Xavier Fontaine, Quentin Berthet, Vianney Perchet

Supplementary Material for Regularized Contextual Bandits

A PROOFS OF SLOW RATES

We prove in this section the propositions and theorem of Subsection 4.1.

We begin by a lemma on the concentration of T3, the number of context samples falling in a bin b.

Lemma 3. For all b € B, let Ty, the number of context samples falling in the bin b. We have

T 17T T
P(3veB, |T,——|>=-—)<2B? —— .
( €5 T Ba _2Bd)_ eXp( 123d)
Proof. For abinb e Bandt e {1,...,T}, let Zt(b) = 1(x,ep) which is a random Bernoulli variable of parameter

1/B4.
We have T, = Y/, Z; and E[T};] = T/B".
Using a multiplicative Chernoff’s bound (Vershynin, 2018) we obtain:

P (m _E[T)| > ;E[Tb}) < 2exp (—; (;) BTd> —2exp (—12;) .

We conclude with an union bound on all the bins. O

Proof of Proposition 1. We have
~% 1 *
E(pr) =EL(pr) — L(p*) = B ZELb(pT(b)) — Lu(py)
beB

Let us now consider a single bin b € B. We have run the UCB Frank-Wolfe (Berthet and Perchet, 2017) algorithm
for the function L; on the bin b with T} iterations.

For all p € AKX, Ly(p) = ((b), p) + Ap(p), then for all p € A®, VLy(p) = fi(b) + AVp(p) and V>Ly(p) = AV?p(p).

Since p is a S-smooth convex function, L; is a AS-smooth convex function.

Ai{VbeB, T, € [ r 3T”.

We consider the event A:

2B4’ 2Bd

T
L hows that P(A%) < 2B¢ -
emma 3 shows that P(A") < cxp( 12Bd>

Theorem 3 of Berthet and Perchet (2017) shows that, on event A:

3K log(T; S1 T 2 2||VL + ||L
ELu(pr(8) - Lo(s5) < 4y 2B o SOBED) (70 ) 2Dl el

T Ty 6 Ty

6K log(T) = 2Slog(eT) w2 2||VLp|l o + I Lell
=N TT/Bd /i o 6t T/Bd

Since p is of class C!, p and Vp are bounded on the compact set AX. It is also the case for L; and consequently
|Ls||, and [V Lyl exist and are finite and can be expressed in function of ||p|| ., [[Vpl|,, and [[A| . On event

AY ELy(pr (b)) — L(py) < 2| Lol < 2+ 2[Mollc-
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Summing over all the bins in B we obtain:

6K I;g(T) B 25 log(eT) +4KBd4 +2[[AVp| o, + Il

EL(pr)—L(p*) < 4BY? FABY(1+ || Apll . )e 157

T T
(4)
The first term of Equation (4) dominates the others and we can therefore write that
log(T
EL(pr) — L(p*) = O (x/EBGl/2 Ogr})>
where the O is valid for 7" — oo.
O

Proof of Proposition 2. We consider a bin b € B containing ¢ samples.

A
Let § = {p € AR |Vie K], p; > \/i} In order to force all the successive estimations of p; to be in & we

sample each arm \y/f times. Thus we have Vi € [K], p; > A\/v/t. Then we apply the UCB-Frank Wolfe algorithm
on the bin b. Let

py, = min L and pf = min Ly(p).
by =min Ly(p) and pj = min Ly(p)

e Case 1: p = pj, i.e. the minimum of Ly is in S.
For all p € AKX, Ly(p) = (i(b),p) + Ap(p), then for all p € AKX VLy(p) = u(b) + A(1 + log(p)) and
V2 Ly(p) = \/p;. Therefore on S we have
V?iLb(P) <Vt
And consequently Ly is v/#-smooth. And since V;Ly(p) = 1+ Alog(p;), [|[VLy(p)||., < log(t). We can apply
the same steps as in the proof of Proposition 1 to find that

3K log(t)  +/tlog(et) 2 2log(t) + log(K) log(t)
P ¢ * ( + K> t =0 ( Vit ) '

e Case 2: fj, # p;. By strong convexity of Ly, pj, cannot be a local minimum of L, and therefore p, € OAK.
The Case 1 shows that

6

ELy(p: (b)) — Lo(py) < 4

Eu@w»—u@w<0(%ﬁﬁ.

Let 7 = (m1,...,7x) with m; = max(\/v/%, pp:). We have |7 — ppll, < VEN/VT.

Let us derive an explicit formula for p; knowing the explicit expression of p. In order to find the optimal
p* value let us minimize (p — Ly(p)) under the constraint that p lies in the simplex A¥. The KKT
equations give the existence of £ € R such that for each ¢ € [K], f;(b) + Alog(p;) + A + & = 0 which leads
to py; = e Mi®)/X /7 where Z is a normalization factor. Since Z = Zlel e i)/X we have Z < K and
Pii > e”V/A/K. Consequently for all p on the segment between 7 and p; we have p; > e '/*/K and
therefore A(1 4 log(p;)) > A(1 —log K) — 1 and finally |V;Ly(p)| < 4[|A]| o log(K).

Therefore Ly, is 4v/K log(K)-Lipschitz and
1Zo(p5) = Lo(m)lly < 4[| o0 VE log(K) |7 = poll, < 4K log(K) [N, /VE = O(1/V/1).

Finally, since Ly(m) > Ly(pp) (because w € S), we have

Vit Vvt

We conclude by summing on the bins and using that ¢ € [T/2B%,3T/2B%] with high probability, as in the
proof of Proposition 1.

EM@MD—M@DSEM%@D—M@O+M@Q—M@QSOC%®>+Mﬂ—L@D=OC%M>-
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Proof of Proposition 3. We have to bound the quantity

L") = L(p*) =AY /bp*(*ﬂ(fc)/k) — P (=p(b)/X) da.

beB

Classical results on convex conjugates (Hiriart-Urruty and Lemaréchal, 2013a) give that Vp*(y) =
argmingc axp(z) — (z,y) for all y € RX. Consequently, Vp*(y) € AKX and for all y € RE, |[Vp*(y)|| < 1
showing that p* is 1-Lipschitz continuous. This leads to

<\/LgKd*B~*

because all the py, are (Lg, §)-Holder. O

Proof of Theorem 1. We will denote by C} with increasing values of k the constants. Since the regret is the sum
of the approximation error and the estimation error we obtain

d
R(T) < /LgdPKB~* + C1VK B> logT(T) + Bd251°§(eT) + CQK% +4BY (14 | Apllo.) exp (—I;J;d) .

With the choice of

)

VBt [\ @8+
_ B/2—1
B = (Cav/Tpd* ) <1og<T))

we find that the three last terms of the regret are negligible with respect to the first two. This gives

d/(46+2d) ;8(4+d)/(48+2d 28+d T —h/EoD
R(T) < 0 [ (3VFL 4P/ 45420) )5/ 25+ (M(TJ .

B PROOFS OF FAST RATES

We prove now the propositions and theorem of Subsection 4.2.

Proof of Proposition 4. The proof is very similar to the one of Proposition 1. We decompose the estimation error
on the bins:

EL(pr) ~ L") = 737 > ELy(pr (b)) — Lo(ri)
beB

Let us now consider a single bin b € B. We have run the UCB Frank-Wolfe algorithm for the function L; on the
bin b with T} samples.

As in the proof of Proposition 1 we consider the event A.

Theorem 7 of Berthet and Perchet (2017), applied to L, which is a AS-smooth A(-strongly convex function,

shows that on event A:
_log(T) . 2
2
T/Bd 7Bl T8 B
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K 24 20 \* AP
with ¢; = ?fi\?, Co = W + AS and é3 =24 (C/\??2> K+ 4277 + AS. Consequently
oo log?(T) | log(T) | . T
EL(pT)iL(p )SQCl T/Bd + 262 T/Bd +C3T/Bd +4B (1+H)\,0||OO)GXP 712Bd .

In order to have a simpler expression we can use the fact that A and n are constants that can be small while S
can be large. Consequently ¢3 is the largest constant among ¢;, é; and ¢é3 and we obtain

Br) - 107) < 0 ( (s + 1) B )

because the other terms are negligible. O
Proof of Lemma 1. We consider a single bin b € B. Let us consider the function

Ly :p— Ly(ap® + (1 — a)p).
Since for all 4, py ; > apf and since A¥X is convex we know that min, e A x I:b(p) = Ly(p})-

If p is the frequency vector obtained by running the UCB-Frank Wolfe algorithm for function Ly, with (1—-a)T
samples then minimizing L; is equivalent to minimizing L with a presampling stage.

Consequently the whole analysis on the regret still holds with T replaced by (1 — a)T. Thus fast rates are kept
with a constant factor 1/(1 — a) < 2. O

Proof of Proposition 5. For the entropy regularization, we have

o exp(—f(b)i/A) exp(—1/})
Py = =% ~ < K :
Zj:l exp(—(b);/A)
. 1 1 .
We apply Lemma 1 with p° = N and a = exp(—1/)). Consequently each arm is presampled
Texp(—1/A)/K times and finally we have
-1/
Vi € [K],p; = %/).

Therefore we have 1
Vi € [K], Vup(p) = o < Kexp(1/X),

?

showing that p is K exp(1/\)-smooth. O

In order to prove the Proposition 6 we will need the following lemma which is a direct consequence of a result
on smooth convex functions.

L
Lemma 4. Let f : RY — R be a convex function of class Ct and L > 0. Let g: R? > z 3 |z||* — f(z). Then

g 1s convez if and only if Vf is L-Lipschitz continuous.

Proof. Since g is continuously differentiable we can write

g convex < Vx,y € RY, g(y) > g(x) + (Vg(x),y — )

e Vay € RSyl — f) 2 5 el - f(@) + (L = V() - )
Vg € B f(y) < 1)+ (VS @)y~ 2) + & (Il + 2l ~ 2o, 9))

L
& Va,y R f(y) < f@) + (Vf(2)y —2)+ 5 o= yl?
< Vf is L-Lipschitz continuous.

where the last equivalence comes from Theorem 2.1.5 of Nesterov (2013). O
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Proof of Proposition 6. Since p is (-strongly convex then Vp* is 1/¢-Lipschitz continuous (see for example The-
orem 4.2.1 at page 82 in Hiriart-Urruty and Lemaréchal (2013b)). Since p* is also convex, Lemma 4 shows that

gz i |z||* = p*(x) is convex.

Let us now consider the bin b and the function u = (p1, ..., ux). Jensen’s inequality gives:

i JLocu d“’”>g(|z1>/‘/@dx)'

/ g(—p(x)/N) dz > / g(—a(b)/A) de
b b
1 2 2 * 1 — 2 2 * —
/b 5 =@ /3% = 5" (=p(a)/3) da > / e IO 32 = (<)) da
. v - 1 2 -2
/b (@) o' (DN ds < 7 / (@) — |a®)? dr.

This leads to

We use the faCt that o llne() ﬂ( )* da =, [|u@)|* + ||ﬂ( )H2 —2(u(z), 7( dx = J, ln@)|* +la@®)|* dz -
b), [, u(x) dz) = [ [u(@)||” + [|E0)|1* da — 2(@b), [bla®d)) = [, ||u@)?| — [A®)]* dz and we get finally
/b P (=ile)/N) = 7 (=(0)/3) o < 5z [ fte) = GO da

Equation (2) shows that

L(p) - L(p") < wz/uu 2 4o

beB

z/g@_f(B)Bdm

beB

_ LsKd® (1 26
=~ 20X \B

because each py is (Lg, 8)-Holder.
O

Proof of Theorem 2. We denote again by C} the constants. We sum the approximation and the estimation errors
(given in Propositions 6 and 4) to obtain the following bound on the regret:

R(T) < o AL K’

_ log?(T) 1 K T
23 d 2 d .
B+ Co—r—B Y +<2A2n4 +FAOP +AS ) + 4B (1 + Ml exp ( — 557 | -

LgKdP 1 K
For the sake of clarity let us note & = C4 ﬂO\ and & = Cy (W + 5o IS E +An* + AS)

We have )
B log®(T) T
T) < & B8 B*== ") 4+ 4B%(1 —— .
R(T) <& + & 7 4B+ [ Mollo) exp | — 55

B <2€1ﬁ) 1/(28+4d) ( T )1/(d+2ﬂ)
&2 log?(T) ’

we notice that the third term is negligible and we conclude that

9 —28/(28+d) T —26/(28+d)
<o (52) 1 (1))

Taking
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C PROOFS OF INTERMEDIATE RATES

We begin with a lemma on convex conjugates.

Lemma 5. Let A\, pp > 0 and let y € R™ and p a non-negative bounded convex function. Then

(A0)*(y) — (up)" (y) <IN =l ol

Proof. (Ap)*(y) = sup,(z,y) — Ap(x) = (xx,y) — Ap(zx).

And (pup)*(y) = sup,(@,y) — pp(x) = (T, y) — pp(n) = (xr,y) — pp(@r).

Then, (Ap)*(y) — (1p)*(y) < (zx,y) — Ap(zr) — (22, y) — pp(@A)) = (1 — A)p(z2).

Finally (Ap)*(y) — (1p)* () < [A = p| o]l - O

(
)

Proof of Proposition 7. There exists o € b such that A(b) = A(z¢) and z; € b such that fi(b) = u(z;). We use
Lemma 5 to derive a bound for the approximation error.

JO@er (uta) = G0 (<) da
= [(@er (—uta)) = @) (<a(b) dz+ [ (a)o)” (<) = A(B)o)" (=) do

<o (5@) o (@) 4o+ [ -3

< [ \’;g—fg]d ol [IN) = Aeo)] ds

< /bLB\fﬂfﬂfllﬂderllplloo/bH/\ I & — 2ol da

< B~ (Lad® B~ 4 |lpl o, [Nl VAB™Y) = O(B777%).

Proof of Proposition 8. As in the proof of Proposition 6 we consider a bin b € B and the goal is to bound

W((e 1;se a similar method and we apply Jensen inequality with density |b)|\§\2) to the function g : x — 55 Hx|| —
p*(x) which is convex.
([ = [ (56w
(b x Az
' (-5@) < Lo (-563)
_ 2
z|-5m) 7 (50) <ww [22 -5l - (‘Ag)] M)
) 2

(u@N o E L @ )
[ (‘A(@)‘A(b)” (“(z)) dos g [0 o)
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Consequently we have proven that

Jrew (5565) 20w (+55) o<
1
2¢

p()? i (b)?

Therefore we have to bound, for each k, I =

» A®) A(b)

Let us omit the subscript k£ and consider a S-Holder function pu.
We have

[ m@)? Ed)?

1= |56~ o
_ [u@)?  p@)? | p@)? pd)?
- )56 5 e
ooy (L VN [ (L LN o [ L e
= [[e? -507) (555 - 57) 9o+ [ 707 (505~ ) 2+ f g 0t - 07 4
I Iz e

We now have to bound these three integrals.

Bounding I;:

b X0
B 1 1
< [t =m0 55 5]
va\’ 1 1

Since 1/ is of class C!, Taylor-Lagrange inequality yields, using the fact that there exists xq € b such that
A(b) = A(zo):
1 !
(5)

1 B—(1+p+d)
I, < 2LB ||/\/Hoo \/g’g+l)\TB*(1+B+d) =0 (> .

Xl vV
L VA

min

oo

We obtain therefore

)\2
min min

Bounding I5:

We have o . . . .
h=#0) l(w‘w) dxﬁl(m‘w) 4

1 1
because / < — ) dx > 0 from Jensen’s inequality.
b
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Without loss of generality we can assume that the bin b is the closed cuboid [0,1/B]?. We suppose that for all
x€b, Az)>0

Since A is of class C*°, we have the following Taylor series expansion:

d

0+ G i 5 5 ey +ellel)

Integrating over the bin b we obtain

d d
11 11 82)\ 1
Ab) = EEZ: +§ﬁ - o, ax 6?2

1
? .
Consequently

dr 1
/b/\(b) ~ BIA(D)
1

1 10 1 1 2A0) 1R 920(0) 1
" B0 B2 o +)\(0)B2(8§8x»8xj+6; oz | o\

! 1 1&aN0) 1 1 PA0) 1 <& 92M(0)
~ BIX0) <1 2A(0)§Z ox;  A0) B2 (sgax-axj P D2

=1

1 11 Lo d

_ B 1 Z 1 2X(0)
~ BIN0)  2M\(0)2 Bl &~ Oz, A(0)2 Bd+2 axzaxj 6 = ox?

e (500 < ().

Let us now compute the Taylor series development of 1/\. We have:

o 1 1 0Nz and 0? 1 1 32)\(:17)Jr 2 OA(z) OA(x)

Ox; Mx) Az)? Oxy Oz;0x; Nx)  MNx)?0z0x;  Nx)® Oz Ox;

This lets us write

1 1 oAN0) 11 PA0) - 9
Az) ~ MN0) /\(O)QZ dr: 0 2A(0)? . 02,02, TN 32 3562 oz, ”J”(”x”)

/dxi 11 11 &) 1 Za‘a +1d32x(0)
» M) A(0) B4 2)(0)2 B+l ~ 9dz; A0 QBdJr2 83318% 6 <= Oz}

K2

s (IE G050 15 (50)) o (i),

And then
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1 2 1
Ir < 72 0)3 Bd+2 Z < o, > <Bd+2> :

Since the derivatives of A are bounded we obtain that

Bounding I3:

=
~—~
o

min )\min

—(28+d
%ﬁBﬂmﬁzo(B(ﬁ))

B—(28+d)
)\3> . And finally

min

Putting this together we have I = O <(dL% IVAI%)

~% * 372
1% - L) < 0 (ka3 1932 2o ).

min

O

Lemma 6 (Regularity of n). If  is the distance of the optimum p* to the boundary of AKX as defined in
Definition 5, and if the wy, functions are all 3-Holder and ) of class C*, then n is B-Hélder. More precisely we
have

[Alloe + 1A
K—-1 (lnin(b)?

Cr
©lg -y’ = —L o —yl°.

Va,y € b, n(x) —n(y)| < Amin (b)

Proof. Let x € X. Since n(z) = dist(p}, JIAK) we obtain
| K -
n(z) = jraE Rk ().

p* () = argmin{p(), p()) + A(2)p(p(2))
— V(A@)p)* (—pu(x))

Since p is (-strongly convex, Vp* is 1/¢-Lipschitz continuous.

And

Therefore, for xz,y € b,

+ |5 - 5

/
|ﬁ_~_7 ” ||oo | y‘

1
P —
- CArnin(b) C>\m1n( )
since all p, are bounded by 1 (the losses are bounded by 1). O
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Proof of Lemma 2. We consider a well-behaved bin b. There exists 1 € b such that A\(z1) > ¢y B~#/3. Since A
is C> on [0,1]%, it is in particular Lipschitz-continuous on b. And therefore

Va € b, Az) > ;B3 — | N||_ diam(b) > ¢; B~7/% — |N'|| diam(b)?/3 = B=F/3.

2

Lemma 6 shows that n is S-Holder continuous (with constant denoted by CL/AZ;) and therefore we have

Va € b, n(z) > ceBP/% — %diam(b)ﬁ = B7#/3,

min

Lemma 7. If p is convex, 1 is an increasing function of \.

Proof. As in the proof of Proposition 2 we use the KKT conditions to find that on a bin b (without the index k
for the arm): -
fi(b) + A(b)Vp(py) + & = 0.

Therefore S (b
i =0 (-S552).

Since p is convex, Vp is an increasing function and its inverse as well. Consequently pj is an increasing function

of A(b), and since n(b) = /K /(K — 1) min; Pi4» M s also an increasing function of A(b). O

Proof of Theorem 3. Since B will be chosen as an increasing function of 7" we only consider T sufficiently large
in order to have ¢; B~?/3 < §; and co B~?/3 < §,5. To ensure this we can also take smaller §; and ds. Moreover
we lower the value of d2 or §; to be sure that % = n(%). These are technicalities needed to simplify the proof.

The proof will be divided into several steps. We will first obtain lower bounds on A and 7 for the “well-behaved
bins”. Then we will derive bounds for the approximation error and the estimation error. And finally we will put
that together to obtain the intermediate convergence rates.

As in the proofs on previous theorems we will denote the constants Cy with increasing values of k.

e Lower bounds on 7 and A:

Using a technique from Rigollet and Zeevi (2010) we notice that without loss of generality we can index the
B4 bins with increasing values of A\(b). Let us note ZB = {1,...,51} and WB = {j; + 1,..., B%}. Since n
is an increasing function of A (cf Lemma 7), the n(b;) are also increasingly ordered.

- )
Let jo > j1 be the largest integer such that A(b;) < ey Consequently we also have that jy is the largest
C1

)
integer such that n(b;) < 2,
C2

Let j € {j1+1,...,j2}. The bin b; is a well-behaved bin and Lemma 2 shows that A(b;) > B~#/3. Then
A(b;) + (c1 —1)B™P/3 < ¢;\(bj) < 61 and we can apply the margin condition (cf Assumption 3) which gives

Px(A(z) < A(b;) + (c1 — 1)B™8/3) < O, (e1 (b))%

But since the context are uniformly distributed and since the A(b;) are increasingly ordered we also have

that )
Px (M) < A(b;) + (c1 — 1)B~P/3) > Py (A(z) < A(b;)) > ﬁ.

.\ 1/6a 1/6a

s 1 J . . 1 J

This gives A(b;) > ———— <) . The same computations give n(b;) > ———— <) . We note
J 1 Crln/Ga Bd J CgC}n/Ga Bd

. 1/«
C, = min((ch}rl/Ga)_l, (ch}n(Ga)_l)) and v; = C, (Bgd> . Consequently A(b;) > ~; and n(b;) > ;.
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Let us now compute the number of ill-behaved bins:

#{b e B,b ¢ WB} = B* P(b ¢ WB)

= BYP(Vz € B, n(z) < c;B™P/3 or Vo € B, Az) < e B™P/?)
< BYP((z) < caB7P3 or A7) < ¢y B7P/3)

< Cp(8* + §*)BiB~228 = ¢, BIB~2P

where Z is the mean context value in the bin b. Consequently if j > j* = C;BYB~2° then b; € WB. Let
j = CrBYB=% > j*. Consequently for all j > j*, b; € WB.

We want to obtain an upper-bound on the constant SA(b;) + 5 that arises in the fast rate for

1(b;)*A (b))
the estimation error. For the sake of clarity we will remove the dependency in b; and denote this constant

K
C’:S)H—W.

In the case of the entropy regularization S = 1/min; pf. Since n = y/K/(K — 1) min; p;, we have that
min; pf = /(K —1)/Kn > n/2. Consequently S < 2/~; and, on a well-behaved bin b;, for j < ja,

K42l . Cr

C< = =
g 7

(5)

where the subscript F stands for “Fast”. When j > jo, we have A(b;) > d1/c; and n(b;) > 6a/ca and
consequently
K 2 Ml -

¢= (61/01)2(52/62)4 62/62 = Cmax-

Let us notice than X\ being known by the agent, the agent knows the value of A(b) on each bin b and can
therefore order the bins. Consequently the agent can sample, on every well-behaved bin, each arm Ty;/2

times and be sure that min; p; > ;/2. On the first |j] bins the agent will sample each arm A(b)+/T /B4
times as in the proof of Proposition 2.
Approximation Error:

We now bound the approximation error. We separate the bins into two sets: {1,...,[j*]} and {[j*],..., B¢}.
On the first set we use the slow rates of Proposition 7 and on the second set we use the fast rates of
Proposition 8.

We obtain that, for a < 1/2,

5% 15*) BT s 4
B—28
L(p*) — L(p*) < Lgd®*y " B~#~* VAl Vd> B4 4 (KdLE | VA 2 > ——

, iz p-26-d B! B—28-d
< CrLd?PBPBP 4 (KALZ VAL | D ——+ >,
=1 Y j=jz+1

(01/51)3 +O(B*2aﬁ*5)

B_zﬁ_d J2 —1/2« 5 3
< CrLgd®?B=2°F=F 1 (KdL% |VA|2) = > (éd) + B2 (1) + o(B720F-B)

ST “
1 1
< CILﬁdﬁ/QB—Zaﬂfﬁ + (KdL% ”v)\HiO)EBfM/C - 2120 4y + O(B—zaﬁfﬁ)
Y 1B7%>
2 0(20471)/204
< | CiLpd® + KdL3 VAL 15— BF=208 | o(B-208-5) _ 0 (B~5-205)
Y

since av < 1/2. We step from line 3 to 4 thanks to a series-integral comparison.
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For a = 1/2 we get

L) ~Lp*) < (CrLpd™? + (KAL3 VA2 ) (6™ + 2805 log(B)) ) B~ +o(B~2%) = 0 (B~ 1og(B))

And for o > 1/2 we have

3
L) - L") < (Kdz [VAL2,) (120‘1 +(2) ) B 4+ o(B) = 0 (B

C’fg 200 c1

because 5+ 2af > 20.

Let us note

20 C(Zafl)/Zoz
- 8/2 2 2 I )
& (CILgd KL VAL =5 g )

& = (CrLed®? + (KL VA%, ) (63er® + 2805 log(B)) )

(K3 IVAIR) ( Ay g + a1\,
B >/ \C32a—1 c1 '

gapp = max(fl, 527 53)

€3

Finally we obtain that the approximation error is bounded by &,,, B~ ™n(8+248.28) jog( B) with a > 0.

Estimation Error:

We proceed in a similar manner as for the approximation error, except that we do not split the bins around
7% but around j.

In a similar manner to the proofs of Theorems 1 and 2 we only need to consider the terms of dominating
order from Propositions 1 and 4. As before we consider the same event A (cf the proof of Proposition 1)
and we note Cy = 4B4(1 + ||Ap||,). We obtain, for o < 1, using (5):

_ _ 1 . «
EL(pr) — L(5") = 57 > _ELy(pr) — L(p})
beB
B¢ 1 Lj)
Bd Z ELy(pr) — L(p;) + B ZELb(ﬁT) — L(py)
j= fﬂ J=1
Lj)

log?(T log(T) T

SB— Z CT/Bd 24\/12 T/Bd+C’Ae 1284

3=[71

Jz 2
log*(T") _ lo lo o

<20k Z gT( ) O+ Z 2C max g( ) {63k g( 108(T) pay2 - B4 Cye 1257

3=[71 J=jatl

2CF log®(T) & A log( ) d 3K IOg( ) d/2—aB

< C’? T Z ﬁ +20max B®+6 B/ —|—CAe 123d

3=I3

2CF log*(T ! 1
Oé? og ( )Bd/ x*l/adx+2cmax ( )Bd+6\/7 Og( )Bd/2 aB+CA€ 12Bd
s T P

2 2
20F log (T) Bd (0% Bﬂ(l_a) + 2Cmaxlog (T) Bd +6 / log( )Bd/2 af + CAe 123d
cs T l-a T

IN

IN

2 2
< 2Cp log (T) _« BtB—ab 4 63K log(T) —o =/ pd/2-=ab | ocr log™(T) B+ Cye 1257 .
5 T 1-a T T
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e Putting things together:
2CF «

6
Y 1-a

We note C,, = . This leads to the following bound on the regret:

log*(T log(T log®(T
R(T) < C, OgT( ) ptti-o8 1 6/3K OgT( ) pirz-as pac OgT( ) B e 357 4 €,y B~ M(258+200) 10 ().

T 1/(28+d)
) we get

Choosing B = [ ——
¢ <10g2(T>

T >—B(1+a)/(26+d) ( T >—B(1+a)/(26+d)
+ o

R < (€0 + 008 (e log?(7)

which is valid for a € (0, 1).

Finally we have

TN\ At/ (26+d)
RI)=0 ((bg?m) ) '

D PROOFS OF LOWER BOUNDS
Proof of Theorem j. We consider the model with K = 2 where u(z) = (—n(z),n(x))", where n is a S-Holder

function on X = [0,1]¢. We note that 7 is uniformly bounded over X’ as a consequence of smoothness, so one
can take A such that |n(z)| < A\. We denote by e = (1/2,1/2) the center of the simplex, and we consider the loss

Lw) = [ (). (@) + Np(o) = ef*) o
Denoting by po(x) the vector e + u(x)/(2)), we have that po(z) € A2 for all z € X. Further, we have that
(u(@), p(x)) + Allp(x) — e]|* = Alp(x) = po()[|* + 1/(4N)[| ()|,
since (p(x),e) = 0. As a consequence, L is minimized at pg and
L) = L) = [ Alpla) = po(@)| dz =1/ [ @) = m(@)P da

where 7 is such that p(z) = (1/2 — n(z)/(2X),1/2 4+ n(x)/(2))). As a consequence, for any algorithm with final
variable pr, we can construct an estimator 7 such that

E[L(pr)] — L(po) = 1/ 2NE /X iz () — mo ()2 e,

where the expectation is taken over the randomness of the observations Y;, with expectation £7(X;), with sign
depending on the known choice m; = 1 or 2. As a consequence, any upper bound on the regret for a policy
implies an upper bound on regression over S-Holder functions in dimension d, with T observations. This yields
that, in the special case where p is the 1-strongly convex function equal to the squared 2 norm

inf sup E[L(pr)] — L(po) > inf sup 1/(2A\)E / |7 (x o(2)|*dz > CT~ vt
P opets M neHp
p=13

The final bound is a direct application of Theorem 3.2 in Gyorfi et al. (2006). O
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