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A Proof of Proposition 4.2

By the identification in Proposition 4.1, we have γ =
∑k
j=1

1
λj
C0
j⊗C1

j . We perform a bias-variance decomposition:

∫
‖x− y‖2 dγ(x, y) =

k∑
j=1

1

λj

∫
‖x− y‖2 dC0

j (x)dC1
j (y)

=

k∑
j=1

1

λj

∫
‖x− µ(C0

j )− (y − µ(C1
j )) + (µ(C0

j )− µ(C1
j ))‖2 dC0

j (x)dC1
j (y)

=

k∑
j=1

∫
‖x− µ(C0

j )‖2 dC0
j (x) +

∫
‖y − µ(C1

j )‖2dC1
j (y) + λj‖µ(C0

j )− µ(C1
j )‖2 ,

where the cross terms vanish by the definition of µ(C0
j ) and µ(C1

j ).

B Proof of Proposition 4.3

We first show that if H is an optimal solution to (5), then the hubs z1, . . . , zk satisfy zj = 1
2 (µ(C0

j ) + µ(C1
j ))

for j = 1, . . . k. Let P be any distribution in Dk. Denote the support of P by z1, . . . , zk, and let {C0
j }, {C1

j }
be the partition of P̂0 and P̂1 induced by the objective W 2

2 (P, P̂0) + W 2
2 (P, P̂1). By the same bias-variance

decomposition as in the proof of Proposition 4.2,

W 2
2 (P̂0, P ) =

k∑
j=1

∫
C0

j

‖x− zj‖2 dP̂0(x) =

k∑
j=1

∫
C0

j

‖x− µ(C0
j )‖2 dP̂0(x) + λj‖zj − µ(C0

j )‖2 ,

and since the analogous claim holds for P̂1, we obtain that

W 2
2 (P, P̂0)+W 2

2 (P, P̂1) =

k∑
j=1

∫
C0

j

‖x−µ(C0
j )‖2 dP̂0(x)+

∫
C1

j

‖y−µ(C1
j )‖2 dP̂1(y)+λj(‖zj−µ(C0

j )‖2+‖zj−µ(C1
j )‖2) .

The first two terms depend only on the partitions of P̂0 and P̂1, and examining the final term shows that any
minimizer of W 2

2 (P, P̂0) + W 2
2 (P, P̂1) must have zj = 1

2 (µ(C0
j ) + µ(C1

j )) for j = 1, . . . k, where C0
j and C1

j are

induced by P , in which case ‖zj − µ(C0
j )‖2 + ‖zj − µ(C1

j )‖2 = 1
2‖µ(C0

j ) − µ(C1
j )‖2. Minimizing over P ∈ Dk

yields the claim.

C Proof of Theorem 4

The proof of Theorem 4 relies on the following propositions, which shows that controlling the gap between
W 2

2 (ρ, P ) and W 2
2 (ρ,Q) is equivalent to controlling the distance between P and Q with respect to a simple

integral probability metric [Müller, 1997].

We make the following definition.

Definition 5. A set S ∈ IRd is a n-polyhedron if S can be written as the intersection of n closed half-spaces.

We denote the set of n-polyhedra by Pn. Given c ∈ IRd and S ∈ Pk−1, define

fc,S(x) := ‖x− c‖21x∈S ∀x ∈ IRd .

Proposition C.1. Let P and Q be probability measures supported on the unit ball in IRd. The

sup
ρ∈Dk

|W 2
2 (ρ, P )−W 2

2 (ρ,Q)| ≤ 5k sup
c:‖c‖≤1,S∈Pk−1

|IEP fc,S − IEQfc,S | . (7)

To obtain Theorem 4, we use techniques from empirical process theory to control the right side of (7) when
Q = P̂ .
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Proposition C.2. There exists a universal constant C such that, if P is supported on the unit ball and
X1, . . . , Xn ∼ µ are i.i.d., then

IE sup
c:‖c‖≤1,S∈Pk−1

|IEP fc,S − IEP̂ fc,S | ≤ C
√
kd log k

n
.

With these tools in hand, the proof of Theorem 4 is elementary.

Proof of Theorem 4. Proposition C.1 implies that

IE sup
ρ∈Dk

|W 2
2 (ρ, µ̂)−W 2

2 (ρ, µ)| .
√
k3d log k

n
.

To show the high probability bound, it suffices to apply the bounded difference inequality (see [McDiarmid,
1989]) and note that, if P̂ and P̃ differ in the location of a single sample, then for any ρ, we have the bound
|W 2

2 (ρ, P̂ )−W 2
2 (ρ, P̃ )| ≤ 4/n. The concentration inequality immediately follows.

We now turn to the proofs of Propositions C.1 and Propositions C.2.

We first review some facts from the literature. It is by now well known that there is an intimate connection
between the k-means objective and the squared Wasserstein 2-distance [Canas and Rosasco, 2012, Ng, 2000,
Pollard, 1982]. This correspondence is based on the following observation, more details about which can be
found in [Graf and Luschgy, 2000]: given fixed points c1, . . . , ck and a measure P , consider the quantity

min
w∈∆k

W 2
2

( k∑
i=1

wiδci , P
)
, (8)

where the minimization is taken over all probability vectors w := (w1, . . . , wk). Note that, for any measure ρ
supported on {c1, . . . , ck}, we have the bound

W 2
2 (ρ, P ) ≥ IE

[
min
i∈[k]
‖X − ck‖2

]
X ∼ P .

On the other hand, this minimum can be achieved by the following construction. Denote by {S1, . . . , Sk} the

Voronoi partition [Okabe et al., 2000] of IRd with respect to the centers {c1, . . . , ck} and let ρ =
∑k
i=1 P (Si)δci .

If we let T : IRd → {c1, . . . , ck} be the function defined by Si = T−1(ci) for i ∈ [k], then (id, T )]P defines a
coupling between P and ρ which achieves the above minimum, and

IE[‖X − T (X)‖2] = IE[min
i∈[k]
‖X − ci‖2] X ∼ P .

The above argument establishes that the measure closest to P with prescribed support of at most k points
is induced by a Voronoi partition of IRd, and this observation carries over into the context of the k-means
problem [Canas and Rosasco, 2012], where one seeks to solve

min
ρ∈Dk

W 2
2 (ρ, P ) . (9)

The above considerations imply that the minimizing measure will correspond to a Voronoi partition, and that
the centers c1, . . . , ck will lie at the centroids of each set in the partition with respect to P . As above, there
will exist a map T realizing the optimal coupling between P and ρ, where the sets T−1(ci) for i ∈ [k] form a
Voronoi partition of IRd. In particular, standard facts about Voronoi cells for the `2 distance [Okabe et al., 2000,
Definition V4] imply that, for i ∈ [k], the set cl(T−1(ci)) is a (k − 1)-polyhedron. (See Definition 5 above.)

In the case when ρ is an arbitrary measure with support of size k—and not the solution to an optimization
problem such as (8) or (9)—it is no longer the case that the optimal coupling between P and ρ corresponds to a
Voronoi partition of IRd. The remainder of this section establishes, however, that, if P is absolutely continuous
with respect to the Lebgesgue measure, then there does exist a map T such that the fibers of points in the
image of T have a particularly simple form: like Voronoi cells, the sets {cl(T−1(ci)}ki=1 can be taken to be simple
polyehdra.
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Definition 6. A function T : IRd → IRd is a polyhedral quantizer of order k if T takes at most k values and if,
for each x ∈ Im(T ), the set cl(T−1(x)) is a (k − 1)-polyhedron and ∂T−1(x) has zero Lebesgue measure.

We denote by Qk the set of k-polyhedral quantizers whose image lies inside the unit ball of IRd.

Proposition C.3. Let P be any absolutely continuous measure in IRd, and let ρ be any measure supported on
k points. Then there exists a map T such that (id, T )]P is an optimal coupling between P and ρ and T is a
polyhedral quantizer of order k.

Proof. Denote by ρ1, . . . , ρk the support of ρ. Standard results in optimal transport theory [Santambrogio, 2015,
Theorem 1.22] imply that there exists a convex function u such that the optimal coupling between P and ρ is of
the form (id,∇u)]P . Let Si = (∇u)−1(ρi).

Since ∇u(x) = ρj for any x ∈ Sj , the restriction of u to Sj must be an affine function. We obtain that there
exists a constant βj such that

u(x) = 〈ρj , x〉+ βj ∀x ∈ Sj .
Since ρj has nonzero mass, the fact that ∇u]P = ρ implies that P (Sj) > 0, and, since P is absolutely continuous
with respect to the Lebesgue measure, this implies that Sj has nonempty interior. If x ∈ int(Sj), then ∂u(x) =
{ρj}. Equivalently, for all y ∈ IRd,

u(y) ≥ 〈ρj , y〉+ βj .

Employing the same argument for all j ∈ [k] yields

u(x) ≥ max
j∈[k]
〈ρj , x〉+ βj .

On the other hand, if x ∈ Si, then

u(x) = 〈ρi, x〉+ βi ≤ max
j∈[k]
〈ρj , x〉+ βj .

We can therefore take u to be the convex function

u(x) = max
j∈[k]
〈ρj , x〉+ βj ,

which implies that, for i ∈ [k],

cl(Si) = {y ∈ IRd : 〈ρi, x〉+ βi ≥ 〈ρj , x〉+ βj ∀j ∈ [k] \ {i}}

=
⋂
j 6=i

{y ∈ IRd : 〈ρi, x〉+ βi ≥ 〈ρj , x〉+ βj} .

Therefore cl(Si) can be written as the intersection of k − 1 halfspaces. Moreover, ∂Si ⊆
⋃
j 6=i{y ∈ IRd :

〈ρi, x〉+ βi = 〈ρj , x〉+ βj}, which has zero Lebesgue measure, as claimed.

C.1 Proof of Proposition C.1

By symmetry, it suffices to show the one-sided bound

sup
ρ∈Dk

W 2
2 (ρ,Q)−W 2

2 (ρ, P ) ≤ 5k sup
c:‖c‖≤1,S∈Pk−1

|IEP fc,S − IEQfc,S | .

We first show the claim for P and Q which are absolutely continuous. Fix a ρ ∈ Dk. Since P and Q are absolutely
continuous, we can apply Proposition C.3 to obtain that there exists a T ∈ Qk such that

W 2
2 (ρ, P ) = IEP ‖X − T (X)‖2 .

Let {c1, . . . , ck} be the image of T , and for i ∈ [k] let Si := cl(T−1(ci)). Denote by dTV (µ, ν) :=
supA measurable |µ(A) − ν(A)| the total variation distance between µ and ν. Applying Lemma E.1 to ρ and
Q yields that

W 2
2 (Q, ρ) ≤ IEQ‖X − T (X)‖2 + 4dTV(T]Q, ρ) .
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Since ρ = T]P and Q and P are absolutely continuous with respect to the Lebesgue measure, we have

dTV(T]Q, ρ) = dTV(T]Q,T]P )

=
1

2

k∑
i=1

|P (T−1(ci))−Q(T−1(ci))|

=
1

2

k∑
i=1

|P (Si)−Q(Si)| .

Combining the above bounds yields

W 2
2 (ρ,Q)−W 2

2 (ρ, P ) ≤ IEQ‖X − T (X)‖2 − IEP ‖X − T (X)‖2 + 2

k∑
i=1

|P (Si)−Q(Si)|

≤
k∑
i=1

|IEQ‖X − ci‖21X∈Si
− IEP ‖X − ci‖21X∈Si

|+ 2|P (Si)−Q(Si)|

≤ k sup
c,S

(
|IEQ‖X − c‖21X∈S − IEP ‖X − c‖21X∈S |+ 2|P (S)−Q(S)|

)
= k sup

c,S
(|IEQfc,S − IEP fc,S |+ 2|P (S)−Q(S)|)

where the supremum is taken over c ∈ IRd satisfying ‖c‖ ≤ 1 and S ∈ Pk−1.

If ‖v‖ = 1, then

1X∈S =
1

2
(‖X + v‖2 + ‖X − v‖2 − 2‖X‖2)1X∈S ,

which implies

|P (S)−Q(S)| = |IEP1X∈S − IEQ1X∈S |

≤ 1

2
(|IEP fv,S − IEQfv,S |+ |IEP f−v,S − IEQf−v,S |+ 2|IEP f0,S − IEQf0,S |)

≤ 2 sup
c,S
|IEP fc,S − IEQfc,S | .

Combining the above bounds yields

W 2
2 (ρ,Q)−W 2

2 (ρ, P ) ≤ 5k sup
c,S
|IEP fc,S − IEQfc,S |

Finally, since this bound holds for all ρ ∈ Dk, taking the supremum of the left side yields the claim for absolutely
continuous P and Q.

To prove the claim for arbitrary measures, we reduce to the absolutely continuous case. Let δ ∈ (0, 1) be arbitrary,
and let Kδ be any absolutely continuous probability measure such that, if Z ∼ Kδ then ‖Z‖ ≤ δ almost surely.
Let ρ ∈ Dk. The triangle inequality for W2 implies

|W2(ρ,Q)−W2(ρ,Q ∗ Kδ)| ≤W2(Q,Q ∗ Kδ) ≤ δ ,

where the final inequality follows from the fact that, if X ∼ Q and Z ∼ Kδ, then W 2
2 (Q,Q ∗Kδ) ≤ IE‖X − (X +

Z)‖2 ≤ δ2. Since ρ and Q are both supported on the unit ball, the trivial bound W2(ρ,Q) ≤ 2 holds. If δ ≤ 1,
then W2(ρ,Q ∗ Kδ) ≤ 3, and we obtain

|W 2
2 (ρ,Q)−W 2

2 (ρ,Q ∗ Kδ)| ≤ 5δ .

The same argument implies
|W 2

2 (ρ, P )−W 2
2 (ρ, P ∗ Kδ)| ≤ 5δ .

Therefore
sup
ρ∈DK

W 2
2 (ρ,Q)−W 2

2 (ρ, P ) ≤ sup
ρ∈DK

W 2
2 (ρ,Q ∗ Kδ)−W 2

2 (ρ, P ∗ Kδ) + 10δ .
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Likewise, for any x and c in the unit ball, if ‖z‖ ≤ δ, then by the exact same argument as was used above to
bound |W 2

2 (ρ,Q)−W 2
2 (ρ,Q ∗ Kδ)|, we have

|fc,S(x+ z)− fc,S−z(x)| ≤ 5δ .

Let Z ∼ Kδ be independent of all other random variables, and denote by IEZ expectation with respect to this
quantity. Now, applying the proposition to the absolutely continuous measures P ∗ Kδ and Q ∗ Kδ, we obtain

sup
ρ∈Dk

W 2
2 (ρ,Q)−W 2

2 (ρ, P ) ≤ 5k sup
c,S
|IEZ [IEP fc,S(X + Z)− IEQfc,S(X + Z)]|+ 10δ

≤ IEZ

[
5k sup

c,S
|IEP fc,S(X + Z)− IEQfc,S(X + Z)|

]
+ 10δ

≤ IEZ

[
5k sup

c,S
|IEP fc,S−Z − IEQfc,S−Z |

]
+ 20δ .

It now suffices to note that, for any S ∈ Pk−1 and any z ∈ IRd, the set S − z ∈ Pk−1. In particular, this implies
that

z 7→ sup
c,S
|IEP fc,S−z − IEQfc,S−z|

is constant, so that the expectation with respect to Z can be dropped.

We have shown that, for any δ ∈ (0, 1), the bound

sup
ρ∈DK

W 2
2 (ρ, P )−W 2

2 (ρ,Q) ≤ 5k sup
c,S
|IEP fc,S − IEQfc,S |+ 20δ

holds. Taking the infimum over δ > 0 yields the claim.

D Proof of Proposition C.2

In this proof, the symbol C will stand for a universal constant whose value may change from line to line. For
convenience, we will use the notation supc,S to denote the supremum over the feasible set c : ‖c‖ ≤ 1, S ∈ Pk−1.

We employ the method of [Maurer and Pontil, 2010]. By a standard symmetrization argument [Giné and Nickl,
2016], if g1, . . . , gn are i.i.d. standard Gaussian random variables, then the quantity in question is bounded from
above by √

2π

n
IE sup

c,S

∣∣∣∣∣
n∑
i=1

gifc,S(Xi)

∣∣∣∣∣ ≤
√

8π

n
IE sup

c,S

n∑
i=1

gifc,S(Xi) +
C√
n
.

Given c and c′′ in the unit ball and S, S′ ∈ Pk−1, consider the increment (fc,S(x)− fc′,S′(x))2. If x ∈ S4S′ and
‖x‖ ≤ 1, then

(fc,S(x)− fc′,S′(x))2 ≤ max
{
‖x− c‖4, ‖x− c′‖4

}
≤ 16 .

On the other hand, if x /∈ S4S′, then

(fc,S(x)− fc′,S′(x))2 ≤ (‖x− c‖2 − ‖x− c′‖2)2 .

Therefore, for any x in the unit ball,

(fc,S(x)− fc′,S′(x))2 ≤ 16(1x∈S − 1x∈S′)2 + (‖x− c‖2 − ‖x− c′‖2)2 .

This fact implies that the Gaussian processes

Gc,S :=

n∑
i=1

gifc,S(Xi) gi ∼ N (0, 1) i.i.d

Hc,S :=

n∑
i=1

4gi1Xi∈S + g′i‖Xi − c‖2 gi, g
′
i ∼ N (0, 1) i.i.d ,
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satisfy
IE(Gc,S −Gc′,S′)2 ≤ IE(Hc,S −Hc′,S′)

2 ∀c, c′, S, S′ .

Therefore, by the Slepian-Sudakov-Fernique inequality [Fernique, 1975, Slepian, 1962, Sudakov, 1971],

IE sup
c,S

n∑
i=1

gifc,S(Xi) ≤ IE sup
c,S

n∑
i=1

4gi1Xi∈S + g′i‖Xi − c‖2

≤ IE sup
S∈Pk−1

4

n∑
i=1

gi1Xi∈S + IE sup
c:‖c‖≤1

n∑
i=1

gi‖Xi − c‖2 .

We control the two terms separately. The first term can be controlled using the VC dimension of the class
Pk−1 [Vapnik and Červonenkis, 1971] by a standard argument in empirical process theory (see, e.g., [Giné and
Nickl, 2016]). Indeed, using the bound [Dudley, 1978, Lemma 7.13] combined with the chaining technique [Ver-
shynin, 2016] yields

IE sup
S∈Pk−1

4

n∑
i=1

gi1Xi∈S ≤ C
√
nVC(Pk−1) .

By Lemma E.2, V C(Pk−1) ≤ Cdk log k; hence

IE sup
S∈Pk−1

4

n∑
i=1

gi1Xi∈S ≤ C
√
ndk log k .

The second term can be controlled as in [Maurer and Pontil, 2010, Lemma 3]:

IE sup
c:‖c‖≤1

n∑
i=1

gi‖Xi − c‖2 = IE sup
c:‖c‖≤1

n∑
i=1

gi(‖Xi‖2 − 2〈Xi, c〉+ ‖c‖2)

≤ 2IE sup
c:‖c‖≤1

n∑
i=1

gi〈Xi, c〉+ sup
c:‖c‖≤1

n∑
i=1

gi‖c‖2

≤ 2IE

∥∥∥∥∥
n∑
i=1

giXi

∥∥∥∥∥+

∣∣∣∣∣
n∑
i=1

gi

∣∣∣∣∣
≤ C
√
n

for some absolute constant C.

Combining the above bounds yields
√

8π

n
IE sup
c:‖c‖≤1,S∈Pk−1

n∑
i=1

gifc,S(Xi) ≤ C
√
dk log k

n
,

and the claim follows.

E Additional lemmas

Lemma E.1. Let µ and ν be probability measures on IRd supported on the unit ball. If T : IRd → IRd, then

W 2
2 (µ, ν) ≤ IE‖X − T (X)‖2 + 4dTV(T]µ, ν) X ∼ µ .

Proof. If X ∼ µ, then (X,T (X)) is a coupling between µ and T]µ. Combining this coupling with the optimal
coupling between T]µ and ν and applying the gluing lemma [Villani, 2009] yields that there exists a triple
(X,T (X), Y ) such that X ∼ µ, Y ∼ ν, and IP[T (X) 6= Y ] = dTV(T]µ, ν).

W 2
2 (µ, ν) ≤ IE[‖X − Y ‖2]

= IE[‖X − Y ‖21T (X)=Y ] + IE[‖X − Y ‖21T (X)6=Y ]

≤ IE[‖X − T (X)‖2] + 4dTV(T]µ, ν) ,

where the last inequality uses the fact that IP[T (X) 6= Y ] = dTV(T]µ, ν) and that ‖X−Y ‖ ≤ 2 almost surely.
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Lemma E.2. The class Pk−1 satisfies VC(Pk−1) ≤ Cdk log k.

Proof. The claim follows from two standard results in VC theory:

• The class all half-spaces in dimension d has VC dimension d+ 1 [Devroye et al., 1996, Corollary 13.1].

• If C has VC dimension at most n, then the class Cs := {c1 ∩ . . . cs : ci ∈ C ∀i ∈ [s]} has VC dimension at
most 2ns log(3s) [Blumer et al., 1989, Lemma 3.2.3].

Since Pk−1 consists of intersections of at most k − 1 half-spaces, we have

VC(Pk−1) ≤ 3(d+ 1)(k − 1) log(3(k − 1)) ≤ Cdk log k

for a universal constant C.

F Details on numerical experiments

In this section we present implementation details for our numerical experiments.

In all experiments, the relative tolerance of the objective value is used as a stopping criterion for FactoredOT.
We terminate calculation when this value reached 10−6.

F.1 Synthetic experiments from Section 6.1

In the synthetic experiments, the entropy parameter was set to 0.1.

F.2 Single cell RNA-seq batch correction experiments from Section 6.2

We obtained a pair of single cell RNA-seq data sets from Haghverdi et al. [2018]. The first dataset [Nestorowa
et al., 2016] was generated using SMART-seq2 protocol [Picelli et al., 2014], while the second dataset [Paul et al.,
2015] was generated using the MARS-seq protocol [Jaitin et al., 2014].

We preprocessed the data using the procedure described by Haghverdi et al. [2018] to reduce to 3,491 dimensions.

Nex, we run our domain adaptation procedure. To determine the choice of parameters, we perform cross-
validation over 20 random sub-samples of the data, each containing 100 random cells of each of the three cell
types in both source and target distribution. Performance is then determined by the mis-classification over 20
independent versions of the same kind of random sub-samples.

For all methods involving entropic regularization (FOT, OT-ER, OT-L1L2), the candidates for the entropy
parameter are {10−3, 10−2.5, 10−2, 10−1.5, 10−1}.

For FOT and k-means OT, the number of clusters is in {3, 6, 9, 12, 20, 30}.

For OT-L1L2, the regularization parameter is in {10−3, 10−2, 10−1, 1}.

For all subspace methods (SA, TCA), the dimensionality is in {10, 20, . . . , 70}.

The labels are determined by first adjusting the sample and then performing a majority vote among 20 nearest
neighbors. While similar experiments [Courty et al., 2014, 2017, Pan et al., 2011] employed 1NN classification
because it does not require a tuning parameter, we observed highly decreased performance among all considered
domain adaptation methods and therefore chose to use a slightly stronger predictor. The results are not sensitive
to the choice of k for the kNN predictor for k ≈ 20.


