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A Standard results

Before detailing our proofs, we first recall some well-
known results regarding the Kullback-Leibler diver-
gence and the SoftMin operator defined in (12).

A.1 The Kullback-Leibler divergence

First properties. For any pair of Radon measures
α, β ∈ M+(X ) on the compact metric set (X ,d), the
Kullback-Leibler divergence is defined through

KL(α, β)
def.
=

{
〈α, log dα

dβ − 1〉+ 〈β, 1〉 if α� β

+∞ otherwise.

It can be rewritten as an f -divergence associated to

ψ : x ∈ R>0 7→ x log(x)− x+ 1 ∈ R>0,

with 0 · log(0) = 0, as

KL(α, β) =

{
〈β, ψ(dα

dβ )〉 if α� β

+∞ otherwise.
(28)

Since ψ is a strictly convex function with a unique
global minimum at ψ(1) = 0, we thus get that
KL(α, β) > 0 with equality iff. α = β.

Dual formulation. The convex conjugate of ψ is
defined for u ∈ R by

ψ∗(u)
def.
= sup

x>0
(xu− ψ(x))

= eu − 1,

and we have ψ(x) + ψ∗(u) > xu (29)

for all (x, u) ∈ R>0 × R, with equality if x > 0 and
u = log(x). This allows us to rewrite the Kullback-
Leibler divergence as the solution of a dual concave
problem:

Proposition 5 (Dual formulation of KL). Under the
assumptions above,

KL(α, β) = sup
h∈Fb(X ,R)

〈α, h〉 − 〈β, eh − 1〉 (30)

where Fb(X ,R) is the space of bounded measurable
functions from X to R.

Proof. Lower bound on the sup. If α is not absolutely
continuous with respect to β, there exists a Borel set
A such that α(A) > 0 and β(A) = 0. Consequently,
for h = λ1A,

〈α, h〉 − 〈β, eh − 1〉 = λα(A)
λ→+∞−−−−−→ +∞.

Otherwise, if α � β, we define h∗ = log dα
dβ and see

that

〈α, h∗〉 − 〈β, eh∗ − 1〉 = KL(α, β).

If hn = log(dα
dβ )11/n6dα/dβ6n ∈ Fb(X ,R), the mono-

tone and dominated convergence theorems then allow
us to show that

〈α, hn〉 − 〈β, ehn − 1〉 n→+∞−−−−−→ KL(α, β).

Upper bound on the sup. If h ∈ Fb(X ,R) and α � β,
combining (28) and (29) allow us to show that

KL(α, β)− 〈α, h〉+ 〈β, eh − 1〉
= 〈β, ψ(dα

dβ ) + ψ∗(h)− hdα
dβ 〉 > 0.

The optimal value of 〈α, h〉 − 〈β, eh − 1〉 is bounded
above and below by KL(α, β): we get (30).

Since 〈α, h〉−〈β, eh−1〉 is a convex function of (α, β),
taking the supremum over test functions h ∈ Fb(X ,R)
defines a convex divergence:
Proposition 6. The KL divergence is a (jointly) con-
vex function onM+(X )×M+(X ).

Going further, the density of continuous functions in
the space of bounded measurable functions allows us
to restrict the optimization domain:
Proposition 7. Under the same assumptions,

KL(α, β) = sup
h∈C(X ,R)

〈α, h〉 − 〈β, eh − 1〉 (31)

where C(X ,R) is the space of (bounded) continuous
functions on the compact set X .

Proof. Let h =
∑
i∈I hi 1Ai be a simple Borel function

on X , and let us choose some error margin δ > 0. Since
α and β are Radon measures, for any i in the finite set
of indices I, there exists a compact set Ki and an open
set Vi such that Ki ⊂ Ai ⊂ Vi and∑

i∈I
max[α(Vi\Ki) , β(Vi\Ki) ] 6 δ.

Moreover, for any i ∈ I, there exists a continuous func-
tion ϕi such that 1Ki 6 ϕi 6 1Vi . The continuous
function g =

∑
i∈I hiϕi is then such that

|〈α, g − h〉| 6 ‖h‖∞ δ and |〈β, eg − eh〉| 6 ‖eh‖∞ δ

so that

| (〈α, h〉 − 〈β, eh − 1〉) − (〈α, g〉 − 〈β, eg − 1〉) |
6 (‖h‖∞ + ‖eh‖∞) δ.

As we let our simple function approach any measurable
function in Fb(X ,R), choosing δ arbitrarily small, we
then get (31) through (30).
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We can then show that the Kullback-Leibler diver-
gence is weakly lower semi-continuous:
Proposition 8. If αn ⇀ α and βn ⇀ β are weakly
converging sequences inM+(X ), we get

lim inf
n→+∞

KL(αn, βn) > KL(α, β).

Proof. According to (31), the KL divergence is defined
as a pointwise supremum of weakly continuous appli-
cations

ϕh : (α, β) 7→ 〈α, h〉 − 〈β, eh − 1〉,

for h ∈ C(X ,R). It is thus lower semi-continuous for
the convergence in law.

A.2 SoftMin Operator

Proposition 9 (The SoftMin interpolates between a
minimum and a sum). Under the assumptions of the
definition (12), we get that

minε
x∼α

ϕ(x)
ε→0−−−→ min

x∈Supp(α)
ϕ(x)

ε→+∞−−−−−→ 〈α,ϕ〉.

If ϕ and ψ are two continuous functions in C(X ) such
that ϕ 6 ψ,

minε
x∼α

ϕ(x) 6 minε
x∼α

ψ(x). (32)

Finally, if K ∈ R is constant with respect to x, we
have that

minε
x∼α

[
K + ϕ(x)

]
= K + minε

x∼α

[
ϕ(x)

]
. (33)

Proposition 10 (The SoftMin operator is continu-
ous). Let (αn) be a sequence of probability measures
converging weakly towards α, and (ϕn) be a sequence
of continuous functions that converges uniformly to-
wards ϕ. Then, for ε > 0, the SoftMin of the values of
ϕn on αn converges towards the SoftMin of the values
of ϕ on α, i.e.(

αn ⇀ α, ϕn
‖·‖∞−−−→ ϕ

)
=⇒ minε

x∼αn
ϕn(x)→ minε

x∼α
ϕ(x).

B Proofs

B.1 Dual Potentials

We first state some important properties of solutions
(f, g) to the dual problem (8). Please note that these
results hold under the assumption that (X ,d) is a com-
pact metric space, endowed with a ground cost func-
tion C : X × X → R that is κ-Lipschitz with respect
to both of its input variables.

The existence of an optimal pair (f, g) of potentials
that reaches the maximal value of the dual objec-
tive is proved using the contractance of the Sinkhorn
map T, defined in (11), for the Hilbert projective met-
ric (Franklin and Lorenz, 1989).

While optimal potentials are only defined (α, β)-a.e.,
as highlighted in Proposition 1, they are extended to
the whole domain X by imposing, similarly to the clas-
sical theory of OT (Santambrogio, 2015, Remark 1.13),
that they satisfy

f = T(β, g) and g = T(α, f), (34)

with T defined in (11). We thus assume in the follow-
ing that this condition holds. The following proposi-
tions studies the uniqueness and the smoothness (with
respect to the spacial position and with respect to the
input measures) of these functions (f, g) defined on the
whole space.
Proposition 11 (Uniqueness of the dual potentials
up to an additive constant). Let (f0, g0) and (f1, g1)
be two optimal pairs of dual potentials for a problem
OTε(α, β) that satisfy (34). Then, there exists a con-
stant K ∈ R such that

f0 = f1 +K and g0 = g1 −K. (35)

Proof. For t ∈ [0, 1], let us define ft = f0 + t(f1 − f0),
gt = g0 + t(g1 − g0) and

ϕ(t) =〈α, ft〉+ 〈β, gt〉
− ε〈α⊗ β, exp

(
1
ε (ft ⊕ gt − C)

)
− 1〉,

the value of the dual objective between the two optimal
pairs. As ϕ is a concave function bounded above by
ϕ(0) = ϕ(1) = OTε(α, β), it is constant with respect
to t. Hence, for all t in [0, 1],

0 = ϕ′′(t)

= − 1
ε 〈α⊗ β, e

(ft⊕gt−C)/ε((f1 − f0)⊕ (g1 − g0))2〉.

This is only possible if, α⊗ β-a.e. in (x, y),(
f1(x)− f0(x) + g1(y)− g0(y)

)2
= 0,

i.e. there exists a constant K ∈ R such that

f1(x)− f0(x) = +K α-a.e.
g1(y)− g0(y) = −K β-a.e.

As we extend the potentials through (34), the SoftMin
operator commutes with the addition of K (33) and
lets our result hold on the whole feature space.

Proposition 12 (Lipschitz property). The optimal
potentials (f, g) of the dual problem (8) are both κ-
Lipschitz functions on the feature space (X ,d).
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Proof. According to (34), f is a SoftMin combination
of κ-Lipschitz functions of the variable x; using the
algebraic properties of the SoftMin operator detailed
in (32-33), one can thus show that f is a κ-Lipschitz
function on the feature space. The same argument
holds for g.

Proposition 13 (The dual potentials vary contin-
uously with the input measures). Let αn ⇀ α and
βn ⇀ β be weakly converging sequences of measures in
M+

1 (X ). Given some arbitrary anchor point xo ∈ X ,
let us denote by (fn, gn) the (unique) sequence of opti-
mal potentials for OTε(αn, βn) such that fn(xo) = 0.

Then, fn and gn converge uniformly towards the
unique pair of optimal potentials (f, g) for OTε(α, β)
such that f(xo) = 0. Up to the value at the anchor
point xo, we thus have that(

αn ⇀ α, βn ⇀ β
)

=⇒
(
fn
‖·‖∞−−−→ f, gn

‖·‖∞−−−→ g
)
.

Proof. For all n in N, the potentials fn and gn are κ-
Lipschitz functions on the compact, bounded set X .
As fn(xo) is set to zero, we can bound |fn| on X by
κ times the diameter of X ; combining this with (34),
we can then produce a uniform bound on both fn and
gn: there exists a constant M ∈ R such that

∀n ∈ N,∀x ∈ X ,−M 6 fn(x), gn(x) 6 +M.

Being equicontinuous and uniformly bounded on the
compact set X , the sequence (fn, gn)n satisfies the hy-
potheses of the Ascoli-Arzela theorem: there exists a
subsequence (fnk , gnk)k that converges uniformly to-
wards a pair (f, g) of continuous functions. k tend to
infinity, we see that f(xo) = 0 and, using the conti-
nuity of the SoftMin operator (Proposition 10) on the
optimality equations (10), we show that (f, g) is an
optimal pair for OTε(α, β).

Now, according to Proposition 11, such a limit pair of
optimal potentials (f, g) is unique. (fn, gn)n is thus
a compact sequence with a single possible adherence
value: it has to converge, uniformly, towards (f, g).

B.2 Proof of Proposition 2

The proof is mainly inspired from (Santambrogio,
2015, Proposition 7.17). Let us consider α, δα, β, δβ
and times t in a neighborhood of 0, as in the statement
above. We define αt = α+ tδα, βt = β + tδβ and the
variation ratio ∆t given by

∆t
def.
=

OTε(αt, βt)−OTε(α, β)

t
.

Using the very definition of OTε and the continuity
property of Proposition 13, we now provide lower and
upper bounds on ∆t as t goes to 0.

Weak∗ continuity. As written in (13), OTε(α, β)
can be computed through a straightforward, continu-
ous expression that does not depend on the value of the
optimal dual potentials (f, g) at the anchor point xo:

OTε(α, β) = 〈α, f〉+ 〈β, g〉.

Combining this equation with Proposition 13 (that
guarantees the uniform convergence of potentials for
weakly converging sequences of probability measures)
allows us to conclude.

Lower bound. First, let us remark that (f, g) is
a suboptimal pair of dual potentials for OTε(αt, βt).
Hence,

OTε(αt, βt) > 〈αt, f〉+ 〈βt, g〉
− ε〈αt ⊗ βt, exp

(
1
ε (f ⊕ g − C)

)
− 1〉

and thus, since

OTε(α, β) = 〈α, f〉+ 〈β, g〉
− ε〈α⊗ β, exp( 1

ε (f ⊕ g − C))− 1〉,

one has

∆t > 〈δα, f〉+ 〈δβ, g〉
− ε〈δα⊗ β + α⊗ δβ, exp( 1

ε (f ⊕ g − C))〉+ o(1)

> 〈δα, f − ε〉+ 〈δβ, g − ε〉+ o(1),

since g and f satisfy the optimality equations (10).

Upper bound. Conversely, let us denote by (gt, ft)
the optimal pair of potentials for OTε(αt, βt) satisfying
gt(xo) = 0 for some arbitrary anchor point xo ∈ X . As
(ft, gt) are suboptimal potentials for OTε(α, β), we get
that

OTε(α, β) > 〈α, ft〉+ 〈β, gt〉
− ε〈α⊗ β, exp

(
1
ε (ft ⊕ gt − C)

)
− 1〉

and thus, since

OTε(αt, βt) = 〈αt, ft〉+ 〈βt, gt〉
− ε〈αt ⊗ βt, exp( 1

ε (ft ⊕ gt − C))− 1〉,

∆t 6 〈δα, ft〉+ 〈δβ, gt〉
− ε〈δα⊗ βt + αt ⊗ δβ, exp( 1

ε (ft ⊕ gt − C))〉+ o(1)

6 〈δα, ft − ε〉+ 〈δβ, gt − ε〉+ o(1).

Conclusion. Now, let us remark that as t goes to 0

α+ tδα ⇀ α and β + tδβ ⇀ β.

Thanks to Proposition 13, we thus know that ft and gt
converge uniformly towards f and g. Combining the
lower and upper bound, we get

∆t
t→0−−−→ 〈δα, f − ε〉+ 〈δβ, g − ε〉 = 〈δα, f〉+ 〈δβ, g〉,

since δα and δβ both have an overall mass that sums
up to zero.
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B.3 Proof of Proposition 3

The definition of OTε(α, α) is that

OTε(α, α) = max
(f,g)∈C(X )2

〈α, f + g〉

− ε〈α⊗ α, e(f⊕g−C)/ε − 1〉.

Reduction of the problem. Thanks to the sym-
metry of this concave problem with respect to the
variables f and g, we know that there exists a pair
(f, g = f) of optimal potentials on the diagonal, and

OTε(α, α) = max
f∈C(X )

2〈α, f〉

− ε〈α⊗ α, e(f⊕f−C)/ε − 1〉.

Thanks to the density of continuous functions in the
set of simple measurable functions, just as in the
proof of Proposition 7, we show that this maximiza-
tion can be done in the full set of measurable functions
Fb(X ,R):

OTε(α, α) = max
f∈Fb(X ,R)

2〈α, f〉

− ε〈α⊗ α, e(f⊕f−C)/ε − 1〉
= max
f∈Fb(X ,R)

2〈α, f〉

− ε〈exp(f/ε)α, kε ? exp(f/ε)α〉+ ε,

where ? denotes the smoothing (convolution) operator
defined through

[k ? µ](x) =

∫
X
k(x, y) dµ(y)

for k ∈ C(X × X ) and µ ∈M+(X ).

Optimizing on measures. Through a change of
variables

µ = exp(f/ε)α i.e. f = ε log dµ
dα ,

keeping in mind that α is a probability measure, we
then get that

OTε(α, α) = ε max
µ∈M+(X ),α�µ�α

2〈α, log dµ
dα 〉

−〈µ, kε ? µ〉+ 1

− 1
2OTε(α, α) = ε min

µ∈M+(X ),α�µ�α
〈α, log dα

dµ 〉

+ 1
2 〈µ, kε ? µ〉 −

1
2 ,

where we optimize on positive measures µ ∈ M+(X )
such that α� µ and µ� α.

Expansion of the problem. As kε(x, y) =
exp(−C(x, y)/ε) is positive for all x and y in X , we
can remove the µ � α constraint from the optimiza-
tion problem:

− 1
2OTε(α, α) = ε min

µ∈M+(X ),α�µ
〈α, log dα

dµ 〉

+ 1
2 〈µ, kε ? µ〉 −

1
2 .

Indeed, restricting a positive measure µ to the support
of α lowers the right-hand term 〈µ, kε ? µ〉 without
having any influence on the density of α with respect
to µ. Finally, let us remark that the α� µ constraint
is already encoded in the log dα

dµ operator, which blows
up to infinity if α has no density with respect to µ; all
in all, we thus have:

Fε(α) = − 1
2OTε(α, α)

= ε min
µ∈M+(X )

〈α, log dα
dµ 〉+ 1

2 〈µ, kε ? µ〉 −
1
2 ,

which is the desired result.

Existence of the optimal measure µ. In the ex-
pression above, the existence of an optimal µ is given
as a consequence of the well-known fact from OT the-
ory that optimal dual potentials f and g exist, so that
the dual OT problem (8) is a max and not a mere
supremum. Nevertheless, since this property of Fε is
key to the metrization of the convergence in law by
Sinkhorn divergences, let us endow it with a direct,
alternate proof:

Proposition 14. For any α ∈M+
1 (X ), assuming that

X is compact, there exists a unique µα ∈M+(X ) such
that

Fε(α) = ε
[
〈α, log dα

dµα
〉+ 1

2 〈µα, kε ? µα〉 −
1
2

]
.

Moreover, α� µα � α.

Proof. Notice that for (α, µ) ∈M+
1 (X )×M+(X ),

Eε(α, µ)
def.
= 〈α, log dα

dµ 〉+ 1
2 〈µ, kε ? µ〉

= KL(α, µ) + 〈α− µ, 1〉 + 1
2‖µ‖

2
kε −

1
2 .

Since C is bounded on the compact set X × X and α
is a probability measure, we can already say that

1
εFε(α) 6 Eε(α, α)− 1

2 = 1
2 〈α⊗ α, e

−C/ε〉 − 1
2 < +∞.

Upper bound on the mass of µ. Since X × X is
compact and kε(x, y) > 0, there exists η > 0 such that
k(x, y) > η for all x and y in X . We thus get

‖µ‖2kε > 〈µ, 1〉2 η
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and show that

Eε(α, µ) > 〈α− µ, 1〉 + 1
2‖µ‖

2
kε −

1
2

> 〈µ, 1〉(〈µ, 1〉 η − 1)− 1
2 .

As we build a minimizing sequence (µn) for Fε(α), we
can thus assume that 〈µn, 1〉 is uniformly bounded by
some constant M > 0.

Weak continuity. Crucially, the Banach-Alaoglu
theorem asserts that

{µ ∈M+(X ) | 〈µ, 1〉 6M }

is weakly compact; we can thus extract a weakly con-
verging subsequence µnk ⇀ µ∞ from the minimizing
sequence (µn). Using Proposition 8 and the fact that
kε is continuous on X ×X , we show that µ 7→ Eε(α, µ)
is a weakly lower semi-continuous function: µ∞ = µα
realizes the minimum of Eε and we get our existence
result.

Uniqueness. We assumed that our kernel kε is pos-
itive universal. The squared norm µ 7→ ‖µ‖2kε is thus a
strictly convex functional and using Proposition 6, we
can show that µ 7→ Eε(α, µ) is strictly convex. This
ensures that µα is uniquely defined.

B.4 Proof of Proposition 4

Let us take a pair of measures α0 6= α1 inM+
1 (X ), and

t ∈ (0, 1); according to Proposition 14, there exists a
pair of measures µ0, µ1 inM+(X ) such that

(1− t)Fε(α0) + tFε(α1)

= ε (1− t)Eε(α0, µ0) + ε tEε(α1, µ1)

> εEε((1− t)α0 + t α1, (1− t)µ0 + t µ1)

> Fε((1− t)α0 + t α1),

which is enough to conclude. To show the strict in-
equality, let us remark that

(1− t)Eε(α0, µ0) + tEε(α1, µ1)

= Eε((1− t)α0 + t α1, (1− t)µ0 + t µ1)

would imply that µ0 = µ1, since µ 7→ ‖µ‖2kε is strictly
convex. As α 7→ KL(α, β) is strictly convex on the
set of measures α that are absolutely continuous with
respect to β, we would then have α0 = α1 and a con-
tradiction with our first hypothesis.

B.5 Proof of the Metrization of the
Convergence in Law

The regularized OT cost is weakly continuous, and the
uniform convergence for dual potentials ensures that

Hε and Sε are both continuous too. Paired with (6),
this property guarantees the convergence towards 0 of
the Hausdorff and Sinkhorn divergences, as soon as
αn ⇀ α.

Conversely, let us assume that Sε(αn, α) → 0
(resp. Hε(αn, α)). Any weak limit αn∞ of a sub-
sequence (αnk)k is equal to α: since our diver-
gence is weakly continuous, we have Sε(αn∞ , α) = 0
(resp. Hε(αn∞ , α)), and positive definiteness holds
through (6).

In the meantime, since X is compact, the set of prob-
ability Radon measures M+

1 (X ) is sequentially com-
pact for the weak-? topology. αn is thus a compact
sequence with a unique adherence value: it converges,
towards α.


