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A PROOFS OF SLOW RATES

We prove in this section the propositions and theorem of Subsection 4.1.

We begin by a lemma on the concentration of Tb, the number of context samples falling in a bin b.

Lemma 3. For all b ∈ B, let Tb the number of context samples falling in the bin b. We have

P
(
∃b ∈ B,

∣∣∣∣Tb − T

Bd

∣∣∣∣ ≥ 1

2
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Bd

)
≤ 2Bd exp

(
− T

12Bd

)
.

Proof. For a bin b ∈ B and t ∈ {1, . . . , T}, let Z
(b)
t = 1{Xt∈B} which is a random Bernoulli variable of parameter

1/Bd.

We have Tb =
∑T
t=1 Zt and E[Tb] = T/Bd.

Using a multiplicative Chernoff’s bound (Vershynin, 2018) we obtain:

P
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1

2
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)
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(
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)
.

We conclude with an union bound on all the bins.

Proof of Proposition 1. We have

E(pT ) = EL(pT )− L(p̃?) =
1

Bd

∑
b∈B

ELb(pT (b))− Lb(p?b)

Let us now consider a single bin b ∈ B. We have run the UCB Frank-Wolfe (Berthet and Perchet, 2017) algorithm
for the function Lb on the bin b with Tb iterations.

For all p ∈ ∆K , Lb(p) = 〈µ̄(b), p〉+λρ(p), then for all p ∈ ∆K , ∇Lb(p) = µ̄(b)+λ∇ρ(p) and ∇2Lb(p) = λ∇2ρ(p).
Since ρ is a S-smooth convex function, Lb is a λS-smooth convex function.

We consider the event A:

A
.
=

{
∀b ∈ B, Tb ∈

[
T

2Bd
,

3T

2Bd

]}
.

Lemma 3 shows that P(A{) ≤ 2Bd exp

(
− T

12Bd

)
.

Theorem 3 of Berthet and Perchet (2017) shows that, on event A:

ELb(pT (b))− Lb(p?b) ≤ 4

√
3K log(Tb)

Tb
+
S log(eTb)

Tb
+

(
π2

6
+K

)
2 ‖∇Lb‖∞ + ‖Lb‖∞

Tb

≤ 4

√
6K log(T )

T/Bd
+

2S log(eT )

T/Bd
+ 2

(
π2

6
+K

)
2 ‖∇Lb‖∞ + ‖Lb‖∞

T/Bd
.

Since ρ is of class C1, ρ and ∇ρ are bounded on the compact set ∆K . It is also the case for Lb and consequently
‖Lb‖∞ and ‖∇Lb‖∞ exist and are finite and can be expressed in function of ‖ρ‖∞, ‖∇ρ‖∞ and ‖λ‖∞. On event

A{, ELb(pT (b))− Lb(p?b) ≤ 2 ‖Lb‖∞ ≤ 2 + 2 ‖λρ‖∞.
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Summing over all the bins in B we obtain:

EL(pT )−L(p?) ≤ 4Bd/2
√

6K log(T )

T
+Bd

2S log(eT )

T
+4KBd

4 + 2 ‖λ∇ρ‖∞ + ‖λρ‖∞
T

+4Bd(1+‖λρ‖∞)e−
T

12Bd .

(4)

The first term of Equation (4) dominates the others and we can therefore write that

EL(pT )− L(p?) = O

(
√
KBd/2

√
log(T )

T

)
where the O is valid for T →∞.

Proof of Proposition 2. We consider a bin b ∈ B containing t samples.

Let S .
=

{
p ∈ ∆K | ∀i ∈ [K], pi ≥

λ√
t

}
. In order to force all the successive estimations of p?b to be in S we

sample each arm λ
√
t times. Thus we have ∀i ∈ [K], pi ≥ λ/

√
t. Then we apply the UCB-Frank Wolfe algorithm

on the bin b. Let
p̂b

.
= min

p∈S
Lb(p) and p?b

.
= min
p∈∆K

Lb(p).

• Case 1: p̂b = p?b , i.e. the minimum of Lb is in S.

For all p ∈ ∆K , Lb(p) = 〈µ̄(b), p〉 + λρ(p), then for all p ∈ ∆K , ∇Lb(p) = µ̄(b) + λ(1 + log(p)) and
∇2
iiLb(p) = λ/pi. Therefore on S we have

∇2
iiLb(p) ≤

√
t.

And consequently Lb is
√
t-smooth. And since ∇iLb(p) = 1 + λ log(pi), ‖∇Lb(p)‖∞ . log(t). We can apply

the same steps as in the proof of Proposition 1 to find that

ELb(pt(b))− Lb(p?b) ≤ 4

√
3K log(t)

t
+

√
t log(et)

t
+

(
π2

6
+K

)
2 log(t) + log(K)

t
= O

(
log(t)√

t

)
.

• Case 2: p̂b 6= p?b . By strong convexity of Lb, p̂b cannot be a local minimum of Lb and therefore p̂b ∈ ∂∆K .

The Case 1 shows that

ELb(pt(b))− Lb(p̂b) ≤ O
(

log(t)√
t

)
.

Let π = (π1, . . . , πK) with πi
.
= max(λ/

√
t, p̂b,i). We have ‖π − p̂b‖2 ≤

√
Kλ/

√
t.

Let us derive an explicit formula for p?b knowing the explicit expression of ρ. In order to find the optimal
ρ? value let us minimize (p 7→ Lb(p)) under the constraint that p lies in the simplex ∆K . The KKT
equations give the existence of ξ ∈ R such that for each i ∈ [K], µ̄i(b) + λ log(pi) + λ + ξ = 0 which leads

to p?b,i = e−µ̄i(b)/λ/Z where Z is a normalization factor. Since Z =
∑K
i=1 e

−µ̄i(b)/λ we have Z ≤ K and

p?b,i ≥ e−1/λ/K. Consequently for all p on the segment between π and p?b we have pi ≥ e−1/λ/K and
therefore λ(1 + log(pi)) ≥ λ(1− logK)− 1 and finally |∇iLb(p)| ≤ 4 ‖λ‖∞ log(K).

Therefore Lb is 4
√
K log(K)-Lipschitz and

‖Lb(p?b)− Lb(π)‖2 ≤ 4 ‖λ‖∞
√
K log(K) ‖π − p̂b‖2 ≤ 4K log(K) ‖λ‖2∞ /

√
t = O(1/

√
t).

Finally, since Lb(π) ≥ Lb(p̂b) (because π ∈ S), we have

ELb(pt(b))− Lb(p?b) ≤ ELb(pt(b))− Lb(p̂b) + Lb(p̂b)− Lb(p?b) ≤ O
(

log(t)√
t

)
+ L(π)− L(p?b) = O

(
log(t)√

t

)
.

We conclude by summing on the bins and using that t ∈ [T/2Bd, 3T/2Bd] with high probability, as in the
proof of Proposition 1.
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Proof of Proposition 3. We have to bound the quantity

L(p̃?)− L(p?) = λ
∑
b∈B

∫
b

ρ∗(−µ(x)/λ)− ρ∗(−µ̄(b)/λ) dx.

Classical results on convex conjugates (Hiriart-Urruty and Lemaréchal, 2013a) give that ∇ρ∗(y) =
argminx∈∆Kρ(x) − 〈x, y〉 for all y ∈ RK . Consequently, ∇ρ∗(y) ∈ ∆K and for all y ∈ RK , ‖∇ρ∗(y)‖ ≤ 1
showing that ρ∗ is 1-Lipschitz continuous. This leads to

L(p̃?)− L(p?) ≤ λ
∑
b∈B

∫
b

∥∥∥∥µ(x)− µ̄(b)

λ

∥∥∥∥ dx

≤
∑
b∈B

∫
b

√
LβK

(√
d

B

)β
dx

≤
√
LβKdβB

−β

because all the µk are (Lβ , β)-Hölder.

Proof of Theorem 1. We will denote by Ck with increasing values of k the constants. Since the regret is the sum
of the approximation error and the estimation error we obtain

R(T ) ≤
√
LβdβKB

−β + C1

√
KBd/2

√
log(T )

T
+Bd

2S log(eT )

T
+ C2K

Bd

T
+ 4Bd(1 + ‖λρ‖∞) exp

(
− T

12Bd

)
.

With the choice of

B =
(
C2β

√
Lβd

β/2−1
)1/(β+d/2)

(
T

log(T )

)1/(2β+d)

,

we find that the three last terms of the regret are negligible with respect to the first two. This gives

R(T ) ≤ O

((
3
√
KL

d/(4β+2d)
β dβ(4+d)/(4β+2d)(C2β)−β/(2β+d)

)( T

log(T )

)−β/(2β+d)
)
.

B PROOFS OF FAST RATES

We prove now the propositions and theorem of Subsection 4.2.

Proof of Proposition 4. The proof is very similar to the one of Proposition 1. We decompose the estimation error
on the bins:

EL(pT )− L(p̃?) =
1

Bd

∑
b∈B

ELb(pT (b))− Lb(p?b).

Let us now consider a single bin b ∈ B. We have run the UCB Frank-Wolfe algorithm for the function Lb on the
bin b with Tb samples.

As in the proof of Proposition 1 we consider the event A.

Theorem 7 of Berthet and Perchet (2017), applied to Lb which is a λS-smooth λζ-strongly convex function,
shows that on event A:

EL(pT )− L(p?) ≤ 2c̃1
log2(T )

T/Bd
+ 2c̃2

log(T )

T/Bd
+ c̃3

2

T/Bd
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with c̃1 =
96K

ζλη2
, c̃2 =

24

ζλη3
+ λS and c̃3 = 24

(
20

ζλη2

)2

K +
λζη2

2
+ λS. Consequently

EL(pT )− L(p?) ≤ 2c̃1
log2(T )

T/Bd
+ 2c̃2

log(T )

T/Bd
+ c̃3

2

T/Bd
+ 4Bd(1 + ‖λρ‖∞) exp

(
− T

12Bd

)
.

In order to have a simpler expression we can use the fact that λ and η are constants that can be small while S
can be large. Consequently c̃3 is the largest constant among c̃1, c̃2 and c̃3 and we obtain

EL(pT )− L(p?) ≤ O
((

K

λ2ζ2η4
+ Sλ

)
Bd

log2(T )

T

)
,

because the other terms are negligible.

Proof of Lemma 1. We consider a single bin b ∈ B. Let us consider the function

L̂b : p 7→ Lb(αp
o + (1− α)p).

Since for all i, p?b,i ≥ αpoi and since ∆K is convex we know that minp∈∆K L̂b(p) = Lb(p
?
b).

If p is the frequency vector obtained by running the UCB-Frank Wolfe algorithm for function L̂b with (1− α)T
samples then minimizing L̂b is equivalent to minimizing L with a presampling stage.

Consequently the whole analysis on the regret still holds with T replaced by (1− α)T . Thus fast rates are kept
with a constant factor 1/(1− α) ≤ 2.

Proof of Proposition 5. For the entropy regularization, we have

p?b,i =
exp(−µ̄(b)i/λ)∑K
j=1 exp(−µ̄(b)j/λ)

≤ exp(−1/λ)

K
.

We apply Lemma 1 with po =

(
1

K
, . . . ,

1

K

)
and α = exp(−1/λ). Consequently each arm is presampled

T exp(−1/λ)/K times and finally we have

∀i ∈ [K], pi ≥
exp(−1/λ)

K
.

Therefore we have

∀i ∈ [K], ∇iiρ(p) =
1

pi
≤ K exp(1/λ),

showing that ρ is K exp(1/λ)-smooth.

In order to prove the Proposition 6 we will need the following lemma which is a direct consequence of a result
on smooth convex functions.

Lemma 4. Let f : Rd → R be a convex function of class C1 and L > 0. Let g : Rd 3 x 7→ L

2
‖x‖2 − f(x). Then

g is convex if and only if ∇f is L-Lipschitz continuous.

Proof. Since g is continuously differentiable we can write

g convex ⇔ ∀x, y ∈ Rd, g(y) ≥ g(x) + 〈∇g(x), y − x〉

⇔ ∀x, y ∈ Rd,
L

2
‖y‖2 − f(y) ≥ L

2
‖x‖2 − f(x) + 〈Lx−∇f(x), y − x〉

⇔ ∀x, y ∈ Rd, f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2

(
‖y‖2 + ‖x‖2 − 2〈x, y〉

)
⇔ ∀x, y ∈ Rd, f(y) ≤ f(x) + 〈∇f(x), y − x〉+

L

2
‖x− y‖2

⇔ ∇f is L-Lipschitz continuous.

where the last equivalence comes from Theorem 2.1.5 of Nesterov (2013).
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Proof of Proposition 6. Since ρ is ζ-strongly convex then ∇ρ∗ is 1/ζ-Lipschitz continuous (see for example The-
orem 4.2.1 at page 82 in Hiriart-Urruty and Lemaréchal (2013b)). Since ρ∗ is also convex, Lemma 4 shows that

g : x 7→ 1
2ζ ‖x‖

2 − ρ∗(x) is convex.

Let us now consider the bin b and the function µ = (µ1, . . . , µk). Jensen’s inequality gives:

1

|b|

∫
b

g(−µ(x)/λ) dx ≥ g
(

1

|b|

∫
b

−µ(x)

λ
dx

)
.

This leads to ∫
b

g(−µ(x)/λ) dx ≥
∫
b

g(−µ̄(b)/λ) dx∫
b

1

2ζ
‖−µ(x)‖2 /λ2 − ρ∗(−µ(x)/λ) dx ≥

∫
b

1

2ζ
‖−µ̄(b)‖2 /λ2 − ρ∗(−µ̄(b)/λ) dx∫

b

ρ∗(−µ(x)/λ)− ρ∗(−µ̄(b)/λ) dx ≤ 1

2ζλ2

∫
b

‖µ(x)‖2 − ‖µ̄(b)‖2 dx.

We use the fact that
∫
b
‖µ(x)− µ̄(b)‖2 dx =

∫
b
‖µ(x)‖2 + ‖µ̄(b)‖2− 2〈µ(x), µ̄(b)〉dx =

∫
b
‖µ(x)‖2 + ‖µ̄(b)‖2 dx−

2〈µ̄(b),
∫
b
µ(x) dx〉 =

∫
b
‖µ(x)‖2 + ‖µ̄(b)‖2 dx− 2〈µ̄(b), |b|µ̄(b)〉 =

∫
b

∥∥µ(x)2
∥∥− ‖µ̄(b)‖2 dx and we get finally

∫
b

ρ∗(−µ(x)/λ)− ρ∗(−µ̄(b)/λ) dx ≤ 1

2ζλ2

∫
b

‖µ(x)− µ̄(b)‖2 dx.

Equation (2) shows that

L(p̃?)− L(p?) ≤ 1

2ζλ

∑
b∈B

∫
b

‖µ̄(b)− µ(x)‖2 dx

≤
∑
b∈B

∫
b

LβK

2ζλ

(√
d

B

)2β

dx

≤ LβKd
β

2ζλ

(
1

B

)2β

because each µk is (Lβ , β)-Hölder.

Proof of Theorem 2. We denote again by Ck the constants. We sum the approximation and the estimation errors
(given in Propositions 6 and 4) to obtain the following bound on the regret:

R(T ) ≤ C1
LβKd

β

ζλ
B−2β + C2

log2(T )

T
Bd
(

1

ζλη3
+

K

ζ2λ2η4
+ λζη2 + λS

)
+ 4Bd(1 + ‖λρ‖∞) exp

(
− T

12Bd

)
.

For the sake of clarity let us note ξ1
.
= C1

LβKd
β

ζλ
and ξ2

.
= C2

(
1

ζλη3
+

K

ζ2λ2η4
+ λζη2 + λS

)
.

We have

R(T ) ≤ ξ1B−2β + ξ2B
d log2(T )

T
+ 4Bd(1 + ‖λρ‖∞) exp

(
− T

12Bd

)
.

Taking

B =

(
2ξ1β

ξ2

)1/(2β+d)(
T

log2(T )

)1/(d+2β)

,

we notice that the third term is negligible and we conclude that

R(T ) ≤ O

(
2ξ1

(
2ξ1β

ξ2

)−2β/(2β+d)(
T

log2(T )

)−2β/(2β+d)
)
.
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C PROOFS OF INTERMEDIATE RATES

We begin with a lemma on convex conjugates.

Lemma 5. Let λ, µ > 0 and let y ∈ Rn and ρ a non-negative bounded convex function. Then

(λρ)∗(y)− (µρ)∗(y) ≤ |λ− µ| ‖ρ‖∞ .

Proof. (λρ)∗(y) = supx〈x, y〉 − λρ(x) = 〈xλ, y〉 − λρ(xλ).

And (µρ)∗(y) = supx〈x, y〉 − µρ(x) = 〈xµ, y〉 − µρ(xµ) ≥ 〈xλ, y〉 − µρ(xλ).

Then, (λρ)∗(y)− (µρ)∗(y) ≤ 〈xλ, y〉 − λρ(xλ)− (〈xλ, y〉 − µρ(xλ)) = (µ− λ)ρ(xλ).

Finally (λρ)∗(y)− (µρ)∗(y) ≤ |λ− µ| ‖ρ‖∞.

Proof of Proposition 7. There exists x0 ∈ b such that λ̄(b) = λ(x0) and x1 ∈ b such that µ̄(b) = µ(x1). We use
Lemma 5 to derive a bound for the approximation error.∫

b

(λ(x)ρ)∗ (−µ(x))− (λ̄(b)ρ)∗ (−µ̄(b)) dx

=

∫
b

(λ(x)ρ)∗ (−µ(x))− (λ(x)ρ)∗ (−µ̄(b)) dx+

∫
b

(λ(x)ρ)∗ (−µ̄(b))− (λ̄(b)ρ)∗ (−µ̄(b)) dx

≤
∫
b

λ(x)

(
ρ∗
(
−µ(x)

λ(x)

)
− ρ∗

(
− µ̄(b)

λ(x)

))
dx+

∫
b

|λ(x)− λ̄(b)| ‖ρ‖∞ dx

≤
∫
b

λ(x)

∣∣∣∣µ(x)

λ(x)
− µ̄(b)

λ(x)

∣∣∣∣ dx+ ‖ρ‖∞
∫
b

|λ(x)− λ(x0)|dx

≤
∫
b

Lβ |x− x1|β dx+ ‖ρ‖∞
∫
b

‖λ′‖∞ |x− x0|dx

≤ B−d
(
Lβd

β/2B−β + ‖ρ‖∞ ‖λ
′‖∞
√
dB−1

)
= O(B−β−d).

Proof of Proposition 8. As in the proof of Proposition 6 we consider a bin b ∈ B and the goal is to bound∫
b

λ(x)ρ∗
(
−µ(x)

λ(x)

)
− λ̄(b)ρ∗

(
− µ̄(b)

λ̄(b)

)
dx.

We use a similar method and we apply Jensen inequality with density
λ(x)

|b|λ̄(b)
to the function g : x 7→ 1

2ζ ‖x‖
2 −

ρ∗(x) which is convex.

g

(∫
b

−µ(x)

λ(x)

λ(x)

|b|λ̄(b)
dx

)
≤
∫
b

g

(
−µ(x)

λ(x)

)
λ(x)

|b|λ̄(b)
dx

g

(
− µ̄(b)

λ̄(b)

)
≤
∫
b

g

(
−µ(x)

λ(x)

)
λ(x)

|b|λ̄(b)
dx

1

2ζ

∥∥∥∥− µ̄(b)

λ̄(b)

∥∥∥∥2

− ρ∗
(
− µ̄(b)

λ̄(b)

)
≤ 1

|b|λ̄(b)

∫
b

[
1

2ζ

∥∥∥∥−µ(x)

λ(x)

∥∥∥∥2

− ρ∗
(
−µ(x)

λ(x)

)]
λ(x) dx

∫
b

λ(x)ρ∗
(
−µ(x)

λ(x)

)
− λ̄(b)ρ∗

(
− µ̄(b)

λ̄(b)

)
dx ≤ 1

2ζ

∫
b

‖µ(x)‖2

λ(x)
− ‖µ̄(b)‖2

λ̄(b)
dx.
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Consequently we have proven that∫
b

λ(x)ρ∗
(
−µ(x)

λ(x)

)
− λ̄(b)ρ∗

(
− µ̄(b)

λ̄(b)

)
dx ≤ 1

2ζ

∫
b

‖µ(x)‖2

λ(x)
− ‖µ̄(b)‖2

λ̄(b)
dx

≤ 1

2ζ

K∑
k=1

∫
b

µk(x)2

λ(x)
− µ̄k(b)2

¯λ(b)
dx.

Therefore we have to bound, for each k, I =

∫
b

µk(x)2

λ(x)
− µ̄k(b)2

λ̄(b)
dx.

Let us omit the subscript k and consider a β-Hölder function µ.

We have

I =

∫
b

µ(x)2

λ(x)
− µ̄(b)2

λ̄(b)
dx

=

∫
b

µ(x)2

λ(x)
− µ(x)2

λ̄(b)
+
µ(x)2

λ̄(b)
− µ̄(b)2

λ̄(b)
dx

=

∫
b

(
µ(x)2 − µ̄(b)2

)( 1

λ(x)
− 1

λ̄(b)

)
dx︸ ︷︷ ︸

I1

+

∫
b

µ̄(b)2

(
1

λ(x)
− 1

λ̄(b)

)
dx︸ ︷︷ ︸

I2

+

∫
b

1

λ̄(b)

(
µ(x)2 − µ̄(b)2

)
dx︸ ︷︷ ︸

I3

.

We now have to bound these three integrals.

Bounding I1:

I1 =

∫
b

(
µ(x)2 − µ̄(b)2

)( 1

λ(x)
− 1

λ̄(b)

)
dx

=

∫
b

(µ(x) + µ̄(b)) (µ(x)− µ̄(b))

(
1

λ(x)
− 1

λ̄(b)

)
dx

≤
∫
b

2|µ(x)− µ̄(b)|
∣∣∣∣ 1

λ(x)
− 1

λ̄(b)

∣∣∣∣dx
≤ 2Lβ

(√
d

B

)β ∫
b

∣∣∣∣ 1

λ(x)
− 1

λ̄(b)

∣∣∣∣dx.
Since 1/λ is of class C1, Taylor-Lagrange inequality yields, using the fact that there exists x0 ∈ b such that
λ̄(b) = λ(x0): ∣∣∣∣ 1

λ(x)
− 1

λ̄(b)

∣∣∣∣ ≤
∥∥∥∥∥
(

1

λ

)′∥∥∥∥∥
∞

|x− x0| ≤
‖λ′‖∞
λ2

min

√
d

B
.

We obtain therefore

I1 ≤ 2Lβ ‖λ′‖∞
√
d
β+1 1

λ2
min

B−(1+β+d) = O
(
B−(1+β+d)

λ2
min

)
.

Bounding I2:

We have

I2 = µ̄(b)2

∫
b

(
1

λ(x)
− 1

λ̄(b)

)
dx ≤

∫
b

(
1

λ(x)
− 1

λ̄(b)

)
dx

because

∫
b

(
1

λ(x)
− 1

λ̄(b)

)
dx ≥ 0 from Jensen’s inequality.
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Without loss of generality we can assume that the bin b is the closed cuboid [0, 1/B]d. We suppose that for all
x ∈ b, λ(x) > 0.

Since λ is of class C∞, we have the following Taylor series expansion:

λ(x) = λ(0) +

d∑
i=1

∂λ(0)

∂xi
xi +

1

2

∑
i,j

∂2λ(0)

∂xi∂xj
xixj + O(‖x‖2).

Integrating over the bin b we obtain

λ̄(b) = λ(0) +
1

2

1

B

d∑
i=1

∂λ(0)

∂xi
+

1

8

1

B2

∑
i 6=j

∂2λ(0)

∂xi∂xj
+

1

6

1

B2

d∑
i=1

∂2λ(0)

∂x2
i

+ O

(
1

B2

)
.

Consequently∫
b

dx

λ̄(b)
=

1

Bdλ̄(b)

=
1

Bdλ(0)

1

1 +
1

2λ(0)

1

B

d∑
i=1

∂λ(0)

∂xi
+

1

λ(0)

1

B2

1

8

∑
i6=j

∂2λ(0)

∂xi∂xj
+

1

6

d∑
i=1

∂2λ(0)

∂x2
i

+ O

(
1

B2

)

=
1

Bdλ(0)

(
1− 1

2λ(0)

1

B

d∑
i=1

∂λ(0)

∂xi
− 1

λ(0)

1

B2

1

8

∑
i 6=j

∂2λ(0)

∂xi∂xj
+

1

6

d∑
i=1

∂2λ(0)

∂x2
i


+

1

4λ(0)2

1

B2

(
d∑
i=1

∂λ(0)

∂xi

)2

+ O

(
1

B2

))

=
1

Bdλ(0)
− 1

2λ(0)2

1

Bd+1

d∑
i=1

∂λ(0)

∂xi
− 1

λ(0)2

1

Bd+2

1

8

∑
i6=j

∂2λ(0)

∂xi∂xj
+

1

6

d∑
i=1

∂2λ(0)

∂x2
i


+

1

4λ(0)3

1

Bd+2

(
d∑
i=1

∂λ(0)

∂xi

)2

+ O

(
1

B2

)
.

Let us now compute the Taylor series development of 1/λ. We have:

∂

∂xi

1

λ(x)
= − 1

λ(x)2

∂λ(x)

∂xi
and

∂2

∂xi∂xj

1

λ(x)
= − 1

λ(x)2

∂2λ(x)

∂xi∂xj
+

2

λ(x)3

∂λ(x)

∂xi

∂λ(x)

∂xj
.

This lets us write

1

λ(x)
=

1

λ(0)
− 1

λ(0)2

d∑
i=1

∂λ(0)

∂xi
xi −

1

2

1

λ(0)2

∑
i,j

∂2λ(0)

∂xi∂xj
xixj +

1

λ(0)3

∑
i,j

∂λ(0)

∂xi

∂λ(0)

∂xj
xixj + O(‖x‖2)

∫
b

dx

λ(x)
=

1

λ(0)

1

Bd
− 1

2λ(0)2

1

Bd+1

d∑
i=1

∂λ(0)

∂xi
− 1

λ(0)2

1

Bd+2

1

8

∑
i 6=j

∂2λ(0)

∂xi∂xj
+

1

6

d∑
i=1

∂2λ(0)

∂x2
i


+

1

λ(0)3

1

Bd+2

1

4

∑
i 6=j

∂λ(0)

∂xi

∂λ(0)

∂xj
+

1

3

d∑
i=1

(
∂λ(0)

∂xi

)2
+ O

(
1

Bd+2

)
.

And then
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I2 ≤
1

12

1

λ(0)3

1

Bd+2

d∑
i=1

(
∂λ(0)

∂xi

)2

+ O

(
1

Bd+2

)
.

Since the derivatives of λ are bounded we obtain that

I2 = O
(
B−2−d

λ3
min

)
.

Bounding I3:

I3 =

∫
b

1

λ̄(b)

(
µ(x)2 − µ̄(b)2

)
dx

=
1

λ̄(b)

∫
b

(µ(x)− µ̄(b))
2

dx

≤ 1

λmin
L2
βd

βB−(2β+d) = O
(
B−(2β+d)

λmin

)
.

Putting this together we have I = O
(

(dL2
β ‖∇λ‖

2
∞)

B−(2β+d)

λ3
min

)
. And finally

L(p̃?)− L(p?) ≤ O
(
KdL2

β ‖∇λ‖
2
∞
B−2β

ζλ3
min

)
.

Lemma 6 (Regularity of η). If η is the distance of the optimum p? to the boundary of ∆K as defined in
Definition 5, and if the µk functions are all β-Hölder and λ of class C1, then η is β-Hölder. More precisely we
have

∀x, y ∈ b, |η(x)− η(y)| ≤
√

K

K − 1

‖λ‖∞ + ‖λ′‖∞
ζλmin(b)2

|x− y|β =
CL

λmin(b)2
|x− y|β .

Proof. Let x ∈ X . Since η(x) = dist(p?b , ∂∆K) we obtain

η(x) =

√
K

K − 1
min
i
p?i (x).

And

p?(x) = argmin〈µ(x), p(x)〉+ λ(x)ρ(p(x))

= ∇(λ(x)ρ)∗(−µ(x))

= ∇ρ∗
(
−µ(x)

λ(x)

)
.

Since ρ is ζ-strongly convex, ∇ρ∗ is 1/ζ-Lipschitz continuous.

Therefore, for x, y ∈ b,

|p?(x)− p?(y)| ≤ 1

ζ

∣∣∣∣µ(x)

λ(x)
− µ(y)

λ(y)

∣∣∣∣
≤ 1

ζ

∣∣∣∣µ(x)− µ(y)

λ(x)

∣∣∣∣+
1

ζ
|µ(y)|

∣∣∣∣ 1

λ(x)
− 1

λ(y)

∣∣∣∣
≤ 1

ζλmin(b)
|x− y|β +

1

ζ

‖λ′‖∞
λmin(b)2

|x− y|

since all µk are bounded by 1 (the losses are bounded by 1).



Regularized Contextual Bandits

Proof of Lemma 2. We consider a well-behaved bin b. There exists x1 ∈ b such that λ(x1) ≥ c1B
−β/3. Since λ

is C∞ on [0, 1]d, it is in particular Lipschitz-continuous on b. And therefore

∀x ∈ b, λ(x) ≥ c1B−β/3 − ‖λ′‖∞ diam(b) ≥ c1B−β/3 − ‖λ′‖∞ diam(b)β/3 = B−β/3.

Lemma 6 shows that η is β-Hölder continuous (with constant denoted by CL/λ
2
min) and therefore we have

∀x ∈ b, η(x) ≥ c2B−β/3 −
CL

λmin(b)2
diam(b)β = B−β/3.

Lemma 7. If ρ is convex, η is an increasing function of λ.

Proof. As in the proof of Proposition 2 we use the KKT conditions to find that on a bin b (without the index k
for the arm):

µ̄(b) + λ̄(b)∇ρ(p?b) + ξ = 0.

Therefore

p?b = (∇ρ)−1

(
−ξ + µ̄(b)

λ̄(b)

)
.

Since ρ is convex, ∇ρ is an increasing function and its inverse as well. Consequently p?b is an increasing function

of λ̄(b), and since η(b) =
√
K/(K − 1) mini p

?
b,i, η is also an increasing function of λ̄(b).

Proof of Theorem 3. Since B will be chosen as an increasing function of T we only consider T sufficiently large
in order to have c1B

−β/3 < δ1 and c2B
−β/3 < δ2. To ensure this we can also take smaller δ1 and δ2. Moreover

we lower the value of δ2 or δ1 to be sure that δ2
c2

= η( δ1c1 ). These are technicalities needed to simplify the proof.

The proof will be divided into several steps. We will first obtain lower bounds on λ and η for the “well-behaved
bins”. Then we will derive bounds for the approximation error and the estimation error. And finally we will put
that together to obtain the intermediate convergence rates.

As in the proofs on previous theorems we will denote the constants Ck with increasing values of k.

• Lower bounds on η and λ:

Using a technique from Rigollet and Zeevi (2010) we notice that without loss of generality we can index the
Bd bins with increasing values of λ̄(b). Let us note IB = {1, . . . , j1} and WB = {j1 + 1, . . . , Bd}. Since η
is an increasing function of λ (cf Lemma 7), the η(bj) are also increasingly ordered.

Let j2 ≥ j1 be the largest integer such that λ̄(bj) ≤
δ1
c1

. Consequently we also have that j2 is the largest

integer such that η(bj) ≤
δ2
c2

.

Let j ∈ {j1 + 1, . . . , j2}. The bin bj is a well-behaved bin and Lemma 2 shows that λ̄(bj) ≥ B−β/3. Then
λ̄(bj) + (c1− 1)B−β/3 ≤ c1λ̄(bj) ≤ δ1 and we can apply the margin condition (cf Assumption 3) which gives

PX(λ(x) ≤ λ̄(bj) + (c1 − 1)B−β/3) ≤ Cm(c1λ̄(bj))
6α.

But since the context are uniformly distributed and since the λ̄(bj) are increasingly ordered we also have
that

PX(λ(x) ≤ λ̄(bj) + (c1 − 1)B−β/3) ≥ PX(λ(x) ≤ λ̄(bj)) ≥
j

Bd
.

This gives λ̄(bj) ≥
1

c1C
1/6α
m

(
j

Bd

)1/6α

. The same computations give η(bj) ≥
1

c2C
1/6α
m

(
j

Bd

)1/6α

. We note

Cγ
.
= min((c1C

1/6α
m )−1, (c2C

1/6α
m )−1)) and γj

.
= Cγ

(
j

Bd

)1/α

. Consequently λ̄(bj) ≥ γj and η(bj) ≥ γj .



Xavier Fontaine, Quentin Berthet, Vianney Perchet

Let us now compute the number of ill-behaved bins:

#{b ∈ B, b /∈ WB} = Bd P(b /∈ WB)

= Bd P(∀x ∈ B, η(x) ≤ c2B−β/3 or ∀x ∈ B, λ(x) ≤ c1B−β/3)

≤ Bd P(η(x̄) ≤ c2B−β/3 or λ(x̄) ≤ c1B−β/3)

≤ Cm(c6α1 + c6α2 )BdB−2αβ .
= CIB

dB−2αβ

where x̄ is the mean context value in the bin b. Consequently if j ≥ j?
.
= CIB

dB−2αβ , then bj ∈ WB. Let

ĵ
.
= CIB

dB−αβ ≥ j?. Consequently for all j ≥ j?, bj ∈ WB.

We want to obtain an upper-bound on the constant S ¯λ(bj) +
K

η(bj)4λ̄(bj)2
that arises in the fast rate for

the estimation error. For the sake of clarity we will remove the dependency in bj and denote this constant

C = Sλ+
K

λ2η4
.

In the case of the entropy regularization S = 1/mini p
?
i . Since η =

√
K/(K − 1) mini p

?
i , we have that

mini p
?
i =

√
(K − 1)/Kη ≥ η/2. Consequently S ≤ 2/γj and, on a well-behaved bin bj , for j ≤ j2,

C ≤
K + 2 ‖λ‖∞

γ6
j

.
=
CF
γ6
j

, (5)

where the subscript F stands for “Fast”. When j ≥ j2, we have λ̄(bj) ≥ δ1/c1 and η(bj) ≥ δ2/c2 and
consequently

C ≤ K

(δ1/c1)2(δ2/c2)4
+

2 ‖λ‖∞
δ2/c2

.
= Cmax.

Let us notice than λ being known by the agent, the agent knows the value of λ̄(b) on each bin b and can
therefore order the bins. Consequently the agent can sample, on every well-behaved bin, each arm Tγj/2

times and be sure that mini pi ≥ γj/2. On the first bĵc bins the agent will sample each arm λ̄(b)
√
T/Bd

times as in the proof of Proposition 2.

• Approximation Error:

We now bound the approximation error. We separate the bins into two sets: {1, . . . , bj?c} and {dj?e, . . . , Bd}.
On the first set we use the slow rates of Proposition 7 and on the second set we use the fast rates of
Proposition 8.

We obtain that, for α < 1/2,

L(p̃?)− L(p?) ≤ Lβdβ/2
bj?c∑
j=1

B−β−d + ‖ρ‖∞ ‖∇λ‖∞
√
d

bj?c∑
j=1

B−1−d + (KdL2
β ‖∇λ‖

2
∞)

Bd∑
j=dj?e

B−2β−d

λ̄(bj)3

≤ CILβdβ/2B−βB−2αβ + (KdL2
β ‖∇λ‖

2
∞)

 j2∑
j=dj?e

B−2β−d

γ3
j

+

Bd∑
j=j2+1

B−2β−d

(c1/δ1)3

+ O(B−2αβ−β)

≤ CILβdβ/2B−2αβ−β + (KdL2
β ‖∇λ‖

2
∞)

B−2β−d

C3
γ

j2∑
j=dj?e

(
j

Bd

)−1/2α

+B−2β

(
δ1
c1

)3
+ O(B−2αβ−β)

≤ CILβdβ/2B−2αβ−β + (KdL2
β ‖∇λ‖

2
∞)

1

C3
γ

B−2β

∫ 1

CIB−2αβ

x−1/2α dx+ O(B−2αβ−β)

≤

(
CILβd

β/2 +KdL2
β ‖∇λ‖

2
∞

2α

1− 2α

C
(2α−1)/2α
I

C3
γ

)
B−β−2αβ + O(B−2αβ−β) = O

(
B−β−2αβ

)
since α < 1/2. We step from line 3 to 4 thanks to a series-integral comparison.
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For α = 1/2 we get

L(p̃?)−L(p?) ≤
(
CILβd

β/2 +
(
KdL2

β ‖∇λ‖
2
∞

)
(δ3

1c
−3
1 + 2βC−3

γ log(B))
)
B−2β+O(B−2β) = O

(
B−2β log(B)

)
.

And for α > 1/2 we have

L(p̃?)− L(p?) ≤
(
KdL2

β ‖∇λ‖
2
∞

)( 1

C3
γ

2α

2α− 1
+

(
δ1
c1

)3
)
B−2β + O(B−2β) = O

(
B−2β

)
because β + 2αβ > 2β.

Let us note

ξ1
.
=

(
CILβd

β/2 +KdL2
β ‖∇λ‖

2
∞

2α

1− 2α

C
(2α−1)/2α
I

C3
γ

)
;

ξ2
.
=
(
CILβd

β/2 +
(
KdL2

β ‖∇λ‖
2
∞

)
(δ3

1c
−3
1 + 2βC−3

γ log(B))
)

;

ξ3
.
=
(
KdL2

β ‖∇λ‖
2
∞

)( 1

C3
γ

2α

2α− 1
+

(
δ1
c1

)3
)

;

ξapp
.
= max(ξ1, ξ2, ξ3).

Finally we obtain that the approximation error is bounded by ξappB
−min(β+2αβ,2β) log(B) with α > 0.

• Estimation Error:

We proceed in a similar manner as for the approximation error, except that we do not split the bins around
j? but around ĵ.

In a similar manner to the proofs of Theorems 1 and 2 we only need to consider the terms of dominating
order from Propositions 1 and 4. As before we consider the same event A (cf the proof of Proposition 1)
and we note CA

.
= 4Bd(1 + ‖λρ‖∞). We obtain, for α < 1, using (5):

EL(p̃T )− L(p̃?) =
1

Bd

∑
b∈B

ELb(p̃T )− L(p?b)

=
1

Bd

Bd∑
j=dĵe

ELb(p̃T )− L(p?b) +
1

Bd

bĵc∑
j=1

ELb(p̃T )− L(p?b)

≤ 1

Bd

Bd∑
j=dĵe

2C
log2(T )

T/Bd
+

1

Bd

bĵc∑
j=1

4
√

12K

√
log(T )

T/Bd
+ CAe

− T

12Bd

≤ 2CF

j2∑
j=dĵe

log2(T )

T
γ−6
j +

Bd∑
j=j2+1

2Cmax
log2(T )

T
+ 6
√

3K

√
log(T )

T
Bd/2B−αβ + CAe

− T

12Bd

≤ 2CF
C6
γ

log2(T )

T

j2∑
j=dĵe

(
j

Bd

)−1/α

+ 2Cmax
log2(T )

T
Bd + 6

√
3K

√
log(T )

T
Bd/2−αβ + CAe

− T

12Bd

≤ 2CF
C6
γ

log2(T )

T
Bd
∫ 1

CIB−αβ
x−1/α dx+ 2Cmax

log2(T )

T
Bd + 6

√
3K

√
log(T )

T
Bd/2−αβ + CAe

− T

12Bd

≤ 2CF
C6
γ

log2(T )

T
Bd

α

1− α
Bβ(1−α) + 2Cmax

log2(T )

T
Bd + 6

√
3K

√
log(T )

T
Bd/2−αβ + CAe

− T

12Bd

≤ 2CF
C6
γ

log2(T )

T

α

1− α
Bd+β−αβ + 6

√
3K

√
log(T )

T
Bd/2−αβ + 2Cmax

log2(T )

T
Bd + CAe

− T

12Bd .
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• Putting things together:

We note Cα
.
=

2CF
C6
γ

α

1− α
. This leads to the following bound on the regret:

R(T ) ≤ Cα
log2(T )

T
Bd+β−αβ+6

√
3K

√
log(T )

T
Bd/2−αβ+2Cmax

log2(T )

T
Bd+CAe

− T

12Bd +ξappB
−min(2β,β+2αβ) log(B).

Choosing B =

(
T

log2(T )

)1/(2β+d)

we get

R(T ) ≤ (Cα + 6
√

3K)

(
T

log2(T )

)−β(1+α)/(2β+d)

+ O

(
T

log2(T )

)−β(1+α)/(2β+d)

which is valid for α ∈ (0, 1).

Finally we have

R(T ) = O

((
T

log2(T )

)−β(1+α)/(2β+d)
)
.

D PROOFS OF LOWER BOUNDS

Proof of Theorem 4. We consider the model with K = 2 where µ(x) = (−η(x), η(x))>, where η is a β-Hölder
function on X = [0, 1]d. We note that η is uniformly bounded over X as a consequence of smoothness, so one
can take λ such that |η(x)| < λ. We denote by e = (1/2, 1/2) the center of the simplex, and we consider the loss

L(p) =

∫
X

(
〈µ(x), p(x)〉+ λ‖p(x)− e‖2

)
dx.

Denoting by p0(x) the vector e+ µ(x)/(2λ), we have that p0(x) ∈ ∆2 for all x ∈ X . Further, we have that

〈µ(x), p(x)〉+ λ‖p(x)− e‖2 = λ‖p(x)− p0(x)‖2 + 1/(4λ)‖µ(x)‖2 ,

since 〈µ(x), e〉 = 0. As a consequence, L is minimized at p0 and

L(p)− L(p0) =

∫
X
λ‖p(x)− p0(x)‖2 dx = 1/(2λ)

∫
X
|η(x)− η0(x)|2 dx .

where η is such that p(x) =
(
1/2− η(x)/(2λ), 1/2 + η(x)/(2λ)

)
. As a consequence, for any algorithm with final

variable p̂T , we can construct an estimator η̂T such that

E[L(p̂T )]− L(p0) = 1/(2λ)E
∫
X
|η̂T (x)− η0(x)|2 dx ,

where the expectation is taken over the randomness of the observations Yt, with expectation ±η(Xt), with sign
depending on the known choice πt = 1 or 2. As a consequence, any upper bound on the regret for a policy
implies an upper bound on regression over β-Hölder functions in dimension d, with T observations. This yields
that, in the special case where ρ is the 1-strongly convex function equal to the squared `2 norm

inf
p̂

sup
µ∈Hβ
ρ= `22

E[L(p̂T )]− L(p0) ≥ inf
η̂

sup
η∈Hβ

1/(2λ)E
∫
X
|η̂T (x)− η0(x)|2 dx ≥ CT−

2β
2β+d .

The final bound is a direct application of Theorem 3.2 in Györfi et al. (2006).
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