
timator to the proposed one is more transparent when
the number of levels for the ordinal data grows from
three to five, comparing case (a) and case (b). For
the proposed method, the data adaptive ensemble per-
forms generally better than simple average ensemble
for latent correlation matrix estimation and achieves
similar performance for latent precision matrix.

5.1 Graph Structure Recovery

To investigate the graph recovery performance, we de-
fine the number of false positive FP(λ) and true posi-

tive TP(λ) given an estimator Ω̂λ as

FP(λ) := |{(j, k) : Ωjk = 0, Ω̂λjk 6= 0}|,

TP(λ) := |{(j, k) : Ωλjk 6= 0, Ω̂jk 6= 0}|

We further define the false positive rate FPR(λ)
and true positive rate TPR(λ) as FPR(λ) =

FP(λ)
d(d−1)/2−|E| and TPR(λ) = TPR(λ)

|E| . In addition to

the RBE and EMLE method, we compare the pro-
posed LMNPN estimator via simple average ensemble
with other approaches including: the weighted `1 pe-
nalized nodewise regression WNR (Cheng et al., 2017)
and pairwise exponential family nodewise regression
PNR (Chen et al., 2014). According to the ROC
curves in Figure 1, the proposed method generally out-
performs competing methods.
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Figure 1: Left (a) - (d): ROC curves for graph recovery
of the proposed method ( ), RBE ( ),WNR
( ),PNR ( ) and EMLE ( ) when d =
50 for scenario (a),(b),(c) and (d)

5.2 Asymptotic Normality

Finally, we empirically validate the asymptotic nor-
mality of the score test statistic. For simplicity, we
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adopt scenario (c) to generate the mixed data. We con-
sider the score test statistic Tn for the null hypothesis
H0 : Ω∗jk = 0 for some pre-specified (j, k). Two cases
are studied: case (1) Xij and Xik are both ordinal and
case (2) Xij is ordinal and Xik are continuous. The
tuning parameters are chosen by the cross-validation.
The results in Figure 2 implies that the proposed test
statistic agrees well with the standard normal distri-
bution, which validates our Theorem 2.
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Figure 2: Histograms for the score test statistic for
(a): an ordinal-by-ordinal entry and (b): ordinal-by-
continuous entry with the standard normal density su-
perimposed over 500 iterations.

6 Real data application

We analyze the NKI breast cancer dataset (http:
//compbio.dfci.harvard.edu/) that contains 24481
gene expression and multiple clinical information
of 337 patients with primary breast carcinomas
(Van’t Veer et al., 2002). The proposed method is ad-
vantageous when researchers want to simultaneously
study the association among genes, clinical measures,
and phenotype-genotype associations. For the pur-
pose of our analysis, we filtered the data by removing
all patients, gene expressions and clinical information
with missing entries, and select the top 500 expressed
loci. We then apply the proposed method on the fil-
tered dataset with a tuning parameter that controls
the sparsity level of the latent graph at around two
percent.

According to Figure 3, the latent graph indicates asso-
ciations between two ordinal clinical features (oestro-
gen receptor (ER) and tumor grade (Grade)) and sev-
eral genes. In particular, ER has been shown to be a
key driven factor of breast cancers (Carroll, 2016), and
thus the strong associations between ER and multiple
highly expressed gene loci in breast cancer patients can
be justified. In addition, our latent graph also shows
association between the breast tumor grade and locus
NM 020974 (Homo sapiens signal peptide, CUB do-
main and EGF like domain containing 2 (SCUBE2),
transcript variant 1, mRNA). According to Poorhos-
seini et al. (2016), over-expression of SCUBE2 has
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Figure 3: The estimated latent graph for the mixed
breast cancer dataset using the proposed method.
Nodes (genes) without any edge are omitted.

been shown to be associated with breast cancer re-
currence . In another study, SCUBE2 has been shown
to suppresses proliferation in breast tumor cell and
confers a favorable prognosis in invasive breast cancer
(Cheng et al., 2009). These results confirm the validity
of the proposed method, and we expect other associ-
ations unveiled by the latent graph can be helpful for
future research.

7 Conclusion

In this work we present and analyze a general frame-
work for estimating and inferring a graphical model,
called Latent Mixed Gaussian Copula Model. The pro-
posed framework is shown to be effective both theoreti-
cally and empirically. Since most methods did not con-
sider graphical models tailored to ordinal-mixed data
and the fact that such mixed data are ubiquitous in
practice, we believe our work fill this gap by providing
a convenient and efficient modeling framework with
theoretical guarantees for the community.
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