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Abstract

This work provides tight upper- and lower-
bounds for the problem of mean estimation
under differential privacy in the local-model,
when the input is composed of n i.i.d. drawn
samples from a Gaussian. Our algorithms re-
sult in a (1 — B)-confidence interval for the
underlying distribution’s mean p of length

19 (a\/logwm)log(l/a) Eﬁ). In addition, our

algorithms leverage on binary search using
local differential privacy for quantile estima-
tion, a result which may be of separate inter-
est. Moreover, our algorithms have a match-
ing lower-bound, where we prove that any
one-shot (each individual is presented with
a single query) local differentially private al-
gorithm must return an interval of length

Q (UM/e\/ﬁ).

1 Introduction

This work focuses on the task of mean estimation in
the local-model. The problem is composed of n sam-
ples drawn from a Gaussian X1, ..., X,, ~iiqa N (i, 0?)
such that p € [—R, R] for some known bound R, and
o is either provided as an input (known variance case)
or left unspecified (unknown variance case). We point
out that the privacy analysis in our algorithms holds
even if the assumption of normal data is not satisfied,
whereas our utility analysis relies on this assumption.
The goal of our algorithms is to provide an estima-
tion of u, which may be represented in multiple forms.
The classical approach in statistical inference is to rep-
resent the likelihood of each point on the real line to
be p as a probability distribution — where in the case
of known variance (Z-test) the output is a Gaussian
distribution, and in the case of unknown variance (T-
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test) the output is a ¢-distribution. This likelihood
allows an analyst to estimate a confidence interval I
s.t. Plp € I] > 1 — B, where non-privately it holds
that |I| = O(¢/\/n) (assuming § is a constant). Based
on confidence intervals, one is able to reject (or fail-
to-reject) certain hypotheses about p, such as the hy-
pothesis that 4 = 0 or that the means of two separate
collections of samples (X7, ..., X,, and Y7,...,Y;,) are
identical.

Our Contribution. The goal of this work is to
provide upper- and lower-bounds for the problem of
mean-estimation under (e,d)-local differentially pri-
vate (LDP) assuming the data is drawn from an un-
known Gaussian. On the upper-bound side, in the
case of known variance we design a (e,0)-LDP al-
gorithm, which yields a confidence interval of length
O(o - Voe(n)/e\/n) provided that n = Q(logi#); and
in the case of unknown variance we give an algorithm
that returns a confidence interval of similar length as-
suming we have a lower-bound on the value of the un-
known o. In the known variance case, our algorithm
results in a private Z-test, which we also assess em-
pirically. On the lower-bound side, we prove that any
e-LDP algorithm must return an interval whose length
is Q(¢/ey/n), proving the optimality of our technique up

to a v/log(n)-factor.

1.1 Ouwur Techniques: Overview

Basic Tools. In our algorithms, we use two basic LDP
building blocks. These are the canonical Randomized
Response (Warnerl, |1965; [Kasiviswanathan et al.,|2008])
and Bit Flipping (in its various versions) (Erlingsson
et all |2014; Bassily and Smith| 2015} |Bassily et al.l
2017). The mechanisms are known, and, for comple-
tion, in Section [2] we provide utility bounds for these
building blocks under randomly drawn input.

The Known Variance Case. In the known variance
case, our approach is a direct LDP implementation of
the ideas behind the algorithm of [Karwa and Vadhan
(2018) who provide a private confidence interval in the
centralized model. We equipartition the interval where
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11 is assumed to be between [—R, R] into d = [22] sub-
intervals of length o, and use the above-mentioned Bit
Flipping mechanism to find the most likely interval.
The most common interval must be within distance
< 20 from the mean (with high probability) of the
underlying Gaussian distribution. This allows us to
narrow in on an interval I of length O(o+/log(n/pB))
which should hold n new points from the same distri-
bution.

Once we have found this interval, we project
each datapoint onto I and add Gaussian noise of
N(O,M) to the projection, and then aver-
age the outcomes. This implies we have n i.i.d sam-
ple points for a Gaussian of mean p and variance
O(%W) Thus, f, the average of these
€

n noisy datapoints, is also sampled from a Gaussian,
whose variance is 6% = O(W). We can
thus represent the likelihood of each point on R to
be the mean using a Gaussian N (f,52) which is our
analog to the Z-test. Moreover, the interval of length
20/In(4/B) centered at [ is a (1— f3)-confidence inter-
val. Details appear in Section [3| where in Section
we present some empirical assessment of our Z-test.

The Unknown Small Variance Case. We then
consider the case of unknown variance, where instead
of knowing o we are provided bounds on the smallest
and largest (resp.) values of the variance: omin, Omax-
First, we illustrate our approach in the case where we
know opax < 2R. (This is of course the more natural
case, as we think of R as large and o as reasonable.)
Later, we discuss how to deal with the case of general
unknown variance.

In this case, the approach of Karwa and Vadhan! (2018)
is to estimate the variance using the pairwise differ-
ences of the datapoints. That is due to the property of
Gaussians where the difference between two i.i.d sam-
ples is also a Gaussian of 0-mean and variance 202.
This however is an approach that only works in the
centralized model, where one is able to observe two
datapoints without noise. In the local model, we are
forced to use a different approach.

The approach we follow is to do binary search for dif-
ferent quantiles of the Gaussian, a folklore approach
which has appeared before in certain testers, and in
particular in the work of [Feldman| (2017)). Given a
quantile p € (0,1), a continuous and smooth distribu-
tion P, our goal is to find the threshold point ¢ such
that Pxp[X < t] = pxA for a given tolerance param-
eter A > 0. In each iteration j, we hold an interval 1()

! Actually, this is an approximation of the distribution,
since we clip the original Gaussian. However, since the
probability mass we remove is < 8/n, the TV-dist to this
distribution is < 1/n.

which is guaranteed to hold ¢, and we use the middle
point of this interval as our current guess. Denoting
) as the current interval’s mid-point, we use enough
datapoint to estimate Px.p[X < tU)] up to error of
A, and then either halt (if the estimated probability
is approximately p) or recurse on either the left- or
right-half of the interval. Since our initial interval is
[~ (R4 0max), R+ 0max] (of length < 6R) and we must
halt when we reach an interval of length Q(opin) (we
treat A as a constant), then the number of iterations
overall is T' = O(log(R/0omin))-

And so, we first run binary search till we find a point
t; for which we estimate that Px. ar(u,02)[X < t1] =
50%. We then find a point ¢y for which we estimate
that Px ar(u,02)[X < t2] = 81.4%. Due to the proper-
ties of a Gaussian, t; ~ p and t2 =~ u+o. Of course, we
do not have access to the actual quantiles, but rather
just an estimation of them, but we are still able to show
that w.h.p. it holds that 0.50 < t3 — t; < 20. (These
bounds explain why taking A as a constant suffices for
our needs.) We can thus run the algorithm for known
variance case with this estimation of the variance on
the remainder of the datapoints. The full details of
our algorithm appear in Section [

The General Unknown Variance Case. In the
general case, where opqax isn’t known, we begin by
testing to see if the variance is > R or < 2R by es-
timating the probability that a new datapoint falls
inside the interval [-2R,2R]. If this probability is
large then we have that ¢ < 2R and we can use
the previous algorithm for unknown bounded vari-
ance; whereas if this probability is smaller it must
be that ¢ > R, and we run a very different algo-
rithm. Instead of binary search, we merely estimate

o & Px A (u,02) [X < —R] using the first half of the

points, and then estimate ¢ def Pxn(uo2) [ X < R]
using the latter half of the points. We then use the two
resulting quantiles to plot a suitable curve of the Gaus-
sian distribution based on comparing these thresholds
(=R and R) to the thresholds on the real line obtain-
ing ¢; and g2 over a standard normal N (0,1). The
key point is that both —R and R are within distance
< 20 of the true mean p; so by known properties of
the Gaussian distribution, estimating ¢; and g2 up to
an error of O(1/ey/n) implies a similar error guarantee
in estimating pu. Due to space considerations, this ap-
proach has been deferred to the full version (Gaboardi
et al., 2018).

Lower Bounds. Lastly, we give bounds on any e-LDP
algorithm that approximates the mean of a Gaussian
distribution. Formally, we say an algorithm (3, 7)-
solves the mean-estimation problem if its input is a
sample of n points drawn i.i.d from a Gaussian dis-
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tribution N (p1,0%) with p € [—R, R] for some given
parameter R, and its output is an interval I such that
w € I wp. >1— 0 and furthermore E[|I]] < 7.
Note that the probability is taken over both the sam-
ple draws and the coin-tosses of the algorithm. We
prove that any one-shot, where each datapoint is
queried only once, e-locally differentially private algo-
rithm M that (3, 7)-solves that mean estimation prob-

lem must have that 7 = Q (U\/ 10%(1/5)/6\/71) and also

n = (111(5*1.%7)/52). In addition, we also provide lower
bounds for any one-shot e-LDP algorithm that approx-
imates the quantile of a given distribution P using i.i.d
samples from P. We comment that the recent result
of Bun et al| (2018)) shows that these bounds carry
from e-LDP mechanisms to (e, §)-LDP mechanisms.

1.2 Related Work

Several works have studied the intersection of differ-
ential privacy and statistics (Dwork and Lei, [2009
Smithl, [Chaudhuri and Hsul 2012} [Duchi et al.
2013aljb} [Dwork et al [2015) mostly focusing on robust
statistics; but only a handful of works study rigorously
the significance and power of hypotheses testing un-
der differential privacy (Vu and Slavkovic, [2009; [Uhler
let all 2013 [Wang et all 2015} [Gaboardi et al., 2016}
Kifer and Rogers|, [Cai et all 2017} [Sheffet],
Karwa and Vadhan, [2018). [Vu and Slavkovic| (2009)
looked at the sample size for privately testing the bias
of a coin. |Johnson and Shmatikov| (2013)), [ULler et al.|
(2013) and [Yu et al. (2014) focused on the Pearson
x2-test, showing that the noise added by differential
privacy vanishes asymptotically as the number of dat-
apoints goes to infinity, and propose a private y2-based
test which they study empirically. Wang et al| (2015)),
|Gaboardi et al| (2016), and Kifer and Rogers| (2017)
then revised the statistical tests themselves to incor-
porate the additional noise due to privacy as well as

the randomness in the data sample. (2017)

give a private identity tester based on noisy x2-test
over large bins, studies private Ordi-
nary Least Squares using the JL transform, and
lakbarpour et al.| (2018)) study identity and equivalence
testing. All of these works however deal with the
centralized-model of differential privacy.

Few additional works are highly related to this work.
[Karwa and Vadhan| (2018) give matching upper- and
lower-bounds on the confidence intervals for the mean
of a population, also in the centralized model.
give matching upper- and lower-bound
on robust estimators in the local model, and in partic-
ular discuss mean estimation. However, their bounds
are related to minmax bounds rather than mean es-
timation or Z-tests. |Gaboardi and Rogers (2018)

and (2018]) study the asymptotic power and the

sample complexity (respectively) of a variety of chi-
squared based hypothesis testing in the local model.
Finally, we mention the related work of
who also discusses mean estimation using a
version of a statistical query oracle which is thus re-
lated to LDP. Similar to our approach,
also uses the folklore approach of binary search in the
case the input variance is significantly smaller than the
given bounding interval.

2 Preliminaries

We will write the dataset X “&* N(M,UQ) where
X = (Xy,---,X,). Our goals is to develop confidence
intervals for the mean g subject to local differential
privacy in two settings: (1) known variance, (2) un-
known variance. We assume that the mean p is in
some finite interval p € [—R, R] and similarly for the
standard deviation o € [0min, Omax], if it is not known
a priori. We first present the definition of differen-
tial privacy in the curator model, where the algorithm
takes a single element from universe X as input.

Definition 1 (Dwork et al.| (2006bla)). An algorithm
M : X =Y is (e,0)-differentially private (DP) if for
all z,x’ € X and for all outcomes S C ), we have

P[M(z) € S] < P [M(z') € 8] + 6.

We then define local differential privacy, formalized by
[Kasiviswanathan et al.| (2008), where each data entry
is perturbed on its own.

Definition 2 (LR Oracle). Given a dataset «, a local
randomizer oracle LBy (-, -) takes as input an index i €
[n] and an (€,8)-DP algorithm R, and outputs y €
Y chosen according to the distribution of R(z;), i.e.
LRz (i, R) = R(x;).

Definition 3 (Kasiviswanathan et al.| (2008))). An al-
gorithm M : XN — Y is (e,6)-local differentially pri-
vate (LDP) if it accesses the input database x € X"
via the LR oracle LRy with the following restriction: if
LR(i, R;) for j € [k] are the M’s invocations of LRy on
index i, then each R; for j € [k| is (¢5,0;)- DP and
Yioie <€ Y505 <6

In this work we present and prove bounds regarding
one-shot mechanisms, where a user may be queried
only once without any further rounds of interaction.

Definition 4. We say a randomized mechanism M is
a one-shot local differentially private if for any dataset
input D, M interacts with datum x; by first choosing a
differentially private mechanism M,, applying M;(x;)
and then only post-processes the resulting output with-
out any further interaction with z;. In other words,
M has one-round of interaction with any datapoint.

Note, the definition of a one-shot mechanism does not
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rule out choosing the separate mechanisms adaptively.
It only rules out the possibility that M may re-visit
the details of individual based on her prior responses.

We next define our utility goal, which is to find con-
fidence intervals that contain the mean parameter p
with high probability. Our goal is to design an al-
gorithm that is (e,d)-LDP and also produces a valid
(1 — B)-confidence interval.

Definition 5 (Confidence Interval). An algorithm M
produces a (1 — B)-confidence interval for the mean of
the underlying Gaussian distribution N (%02) if

P meMX)>1-p
XUEYN (1,02), M(X)

Useful Bounds. Throughout this paper, ¢ is
the cumulative distribution function of a stan-
dard normal N (0,1). We use several concen-
tration bounds, especially for Gaussians, where it
is known that for any 8 € (0,1/2) we have

Prenuon || X = pl > 0/ZW(F5)] < 5.

A wuseful tool in our analysis is the following well-
known variation of McDiarmid’s inequality.

Fact 6. Let X1,...X,, be n independent random vari-
ables. Denote By,...,B, and pi,..., 1, such that
Vi, | X;| < B; and E[X;] = p;. Then for any t > 0
we have P[| Y, X; — >, | > t] < 2exp (—2¢°/%, B?).

Existing Locally Private Mechanisms. A basic
approach to preserve differential privacy is to use ad-
ditive random noise. Suppose each datum is sampled
from an interval I of length ¢. Then adding ran-
dom noise taken from A (0,2¢°In(*/5)/e) to each da-
tum (independently) guarantees (e, ¢)-differential pri-
vacy (Dwork et al.l |2006al).

Two other canonical e-local differentially private algo-
rithm are the randomized response algorithm (Warner,
1965) and the bit flipping mechanism (Erlingsson
et all [2014} Bassily and Smith, [2015). In the ran-
domized response mechanism, each datum is a bit
b € {0,1} and each datum is independently flipped
w.p. 1/14ec. The bit flipping mechanism is similar, but
rather than associating with each datum one of two
possible values, we associate it with one of d possible
values by mapping it to one of the d vectors of the stan-
dard basis. Thus the bit flipping mechanism outputs a
vector V; € {0,1}? per datum, with each coordinate of
V; slightly skewed towards O or 1 in a fashion similar
to randomized response. Building/cgl these two mecha-
nisms, there exists an estimator Agr that leverages on
the output of randomized response on n-bit input to
estimate the number of 1s in the input; and an estima-
tor Ogp that leverages on the n d-dimensional vectors
outputted by bit flipping to estimate the histogram
of the inputs on the d possible types. For brevity, we

defer to the full version (Gaboardi et al.,[2018) the for-
mal description of both mechanisms and both estima-
tors. However the following claim, which summarizes
the utility of either mechanism under randomly drawn
input, will be useful in the sequel for our results.

Claim 7. Let X be a domain and let D be a
distribution over this domain. Given a predicate
¢: X —{0,1} we denote p = Ex.p[od(X)]; and
given a partition X — {1,2,..,d} and de-
note q as the vector (Exp[v(X) :j])?:l.

n i.1.d draws from D, x1,...,z,, denote by Q/I)E(n,gb)
the randomized response estimator applied to the
n-bit input @(x1),d(x2),...,0(xn); and denote by

Opr(n,v) the bit-flipping estimator over the m d-

Given

dimensional unit vectors €y (z,), €y(zs)s -+ €p(ay)- FiT
. 2
any o, B € (0,3). Then if n > % (Eﬂ) ln(%)

we have that ]P’[\ ~0/p;(n,¢)fp| §o¢} > 1- 5;

1
n

a? \ e</2-1

P[IL - Oor(n.9) —glloe <] 21— 5,

. €/2 2
and if n > l(e H) In(44/g) we have that

3 Confidence Intervals for the Mean
with Known Variance

In this section we assume that o is known and we want
to estimate a confidence interval for p based on a sam-
ple of n users, subject to local differential privacy. As
in [Karwa and Vadhan| (2018)), we will break the algo-
rithm into two parts. First, we discretize the interval

[-R — 9/2, R + /2] into bins of width o, so that we

have a collection of d % [2R/0] disjoint intervals

S(o) =8_4(e)US_gr1(o)U---USu(o) (1)

where S;(0) = [(i — 1/2) - 0,(i + 1/2) - 0]. Denote
¢ : R — {0,e1,e3,..,eq} as the function that maps
each z to the indicating vector of the bin it resides in,
and assigns any point outside the [-R — /2, R + /2]
interval the all-0 vector, we can now apply the Bit
Flipping mechanism to estimate the histogram over
the d = [2R/o] bins. Next, we find the bin with
the largest count, denoted j*, and argue this bin is
close up to two standard deviations to the true pop-
ulation mean p. We then move to the second part of
the algorithm, where we place an interval I of length
|I| = O(o) around the j*-th bin which is likely to
hold all remaining points (a point outside this inter-
val is projected onto the nearest point in I). Adding
Gaussian noise to each point suffices to make the noisy
result (e, d)-differentially private, and yet we can still
sum over all points and obtain an estimation of the
population mean which is close up to O(¢/\m). De-
tails are given in Algorithm KnownVar.
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Algorithm 1 Known Variance Case: KnownVar

Input: Data {1, - - ,2,}; 0, 8, ¢, R.
/2 2
1: Set n; = 800 (Ze/ii) In (%) and no =n —ny.

2: Partition the input intolfy = {1,--- ,n1} and Uy =
{?’l1 +1,.- ,’I’L}.

3: Denote ¢ as the partition of the real-line into the
d = [2R/c] bins as in Equation ().

4: Apply Bit Flipping on U;: p + %19/3;(711, ¢) and
let 7* be the largest coordinate of p.

5: Set A =20 + 0/2log (87/8). Denote the interval

[s1,82) =[50 — A, j'o+ A (2)

and denote 7y, oj(¥) = min{sy, max{sy,z}},
namely the projection of z onto [sq, s2].
6: Set 02 = 8A?In(2/s5)/€2.
7: foreach i € U
set fz = 71'[51732](@) +N¢ where Ni ~ N (0,32)

8: Setﬁ:ni2 > fi,andT:,/"z%fz-CIfl(l—ﬁ/S)
1EUs
Output: [ =[p—7,0+7|N[-R, R]

The following two theorems prove that Algo-
rithm KnownVar satisfies the required (proofs are de-
ferred to the full version (Gaboardi et al., [2018))).
Theorem 8. KnownVar is (¢,0)-LDP.

Theorem 9. Let X i N (u,0?%)

and T = KnounVar(X;o,B,¢,n, R). Set
e6/2 2

d=[2R/s]. If n>1600 (ﬁ) log (%d), then

Px knownvar [t € I| > 1 — . Furthermore,

1 =0 (o Yiog(/B) log(1/5) - 1og(1/5)
evn

3.1 Experiment: Z-Test

As in Algorithm KnownVar, we denote my def 800 -

. 2
(6/2+1) - log %d) and no def o — ny.

< Following
the proof of Theorem [9] we have that — under the
assumption that no datapoint is clipped — all ny dat-
apoints we use in the latter part of Algorithm [I] are
sampled from N (u, a? + 82). This allows us to infer
that (w.p. > 1 — ) the average of the ny datapoints

02452
n2

in Us is sampled from N (,u, ) Just as in Algo-

rithm [1} denoting & as the average of the noisy dat-
apoints, we now can define an approximation of the
likelihood: P = A (ﬁ, ”2+32)

na

As a result, for any
inter?/al on the reals I we can associate a likelihood of
pr = Pxop [X € 1], and we know that w.p. p; & 3 it
indeed holds that p € I. This mimics the power of a

Z-test (Hogg et al.l [2005) — in particular we can now
compare two intervals as to which one is more likely
to hold p, compare populations, etc.

Note however that, as opposed to standard Z-test, the
result of Algorithm [T only gives confidence bounds up
to an error of 5. So for example, given two intervals [
and I’ we can safely argue that it is more likely that
i € I than p € I’ only when p; > pp+208. Similarly, if
we wish to draw an interval whose likelihood to contain
wis 1—v for some v > 0, we must pick a corresponding
(1 — v+ B)-confidence interval from P. Naturally, this
limits us to the setting where S < v, or conversely:
we can never allow for more certainty than the 1 —
parameter specified as an input for Algorithm

Subject to this caveat, Algorithm [I] allows us to per-
form Z-test in a similar fashion to the standard Z-test,
after we omit the first n; datapoints from our sam-
ple. One of the more common uses of Z-test is to test
whether a given sample behaves in a similar fashion to
the general population. For example, suppose that the
SAT scores of the entire population are distributed like
a Gaussian of mean p and variance o2, Taking a sam-
ple of SAT scores from one specific city, we can apply
the Z-test to see if we can reject the null hypothesis
that the score distribution in this city are distributed
just as they are distributed in the general population.
Should we have n samples of SAT scores which hap-
pen to be distributed from A (1, 02) for some p' # p,
then sufficiently large n (with dependency on |u’ — ul)
should allow us to reject this null hypothesis with con-
fidence 1 — v. We set to discover precisely this notion
of utility, using our locally-private Z-test.

The Experiment: We tested our LDP Z-test on n i.i.d
samples from a Gaussian. We set the null-hypothesis
to be Hy : N (0,1), whereas the n samples were drawn
from the alternative hypothesis Hy : N (u/,1) with
' > 0. We run our experiments in the known variance
02 =1 case with a fixed bound R = 200 and 3 = 0.01.
In each set of experiments we vary € while keeping 6 =
107, In Figure we plot the average p-value over
1,000 trails for our Z-test when the data is actually
generated with sample size n = 200,000 and mean
i/ that varies. In Figure we plot the empirical
power of our test over 1000 trails where we fix p/ =
3 and vary the sample size n. Our figures show the
tradeoffs between the privacy parameter, the alternate
we are comparing the null to, and the sample size.
The results themselves match the theory pretty well
and emphasize the magnitude of the needed sample
size. For ¢ = 1.5 we need 10,000 sample points to
reject the null hypothesis w.h.p. When € = 0.5, even
100,000 sample points do not suffice to reject the null
hypothesis w.h.p despite the fact that the difference
between the means of the null and the alternative is
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p-Values for Z-Test

p-value

o 0—0~0—0—0—0—0—9

g

0.2 0.4 0.6 08 10
Alternative Hypotheses for the Mean

(a) Average p-values with n = 200, 000.

Empirical Power Curves for Local DP Z-Test

(b) Empirical power with alternate u’ = 3.

Figure 1: Z-test experiments showing the empirical p-
values and power averaged over 100 trials for various
privacy parameters.

3 times greater than the variance. This is a setting
where non-privately we can reject the null hypothesis
with a sample size < 100. This illustrates (yet again)
how LDP relies on the abundance of data.

4 Mean Estimation with Unknown
(Bounded) Variance

In this section we discuss the problem of locally pri-
vate mean estimation in the case the variance of the
underlying population is unknown. For the ease of
exposition, we separate this case into two sub-cases.
The first sub-case is the one where we know that the
variance is bounded by some o, < 2R and it is the
sole focus of this section as it the more likely of the
two. The second one is the case of very-large vari-
ance (o > R), a case which Karwa and Vadhan| (2018)
do not analyze, and it is deferred to the full version
(Gaboardi et al., |2018)). As our lower bounds show,
our algorithm must be provided bounds op,;, > 0 and
Omax < 2R such that ¢ € [Omin, Omax]. As we show,
our parameters dependency on these upper- and lower-
bounds on the variance is logarithmic (so, for example,
Omin > 1/R? is a useful bound for us).

Our overall approach in this section mimics the same
approach from Algorithm |1} Our goal in to find a suit-
ably large yet sufficiently tight interval [s1,ss] that
is likely to holds the latter part of the input. How-

ever, finding this [sy, sp]-interval cannot be done using
the off-the-shelf Bit Flipping mechanism as that re-
quired we know the granularity of each bin in advance.
Indeed, if we discretize the interval [—R, R] with an
upper-bound on the variance, each bin might be far
too large and result in an interval [s1, so] which is far
larger than the variance of the underlying population;
and if we were to discretize [— R, R] with a lower-bound
on the variance we cannot guarantee substantial differ-
ences between the bins that are close to p. And so, we
abandon the idea of finding a histogram on the data.
Instead, we propose finding a good approximation for
o using a quantile estimation based on a binary search.
This result is likely to be of independent interest. Once
we establish formal guarantees on our locally private
binary search algorithm (privacy and utility bounds),
we plug those into our confidence interval estimation
algorithm in Subsection

4.1 Locally Private Binary Search and
Quantile Estimation

We now show how to estimate quantiles of a proba-
bility distribution using randomized response and bi-
nary search. We assume our domain X" is contained
in the real line and that there exists some distribu-
tion P over this domain. This defines the quantile of a
threshold ¢ as p(t) = Pp [X < t]. Given a target prob-
ability p*, let t* be the quantile we want to estimate,
namely p(t*) = p*. Since our algorithm is randomized
and therefore uses only estimations, we must allow for
some error A, and find some ¢ such that |p(t) —p*| < \.

Our binary search begins with some bounded inter-
val guaranteed to contain t*, i.e. t* € [Qmin, Qmax)-
Initially, we set ¢(0) = %, and draw a subsam-
ple of size m, where m is chosen so that w.h.p. we
can estimate Exp[K{X < t(O}] using randomized
response up to an error of A. Denoting the random-

. . —(0) .
ized response estimator as fgr ~ one of the following

—— (0
three must holds. Either (i) |ORR( )—p*| < A, in which
case we have found a good enough approximation for

(0
t* and we may halt; or (ii) HRR( ) > p* 4+ X\ in which
case t(0) is too large, and so t* € [Qmin, t”)] and we

recurse of the LHS half of the original interval; or (iii)
—(0
GRR( ) < p* — X in which case t(9) is too small, and so

t* € [0, Quax] and we recurse of the RHS half of the
original interval.

When does our binary search algorithm halts? If P is
a pathological distribution, it may put 2\ probability
mass on an infinitesimally small intervals to the left
and right of ¢*, forcing our binary search algorithm to
continue for arbitrarily many rounds. To avoid such a
case, we require an a-priori bound agist on the length
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of an interval that can hold A-probability mass; or al-
ternatively, allow our algorithm to output any ¢ such
that |t — t*| < agist- The formal definition follows.

Definition 10. An algorithm M is said to
(Qudist, Ctquant, B)-approximate the p*-quantile over P
under the guarantee that t*,the bound such that p* =
Poop [ < t*], is bounded t* € [Qmin, Qmax|, if it
takes as input n i.i.d draws from P and returns t €
[Qmin; Qmax] such that w.p. > 1 — 8 we have that ei-
ther |p*—Pgpp [ < t]| < aquant 07 that [t—t*] < ogigt.-

Provided with such a bound ag;st we can bound the
number of iterations in our binary search by T such
that @max—Qmin/27 < agist. A description of our binary
search given such an iteration bound T is detailed in
Algorithm BinQuant.

Algorithm 2 Quantile Estimation: BinQuant

Input: Data {z1,---,zn}, target quantile p*; e,

[Qminanax]7 /\7 T

Initialize n = N/T, s; =

for j=0,---,7T do
Select users UV = {j-n+1,j-n+2,---

Qminv S92 = Qmax~

Set t(0) « s1ts2
Denote ¢U)(z) = ¥{x < t0)}.
Run randomized response on U and obtain
70 — %ﬁ(n7¢(j))_
if (Z9) > p* + 3) then
Sg — t(j)
else if (Z\) < p* — 2) then
S1 < t(])
else
break
Output: t(@)

Two theorems summarize Algorithm [2[s properties.
Their proofs are deferred to the full version (Gaboardi
et al., 2018).

Theorem 11. Binfuant is e-LDP.

Theorem 12. Let P be any distribution on the real
line. For any p* € (0,1) and any Qmin, @max Such
that ¢* € [Qmin, Qmaz], for any € > 0 and for any
AT, B € (0,1/2), Algorithm BinQuant indeed (1, \, 5)-
approximates the p* -quantile if T = flogﬂ%)]
and its input is N i.i.d draws from P, provided that

8T [ e®+1 2
N2> (ée,l) n(47/5).

4.2 Locally Private Mean Estimation Using
Quantile Estimation

We return to discuss the case where the underlying dis-
tribution of the data is Gaussian with unknown vari-
ance. Recall, our plan is to use quantile estimation to

find an interval [s1, s2] which is likely to contain most
datapoints. This requires that we assess u up to an
error of about +o and also have an estimation of o
which is also fairly close to the true o. I.e. denoting o
as our estimation, we would like to have Z < o< 20.

Our approach for obtaining such estimations of p and
o is to apply the quantile estimation technique twice:
once for p* = % where t* = u, and once for the value
of p* = ®(1) ~ 0.8413 for which the corresponding
threshold is t* = p + 0. We argue next is that, since
both thresholds are sufficiently close to the mean of
the underlying distribution, we can set A\ as a reason-
able constant and guarantee that our estimations of
the two thresholds are close up to a factor of o/4 to
the true thresholds. This required some calculations
on the PDF of Gaussians which we defer to the full ver-
sion (Gaboardi et al., 2018]), but the end result is that
it suffices to have error of A\ = 0.098 in the first esti-
mation, and an error of A = 0.052 in the latter estima-
tion. Note that in both cases we can set agisy = omin/4.
Our LDP confidence interval estimator in the unknown
variance case is given in Algorithm

Algorithm 3 Unknown Variance Case: UnkVar

Input: Data {z,-- xN} A, R, Omin, Omax;, €, B
Set Tmed |—10g (a )'l de []ng(wﬂ

Omin
med i1 2 Jp—
Set ny = 0.098)% ° ﬁ) : ln( /B), and Nng =

sd € 2 s

(0552)2 ’ (iﬂ) ~In(167 d/5)7 and n3 =n—ny —na.
Init Uy = {1,--- ,n1}, U2 = {n1 + 1, --
and Us = {n1 +na +1,--- ,n}.
t, < BinQuant({z;:i €U}, 1/2; ¢

;1 + n2}7
n, [—R,R],0.0QS,Tmed)

to < BinQuant({z; : i € Us}, ®(1);€,m, [~ R, R + 0max), 0.052, T59)

Set A = (1, 1 42,/2In(8/5))
Denote the mterval 51, S2] ru A,tAM + Al
Run steps 6-9 of Algorithm KnownVar over Us.

Theorem 13. Let X ~ N(/.L,UQ) i...d. Fiz parame-
ters e, B € (0,1/2). Given that i € [—R, R] and that
Omin S o S Omax S 2R; Zf

. 2
n > 1500log, (162 . ( +1) .ln(%)

Omin

ec—1

then the interval I returned by Algorithm UnkVar sat-
isfies that Px . ynkvar [TB u] > 1— 3, and moreover

F_o (0 /log (n/B) log (1/5) 1og<1/5>>

evn

The proof of Theorem is deferred to the full ver-
sion (Gaboardi et al |2018). It is interesting to com-
pare the bounds of Theorems [ and [I3] “Replacing”
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the known quantity o in Theorem [9] with the provided
lower bound o3, in Theorem the sample complex-
ity bound only increases by a loglog(R/omin)-factor.
Note in both algorithms we conclude in a similar fash-
ion (averaging Gaussian noise), so, if we are to denote
by m the number of points either algorithms use in
their last parts, then both algorithms output intervals
of length O(¢/eym).

5 Lower Bounds

We begin our discussion on the bounds on the utility
of any e-locally private mechanism which is a one-shot
mechanism, by presenting the following lemma. This
lemma is a combination of two separate results. The
one, Karwa and Vadhan’s coupling argument that sug-
gest that the “effective group privacy” between two n-
size samples from either a distribution P or a distribu-
tion Q is roughly n-drv (P, Q). The second is a lemma,
which originally appeared in Beimel et al.| (2008) and
then also appeared in a more formal way in |[Bun et al.
(2018)), that states that group privacy of altering k da-
tums in the local scales proportional to O(E\/E) rather
O(ek) in the centralized model. We combine the two
into a single lemma, dealing with e-LDP mechanisms
over input drawn i.i.d from some distribution. This
lemma is the main building block in all of our lower-
bounds. Its proof, as well as all proofs in this section,
are deferred to the full version (Gaboardi et al.| 2018).
Lemma 14. Let M be a one-shot local e-differentially
private mechanism. Let P and Q be two distributions,

with A % drv(P,Q). Fiz any 0 < § < e and set
€* = 8eAy/n (, /4 1In(2/s) + 166A\/ﬁ). Then, for any
set of possible outputs S we have that

]P) ii.d
~

i M(X) € 8] < e P i

M(X) e S]+46

P Q

where the probability is taken over both the n i.i.d sam-
ples and over the coin-tosses of M.

5.1 Lower Bounds for One-Shot ¢-Locally
Private Mechanisms

Leveraging on our main lemma, we can now prove
lower bounds on the interval length and sample com-
plexity of any one-shot e-LDP algorithm that outputs a
meaningful confidence interval. We focus on the case of
a known variance, and our lower-bound shows the op-
timality of Algorithm KnownVar up to a O(4/log(%/s))-
factor.

Theorem 15. We say an algorithm (8, 7)-solves the
mean-estimation problem (under known variance o
and bound R) if its input is a sample of n points and
its output is an interval I such that, if all n datapoints
are i.i.d draws from N(u,o?) for some p € [—R, R]

then w.p. > 1— [ it holds that p € I and furthermore,
E[|I]] < 7. (The probability is taken over both the
sample draws and the coin-tosses of the algorithm.)

Fiz any B < 3. Then any one-shot e-locally
differentially private algorithm M that (B, T)-solves
that mean estimation problem must have that T =

Q (@) and also that n = Q (% ln(g%))-

It is worth-while to discuss the implications of The-
orem [I5] Aside from showing the near optimality of
our technique, it also shows that our dependency on
R is of the essence. This is in sharp contrast to the
centralized-model, when the results of [Karwa and Vad-
han| (2018) show that there exists a (e, §)-differentially
private algorithm whose sample complexity is indepen-
dent of R. Our lower bounds, which, as shown by [Bun
et al.| (2018) are carried from the e-LDP setting to
the (e, §)-LDP, show that some dependency on log(R)
is required. This illustrates a sharp contrast between
the centralized and the local model.

In addition, we prove a similar bound on the optimality
of the BinQuant-Algorithm.

Theorem 16. Let M be a e-LDP mechanism which
is (udist, Cquant » B)-accurate for the p-quantile problem
over P, given that the true p-quantile lies in the inter-
val [~R, R]). Then, for any B < % it must hold that

6
n > Q= 1 = -ln(aditﬁ)).

quant
It is important to note that our lower bound shows
how all three parameters are necessary for devising
a suitable e-LDP algorithm for the problem. For ex-
ample, we must have both stopping conditions (aquant
and agis). If we didn’t specify agiss as well, then we
could devise a collection of infinitely many distribu-
tions — for any point z € [— R, R] we would construct
a similar P, similar to 7; — resulting in infinite sam-
ple complexity. Then for any m we could create a m-
size collection of distributions by repeating the same
collection with R set to be any number > m/agist,
thus we could get a sample complexity as arbitrary
large as we want. Lastly, if aquant Was unspecified,
we could derive an arbitrarily large sample complexity
even without privacy as finding the exact quantile of
a distribution requires infinitely many samples.
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