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Abstract

Advances in unsupervised learning enable re-
construction and generation of samples from
complex distributions, but this success is
marred by the inscrutability of the represen-
tations learned. We propose an information-
theoretic approach to characterizing disen-
tanglement and dependence in representa-
tion learning using multivariate mutual in-
formation, also called total correlation. The
principle of Total Cor-relation Ex-planation
(CorEx) has motivated successful unsuper-
vised learning applications across a variety of
domains but under some restrictive assump-
tions. Here we relax those restrictions by
introducing a flexible variational lower bound
to CorEx. Surprisingly, we find this lower
bound is equivalent to the one in variational
autoencoders (VAE) under certain conditions.
This information-theoretic view of VAE deep-
ens our understanding of hierarchical VAE
and motivates a new algorithm, AnchorVAE,
that makes latent codes more interpretable
through information maximization and en-
ables generation of richer and more realistic
samples.

1 Introduction

Learning representations from data without labels has
become increasingly important to solve some of the
most crucial problems in machine learning including
tasks in image, language, speech, etc (Bengio et al.,
2013). Complex models, such as deep neural networks,
have been successfully applied to generative model-
ing with high-dimensional data. From these methods
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we can either infer hidden representations with varia-
tional autoencoders (VAE) (Kingma and Welling, 2013;
Rezende et al., 2014) or generate new samples with
VAE or generative adversarial networks (GAN) (Good-
fellow et al., 2014).

Building on these successes, an explosive amount of
recent effort has focused on interpreting learned rep-
resentations, which could have significant implications
for subsequent tasks. Methods like InfoGAN (Chen
et al., 2016) and β-VAE (Higgins et al., 2017) are able
to learn disentangled and interpretable representations
in a completely unsupervised fashion. Information the-
ory provides a natural framework for understanding
representation learning and continues to generate new
insights (Alemi et al., 2017; Shwartz-Ziv and Tishby,
2017; Achille and Soatto, 2018; Saxe et al., 2018; Kim
and Mnih, 2018; Chen et al., 2018).

In this paper we motivate the problem of learning dis-
entangled and interpretable representations in a purely
information-theoretic way. Instead of making assump-
tions about the data generating process at the begin-
ning, we consider the question of how informative the
underlying latent variable z is about the original data
variable x. We would like z to be as informative as
possible about the relationships in x while remaining
as disentangled as possible in the sense of statistical
independence. This principle has been previously pro-
posed as Cor-relation Ex-planation (CorEx) (Ver Steeg
and Galstyan, 2014; Ver Steeg, 2017). By optimizing
appropriate information-theoretic measures, CorEx de-
fines not only an informative representation but also a
disentangled one, thus eliciting a natural comparison to
the recent literature on interpretable machine learning.
However, computing the CorEx objective can be chal-
lenging, and previous studies have been restricted to
cases where random variables are either discrete (Ver
Steeg and Galstyan, 2014), or Gaussian (Ver Steeg and
Galstyan, 2017).

Our key contributions are as follows:

• We construct a variational lower bound to the
CorEx objective and optimize the bound with deep
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neural networks. Surprisingly, we find that under
standard assumptions, the lower bound for CorEx
shares the same mathematical form as the evidence
lower bound (ELBO) used in VAE, suggesting
that CorEx provides a dual information-theoretic
perspective on representations learned by VAE.

• Going beyond the standard scenario to hier-
archical VAEs or deep gaussian latent models
(DLGM) (Rezende et al., 2014), we demonstrate
that CorEx provides new insight into measuring
how representations become progressively more
disentangled at subsequent layers. In addition,
the CorEx objective can be naturally decomposed
into two sets of mutual information terms with
an interpretation as an unsupervised information
bottleneck.

• Inspired by this formulation, we propose to make
some latent factors more interpretable by re-
weighting terms in the objective to make certain
parts of the latent code uniquely informative about
the inputs (instead of adding new terms to the
objective, as in InfoGAN (Chen et al., 2016)).

• Finally, we show that by sampling each latent
code zi from the encoding distribution p(zi) =∫
x
p(zi|x)p(x)dx instead of the standard Gaussian

prior in VAE, we can generate richer and more
realistic samples than VAE even under the same
network model.

2 Information Theory Background

Let x = (x1,x2, ...,xd) denote a d-dimensional ran-
dom variable whose probability density function is p(x).
Shannon differential entropy (Cover and Thomas, 2006)
is defined in the usual way as H(x) = −Ex [log p(x)].
Let z = (z1, z2, ..., zm) denote an m-dimensional ran-
dom variable whose probability density function is
p(z). Then mutual information between two ran-
dom variables, x and z, is defined as I(x : z) =
H(x) + H(z) − H(x, z). Mutual information can
also be viewed as the reduction in uncertainty about
one variable given another variable, i.e., I(x : z) =
H(x)−H(x|z) = H(z)−H(z|x).

A measure of multivariate mutual information
called total correlation (Watanabe, 1960) or multi-
information (Studenỳ and Vejnarova, 1998) is defined
as follows:

TC (x) =

d∑
i=1

H (xi)−H (x) = DKL

(
p(x)||

d∏
i=1

p(xi)

)
(1)

Note that DKL (·) denotes the Kullback-Leibler diver-
gence in Eq. 1. Intuitively, TC(x) captures the total
dependence across all the dimensions of x and is zero
if and only if all xi are independent. Total correlation

or statistical independence is often used to character-
ize disentanglement in recent literature on learning
representations (Dinh et al., 2014; Achille and Soatto,
2017).

The conditional total correlation of x, after observing
some latent variable z, is defined as follows,

TC (x|z) =

d∑
i=1

H (xi|z)−H (x|z)

=DKL

(
p(x|z)||

d∏
i=1

p(xi|z)

) (2)

We define a measure of informativeness of latent vari-
able z about the dependence among the observed vari-
ables x by quantifying how total correlation is reduced
after conditioning on some latent factor z, i.e.,

TC (x; z) = TC(x)− TC(x|z) (3)

In Eq. 3, we can see that TC (x; z) is maximized if
and only if the conditional distribution p(x|z) factor-
izes, in which case we can interpret z as capturing the
information about common causes across all xi’s.

3 Total Correlation Explanation
Representation Learning

In a typical unsupervised setting like VAE, we assume
a generative model where x is a function of a latent
variable z and then maximize the log likelihood of
x under this model. From a CorEx perspective, the
situation is reversed. We let z be some stochastic
function of x parameterized by θ, i.e., pθ(z|x). Then
we seek a joint distribution pθ(x, z) = pθ(z|x)p(x),
where p(x) is the underlying true data distribution,
that maximizes the following objective,

L(θ; x) = TCθ(x; z)︸ ︷︷ ︸
informativeness

− TCθ(z)︸ ︷︷ ︸
(dis)entanglement

= TC(x)− TCθ(x|z)− TCθ(z)

(4)

In Eq. 4, TCθ(x; z) corresponds to the amount of cor-
relation that is explained by z as defined in Eq. 3 and
TCθ(z) quantifies the dependence among the latent
variables z.

By non-negativity of total correlation, Eq. 4 naturally
forms a lower bound on TC(x), i.e., TC(x) ≥ L(θ; x)
for any θ. Therefore, the global maximum of Eq. 4 oc-
curs at TC(x), in which case TCθ∗(x|z) = TCθ∗(z) ≡ 0
and z can be exactly interpreted as a generative model
where z are independent random variables that gener-
ate x, as shown in Fig. 1.

Notice that the term TCθ(x; z) is a bit different from
the classical definition of informativeness using mutual
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Figure 1: The graphical model for pθ∗(x, z) assuming
pθ∗(z|x) achieves the global maximum in Eq. 4. In this
model, all xi’s are factorized conditioned on z, and all
zi’s are independent.

information Iθ(x; z) (Linsker, 1988). In fact, after com-
bining the entropy terms in Eq. 1 and 2, the following
equation holds (Ver Steeg and Galstyan, 2015),

TCθ(x; z) =

d∑
i=1

Iθ(xi; z)− Iθ(x; z) (5)

The term TCθ(x; z) in Eq. 4 can be seen as finding
a minimal latent representation z which, after condi-
tioning, disentangles x. When stacking hidden variable
layers in Sec. 6, we will see that this condition can lead
to interpretable features by forcing intermediate layers
to be explained by higher layers under a factorized
model.

Informativeness vs Disentanglement If we only
consider the informativeness term TCθ(x; z) as in the
objective, a naive solution to this problem would be
just setting z = x. To avoid this, we also want the
latent variables z to be as disentangled as possible,
corresponding to the TC(z) term encouraging indepen-
dence. In other words, the objective in Eq. 4 is trying
to find z, so that z not only disentangles x as much as
possible, but is itself as disentangled as possible.

4 Optimization

We first focus on optimizing the objective function
defined by Eq. 4. The extension to the multi-layer
(hierarchical) case is presented in the next section.

By using Eqs. 1 and 5, we expand Eq. 4 into basic
information-theoretic quantities as follows:

L(θ; x) = TCθ(x; z)− TCθ(z)

=

d∑
i=1

Iθ(xi : z)− Iθ(x : z)−
m∑
i=1

Hθ(zi) +Hθ(z)

=

d∑
i=1

Iθ(xi : z)−
m∑
i=1

Hθ(zi) +Hθ(z|x) (6)

If we further constrain our search space pθ(z|x) to have

the factorized form pθ(z|x) =
∏m
i=1 pθi(zi|x) 1, which

is a standard assumption in most VAE models, then
we get,

L(θ; x) = TCθ(x; z)− TCθ(z)

=

d∑
i=1

Iθ(xi : z)−
m∑
i=1

Iθ(zi : x)
(7)

We convert the two total correlation terms into two sets
of mutual information terms in Eq. 7. The first term,
Iθ(xi : z), denotes the mutual information between
each input dimension xi and z, and can be broadly
construed as measuring the “relevance” of the represen-
tation to each observed variable in the parlance of the
information bottleneck (Tishby et al., 2000; Shwartz-
Ziv and Tishby, 2017). The second term, Iθ(zi : x),
represents the mutual information between each latent
dimension zi and x and can be viewed as the compres-
sion achieved by each latent factor. We proceed by
constructing tractable bounds on these quantities.

4.1 Variational Lower Bound for Iθ(xi : z)

Barber and Agakov (2003) derived the fol-
lowing lower bound for mutual information by
using the non-negativity of KL-divergence, i.e.,

Σxip(xi|z) log p(xi|z)
q(xi|z) ≥ 0 gives,

Iθ(xi : z) ≥ H(xi) + 〈ln qφ(xi|z)〉pθ(x,z) (8)

where the angled brackets represent expectations and
qφ(xi|z) is any arbitrary distribution parametrized by
φ. We need a variational distribution qφ(xi|z) because
the posterior distribution pθ(x|z) = pθ(z|x)p(x)/pθ(z)
is hard to calculate due to fact that the true data dis-
tribution p(x) is unknown, although approximating the
normalization factor pθ(z) can be tractable compared
to VAE. A detailed comparison with VAE will be made
in Sec. 5.

4.2 Variational Upper Bound for Iθ(zi : x)

We again use the non-negativity of KL-divergence, i.e.,

Σzip(zi) log p(zi)
r(zi)

≥ 0, to obtain

Iθ (x : zi)

=

∫
dxdzipθ (zi,x) log pθ (zi|x)−

∫
dzipθ (zi) log pθ (zi)

≤
∫
dxdzipθ (zi,x) log pθ (zi|x)−

∫
dzipθ (zi) log rα (zi)

=

∫
dxdzipθ (x) pθ (zi|x) log

pθ (zi|x)

rα (zi)

= DKL (pθ (zi|x) ||rα (zi)) (9)

1Each marginal distribution pθi(zi|x) is parametrized
by a different θi. But we will omit the subscript i under θ
for simplicity, as well as φ, α in the following context.
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where rα(zi) represents an arbitrary distribution
parametrized by α.

Combining bounds in Eqs. 8 and 9 into Eq. 7, we get,

L(θ; x) =

d∑
i=1

Iθ(xi : z)−
m∑
i=1

Iθ(zi : x)

≥
d∑
i=1

H(xi) + 〈ln qφ(xi|z)〉pθ(x,z)

−
m∑
i=1

DKL(pθ(zi|x)||rα(zi))

(10)

We then can jointly optimize the lower bound in Eq. 10
w.r.t. both the stochastic parameter θ and the varia-
tional parameters φ and α.

5 Connection to Variational
Autoencoders

Remarkably, Eq. 10 has a very similar form with the
lower bound introduced in variational autoencoders,
except it is decomposed into each dimension xi and zi.
To pursue this similarity further, we denote

qφ(x|z) =

d∏
i=1

qφ(xi|z), rα(z) =

m∏
i=1

rα(zi) (11)

Then, by rearranging the terms in Eq. 10, we obtain,

L(θ; x) =

d∑
i=1

Iθ(xi : z)−
m∑
i=1

Iθ(zi : x)

≥

(
d∑
i=1

H(xi)

)
+

〈
ln qφ(x|z)︸ ︷︷ ︸

decoder

〉
pθ(x,z)

− DKL(pθ(z|x)︸ ︷︷ ︸
encoder

||rα(z)) (12)

The first term in the bound,
∑d
i=1H(xi), is a constant

and has no effect on the optimization. The remaining
expression coincides with the VAE objective as long as
rα(z) is a standard Gaussian: the second term corre-
sponds to the reconstruction error, and the third term
is the KL-divergence term in VAE.

Comparison The CorEx objective starts with a de-
fined encoder pθ(z|x) and seeks a decoder qφ(x|z) via
variational approximation to the true posterior, while
VAE is exactly the opposite. Moreover, in VAE, we
need a variational approximation to the posterior be-
cause the normalization constant is intractable, while
in CorEx, the variational distribution is needed because
we do not know the true data distribution p(x). It is
also worth mentioning that the lower bound in Eq. 12

requires a fully factorized form of the decoder qφ(x|z),
unlike VAE where qφ(x|z) can be flexible 2.

As pointed out by Zhao et al. (2017), if we choose
to use a more expressive distribution family, such as
PixelRNN/PixelCNN (Van Oord et al., 2016; Gulrajani
et al., 2017) for the decoder in a VAE, the model tends
to neglect the latent codes all together, i.e., I(x : z) = 0.
This problem, however, does not exist in CorEx, since
it explicitly requires z to be informative about x in
the objective function. It is this informativeness term
that leads the CorEx objective to a factorized decoder
family qφ(x|z). In fact, if we assume Iθ(x : z) = 0, then
we will get TC(x) = TCθ(x|z) and an informativeness
term TCθ(x; z) of zero, meaning CorEx will avoid such
undesirable solutions.

Stacking CorEx and Hierarchical VAE Notice
that if Eq. 4 does not achieve the global maximum,
it might be the case that the latent variable z is still
not disentangled enough, i.e., TCθ(z) > 0. If this is
true, we can re-apply the CorEx principle (Ver Steeg
and Galstyan, 2015) and learn another layer of latent
variables z(2) on top of z and redo the optimization on
θ(2) w.r.t. the following equation, i.e.,

L(θ(2); z) = TCθ(2)(z; z(2))− TCθ(2)(z(2)) (13)

= TCθ(z)− TCθ(2)(z|z(2))− TCθ(2)(z(2))

To generalize, suppose there are L layers of latent
variables, z(1), z(2), ..., z(L) and we further denote the
observed variable x ≡ z(0), then one can stack each
latent variable z(l) on top of z(l−1), and jointly opti-
mize the summation of the corresponding objectives as
shown in Eqs. 4 and 13, i.e.,

L(θ(1,2,..,L); x) =

L∑
l=1

L(θ(l); z(l−1)) (14)

By simple expansion of Eq. 14 and cancellation of
intermediate TC terms, we get

L(θ(1,2,..,L); x)

= L(θ(1); z(0)) + L(θ(2); z(1)) + ...+ L(θ(L); z(L−1))

= TC(x)−
L∑
l=1

TCθ(l)(z
(l−1)|z(l))− TCθ(L)(z(L))

≤ TC(x) (15)

Furthermore, if we have L(θ(l); z(l−1)) > 0 for all l,
then we get,

L(θ(1); x) ≤ L(θ(1,2); x) ≤ ... ≤ L(θ(1,...,L); x)

≤ TC(x)
(16)

2In this paper, we also restrict the encoder distribution
pθ(z|x) to have a factorized form which follows the stan-
dard network structures in VAE, but it is not a necessary
condition to achieve the lower bound shown in Eq. 12.
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Eq. 16 shows that stacking latent factor representations
results in progressively better lower bounds for TC(x).

To optimize Eq. 14, we reuse Eqs. 7, 8 and 9 and get,

L(θ(1,2,..,L); x) ≥
∑
i

H(z
(0)
i )

+

L∑
l=1

∑
i

〈
ln qφ(l)(z

(l−1)
i |z(l))

〉
pθ(z)

−
L∑
l=1

∑
i

〈
ln pθ(l)(z

(l)
i |z

(l−1))
〉
pθ(z)

+
∑
i

〈
ln rα(z

(L)
i )

〉
pθ(z)

(17)

Enforcing independence relations at each layer, we
denote

qφ(x, z) =
∏
i

rα(z
(L)
i )×

L∏
l=1

∏
i

qθ(l)(z
(l−1)
i |z(l))

pθ(z|x) =

L∏
l=1

pθ(l)(z
(l)|z(l−1))

(18)

and obtain

L(θ(1,2,..,L); x) ≥
∑
i

H(z
(0)
i )

+

〈
ln
qφ(x, z)

pθ(z|x)

〉
pθ(z|x)p(x)

(19)

One can now see that the second term of the RHS
in Eq. 19 has the same form as deep latent Gaussian
models (Rezende et al., 2014) (also known as hierar-
chical VAE) as long as the latent code distribution
rα(z(L)) on the top layer follows standard normal and
qθ(l)(z

(l−1)|z(l)) on each layer is parametrized by Gaus-
sian distributions.

One immediate insight from this connection is that,
as long as each L(θ(l); z(l−1)) is greater than zero in
Eq. 14, then by expanding the definition of each term
we can easily see that z(l) is more disentangled than
z(l−1), i.e., TC(z(l−1)) > TC(z(l)) if TC(z(l−1)) −
TC(z(l−1)|z(l)) − TC(z(l)) > 0. Therefore, each la-
tent layer of hierarchical VAE will be more and more
disentangled if L(θ(l); z(l−1)) > 0 for each l. This inter-
pretation also provides a criterion for determining the
depth of a hierarchical representation; we can add lay-
ers as long as the corresponding term in the objective
is positive so that the overall lower bound on TC(x) is
increasing.

Despite reaching the same final expression, approaching
this result from an information-theoretic optimization
rather than generative modeling perspective offers some
advantages. First of all, we have much more flexibility

in specifying the distribution of latent factors, as we
can directly sample from this distribution using our
encoder. Secondly, the connection with mutual infor-
mation suggests intuitive modifications of our objective
that increase the interpretability of results. These ad-
vantages will be explored in more depth in Sec. 6.

6 Applications

6.1 Disentangling Latent Codes via
Hierarchical VAE / Stacking CorEx on
MNIST

We train a simple hierarchical VAE/stacking CorEx
model with two stochastic layers on the MNIST dataset.
The graphical model is shown in Fig. 2. For each
stochastic layer, we use a neural network to parametrize
the distribution pθ and qφ, and we set rα to be a fixed
standard Gaussian. We use a 784-512-512-64 fully

!"#(%)('(()|*) !"#(+)('(,)|'(())* '(-) '(.)

!/0(%)(*|'(()) !/0(+)('(()|'(,))* '(-) '(.)

Encoder Layer 1 Encoder Layer 2

Encoder Layer 2 Decoder Layer 2

Figure 2: Encoder and decoder models for MNIST,
where z(1) is 64 dimensional continuous variable and
z(2) is a discrete variable (one hot vector with length
ten).

connected network between x and z(1) and a 64-32-
32-16-16-10 dense network between z(1) and z(2), with
ReLU activations in both. The output of z(2) is a ten-
dimensional one hot vector, where we decode based
on each one-hot representation and weight the result
according to their softmax probabilities.

After training the model, we find the learned discrete
variable z(2) on the top layer gives us an unsupervised
classification accuracy of 85%, competitive with the
more complex method shown in Dilokthanakul et al.
(2016).

To verify that the top layer z(2) helps disentangle the
middle layer z(1) by encouraging conditional indepen-
dence of z(1) given z(2), we calculate the mutual in-

formation Iθ(x : z
(1)
i ) between input x and each di-

mension z
(1)
i . We then select the top two dimensions

with the most mutual information, denote these two

dimensions as z
(1)
a , z

(1)
b . We find Iθ(x : z

(1)
a ) = 2.71

and Iθ(x : z
(1)
b ) = 2.56. We then generate new digits by

first fixing the discrete latent variable z(2) on the top
layer, and sampling latent codes z(1) from qφ(z(1)|z(2)).
We systematically vary the noise from -2 to 2 through
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qφ(z
(1)
a |z(2)) and qφ(z

(1)
b |z(2)) while keeping the other

dimensions of z(1) fixed, and visualize the results in
Fig. 3. We can see that this simple two-layer structure

(a) Manipulating z
(1)
a with MNIST. (Azimuth)

(b) Manipulating z
(1)
b with MNIST. (Width)

Figure 3: Varying the latent codes of z(1) on
MNIST: In both figures, each row corresponds to
a fixed discrete number in layer z(2). Different columns
correspond to the varying noise from the selected latent
node in layer z(1) from left to right, while keeping other
latent codes fixed. In (a), varying the noise results in
different rotations of the digit; In (b), a small (large)
value of the latent code corresponds to wider (narrower)
digit.

automatically disentangles and learns the interpretable
factors on MNIST (width and rotation). We attribute
this behavior to stacking, where the top layer disentan-
gles the middle layer and makes the latent codes more
interpretable through samples from qφ(z(1)|z(2)).

6.2 Learning Interpretable Representations
through Information Maximizing VAE /
CorEx on CelebA

One important insight from recently developed meth-
ods, like InfoGAN, is that we can maximize the mutual
information between a latent code and the observations
to make the latent code more interpretable.

While it seems ad-hoc to add an additional mutual
information term in the original VAE objective, a more
natural analogue arises in the CorEx setting. Looking
at the formulation in Eq. 7, it already contains two
sets of mutual information terms. If one would like to
anchor a latent variable, say za, to have higher mutual
information with the observation x, then one can simply
modify the objective by replacing the unweighted sum

with a weighted one,

Lanchor(θ; x) (20)

= TCθ(x; z)− TCθ(z) + λIθ(za : x)

=

d∑
i=1

Iθ(xi : z)−
m∑

i=1,i6=a

Iθ(zi : x)− (1− λ)Iθ(za : x)

Eq. 20 suggests that mutual information maximization
in CorEx is achieved by modifying the corresponding
weights of the second term Iθ(zi : x) in Eq. 7. We then
use the lower bound in Eq. 10 to obtain

Lanchor(θ; x) ≥
d∑
i=1

H(xi) (21)

+ 〈ln qφ(xi|z)〉pθ(x,z)

−
m∑

i=1,i6=a

DKL(pθ(zi|x)||rα(zi))

− (1− λ)DKL(pθ(za|x)||rα(za))

Eq. 21 shows that in VAE, we can decrease the weight
of KL-divergence for particular latent codes to achieve
mutual information maximization. We call this new ap-
proach AnchorVAE in Eq. 21. Notice that there is a
subtle difference between AnchorVAE and β-VAE (Hig-
gins et al., 2017). In β-VAE, the weights of KL-
divergence term for all latent codes are the same, while
in AnchorVAE, only the weights of specified factors
have been changed to encourage high mutual informa-
tion. With some prior knowledge of the underlying
factors of variation, AnchorVAE encourages the model
to concentrate this explanatory power in a limited
number of variables.

Figure 4: Mutual information between input data x
and each latent variable zi in CelebA with AnchorVAE.
It is clear that the anchored first five dimensions have
the highest mutual information with x.

We trained AnchorVAE on the CelebA dataset with
2048 latent factors, with mean square error for re-
construction loss. We adopted a three layer convolu-
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tional neural network structure. The weights of KL-
divergence of first five latent variables are set to be 0.5
to let them have higher mutual information than other
latent variables. The mutual information is plotted in
Fig. 4 after training. We find these five latent variables
have the highest mutual information of around 3.5,
demonstrating the mutual information maximization
effect in AnchorVAE.

To evaluate the interpretability of those anchored vari-
ables for generating new samples, we manipulate the
first five latent variables while keep other dimensions
fixed. Fig. 5 summarizes the result. We observe that
all five anchored latent variables learn intuitive fac-
tors of variation in the data. It is interesting to see
that latent variable z0 and z4 are very similar, both
vary the generated images from white to black in some
sense. However, these two latent factors are actually
very different, z0 emphasizes skin color variation while
z4 controls the position of the light source.

(a) Varying z0. (Skin Color) (b) Varying z1. (Azimuth)

(c) Varying z2. (Emotion) (d) Varying z3. (Hair)

(e) Varying z4. (Lighting)

Figure 5: Manipulating latent codes
z0, z1, z2, z3, z4 on CelebA using AnchorVAE: We
show the effect of the anchored latent variables on the
outputs while traversing their values from [-3,3]. Each
row of represents a different seed image to encode
latent codes. Each anchored latent code represents a
different factor on interpretablility. (a) Skin Color (b)
Azimuth (c) Emotion (Smile) (d) Hair (less or more)
(e) Lighting.

We also trained the original VAE objective with same
network structure, and examine the top five latent
codes with highest mutual information. Fig. 6 shows
the results of manipulating the top two latent codes
z130, z610, with mutual information I(z130 : x) = 3.1
and I(z610 : x) = 2.8 respectively. We can see that
they reflect an entangled representation. The other
three latent codes demonstrate similar entanglement
which are omitted here.

(a) z130 entangles skin color
with hair

(b) z610 entangles emotion
with azimuth

Figure 6: Manipulating top two latent codes
with most mutual information on CelebA us-
ing original VAE. We observe that both latent codes
learned entangled representations. (a) z130 entangles
skin color with hair (b) z610 entangles emotion with
azimuth.

6.3 Generating Richer and More Realistic
Images via CorEx

Let us revisit the variational upper bound on Iθ(x : zi)
in Eq. 9. In this upper bound, VAE chooses rα (zi) to
be a standard normal distribution. But notice that this
upper bound becomes tight when rα (zi) = pθ(zi), i.e.,

Iθ (x : zi) ≡ DKL (pθ (zi|x) ||pθ (zi))

≤ DKL (pθ (zi|x) ||rα (zi))

where pθ(zi) =
∫
x
pθ(zi|x)p(x)dx. Therefore, after

training the model, we can approximate the true dis-
tribution pθ(zi) ≈ 1

N

∑N
i=1 pθ(zi|x[i]) by first sampling

a data point x[i], and then sampling from the con-
ditional pθ(zi|x[i]). Repeating this process across la-
tent dimensions, we can use the factorized distribution∏m
i=1 pθ(zi) to generate new data instead of sampling

from a standard normal. In this way, we obtain more
realistic images since we are sampling from a tighter
lower bound to the CorEx objective.

We ran a traditional VAE on the celebA dataset with
the log-normal loss as the reconstruction error and 128
latent codes. We calculate the variance of each pθ(zi),
and plot the cumulative distribution of these variances
in Fig. 7a. One can see that around 20% of the latent
variables actually have a variance greater than two. We
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(a) Cumulative distribution
of variance for each pθ(zi))

(b) Variance of pθ(zi) versus
mutual information Iθ(x : zi)

Figure 7: Variance statistics for pθ(z) on celebA after
training a standard VAE with 128 latent codes.

have plotted variance versus the mutual information
in Fig. 7b, in which we can see that higher variance in
zi corresponds to higher mutual information I(x : zi).
In this case, using a standard normal distribution with
variance 1 for all zi’s would be far from optimal for
generating the data.

(a) Latent codes are gener-
ated from standard normal

(b) Latent codes are gener-
ated from

∏m
i=1 pθ(zi)

Figure 8: Different sampling strategies of latent
codes for CelebA dataset on VAE / CorEx. Sam-
pling latent codes from

∏m
i=1 pθ(zi) in (b) yields better

quality images than sampling from a standard normal
distribution in (a).

Fig. 8 shows the generated images by either sampling
the latent code from a standard normal distribution or
the factorized distribution

∏m
i=1 pθ(zi). We can see that

Fig. 8b not only tends to generate more realistic images
than Fig. 8a but also, it also exhibits more diversity
than Fig. 8a. We attribute this improvement to the
more flexible nature of our latent code distribution.

7 Related Works

The notion of disentanglement in representation learn-
ing lacks a unique characterization, but generally refers
to latent factors which are individually interpretable,
amenable to simple downstream modeling or transfer
learning, and invariant to nuisance variation in the data

(Bengio et al., 2013). We adopt the common definition
of statistical independence (Achille and Soatto, 2017;
Dinh et al., 2014) by minimizing total correlation, an
idea with a rich history (Barlow, 1989; Comon, 1994;
Schmidhuber, 1992). However, there are numerous al-
ternatives not rooted in independence. Higgins et al.
(2017) measures disentanglement by the identifiability
of changes in a single latent dimension. The work of
(Thomas et al., 2017; Bengio et al., 2017) is similar in
spirit, identifying disentangled factors as changes in a
latent embedding that can be controlled via reinforce-
ment learning.

Our work also provides a complementary perspective
to a growing body of research connecting information
theory and variational inference (Achille and Soatto,
2017, 2018; Alemi et al., 2017), much of which is mo-
tivated by the Information Bottleneck (IB) method
(Tishby et al., 2000).

Our work is based on the unsupervised principle of
Correlation Explanation, but other variants of CorEx
also exist, such as Anchored CorEx (Gallagher et al.,
2017), in this case, the anchoring worked on a different
term and were used in semi-supervised settings.

8 Conclusion

Deep learning enables us to construct latent represen-
tations that reconstruct or generate samples from com-
plex, high-dimensional distributions. Unfortunately,
these powerful models do not necessarily produce rep-
resentations with structures that match human intu-
ition or goals. Subtle changes to training objectives
lead to qualitatively different representations, but our
understanding of this dependence remains tenuous.

Information theory has proven fruitful for understand-
ing the competition between compression and relevance
preservation in supervised learning (Shwartz-Ziv and
Tishby, 2017). We explored a similar trade-off in unsu-
pervised learning, between information maximization
and disentanglement of the learned factors. Writing
this objective in terms of mutual information led to two
surprising connections. First, we came to an unsuper-
vised information formulation that trades off compres-
sion and reconstruction relevance. Second, we found
that by making appropriate variational approximations,
we could reproduce the venerable VAE objective. This
new perspective on VAE enabled more flexible distribu-
tions for latent codes and motivated new generalizations
of the objective to localize interpretable information in
latent codes. Ultimately, this led us to a novel learning
objective that generated latent factors capturing intu-
itive structures in image data. We hope this alternative
formulation of unsupervised learning continues to pro-
vide useful insights into this challenging problem.
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