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Abstract

Ho↵man’s classical result gives a bound on
the distance of a point from a convex and
compact polytope in terms of the magnitude
of violation of the constraints. Recently, sev-
eral results showed that Ho↵man’s bound can
be used to derive strongly-convex-like rates
for first-order methods for o✏ine convex op-
timization of curved, though not strongly
convex, functions, over polyhedral sets. In
this work, we use this classical result for
the first time to obtain faster rates for on-
line convex optimization over polyhedral sets
with curved convex, though not strongly con-
vex, loss functions. We show that under sev-
eral reasonable assumptions on the data, the
standard Online Gradient Descent algorithm
guarantees logarithmic regret. To the best of
our knowledge, the only previous algorithm
to achieve logarithmic regret in the consid-
ered settings is the Online Newton Step al-
gorithm which requires quadratic (in the di-
mension) memory and at least quadratic run-
time per iteration, which greatly limits its
applicability to large-scale problems. In par-
ticular, our results hold for semi-adversarial
settings in which the data is a combination
of an arbitrary (adversarial) sequence and a
stochastic sequence, which might provide rea-
sonable approximation for many real-world
sequences, or under a natural assumption
that the data is low-rank. We demonstrate
via experiments that the regret of OGD is
indeed comparable to that of ONS (and even
far better) on curved though not strongly-
convex losses.
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1 Introduction

The celebrated Online Gradient Descent algorithm
(OGD), originally due to [20], is a natural adaptation
of the classical projected (sub)gradient descent algo-
rithm for o✏ine convex optimization, to the setting of
Online Convex Optimization [5, 15]. The benefits of
OGD are two folded: (i) in many problems of interest
it performs very e�cient iterations, which can often be
executed in linear time (in the dimension), and (ii) it
often guarantees optimal regret rates, mainly in terms
of the length of the sequence T , e.g.,

p
T regret for ar-

bitrary convex loss functions, and log T regret in case
all loss functions are strongly-convex [6].

However, there exists a highly-important and wide
class of loss functions, known as exp-concave losses
[6], for which OGD does not guarantee optimal re-
gret (in terms of T ). For instance, the family of exp-
concave losses capture important problems such as on-
line linear regression with the square loss and online
LASSO, online logistic regression, online portfolio se-
lection, and more. While for exp-concave losses, OGD
only guarantees regret that scales like

p
T , it is known

that an online algorithm known as Online Newton Step
(ONS), originally due to [6], guarantees log T regret
(see also recent work [12] which gives an improved
variant in terms of runtime and regret bound for low-
rank data). On the downside, while OGD applies very
e�cient iterations in terms of runtime and memory
requirements (e.g., when computing the gradient vec-
tor of the loss function and projecting onto the feasible
set is computationally-cheap), ONS requires quadratic
memory and to solve a linear system on each iteration
(which requires at least quadratic runtime via e�cient
implementation). ONS also requires to compute a non-
Euclidean projection on each iteration to enforce the
constraints, which can be considerably more expensive
than the Euclidean projection required by OGD (e.g.,
might require to use an iterative algorithm). Thus,
despite the improved regret bound, ONS is often not
applicable to large-scale problems. This naturally mo-
tivates the following question:
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Can Online Gradient Descent be shown to enjoy a
logarithmic regret bound for classes of loss functions

beyond the class of strongly convex losses?

In this paper we take a step forward towards under-
standing the conditions under-which OGD can guar-
antee logarithmic regret, hence yielding both an e�-
cient algorithm and an improved convergence rate in
such settings. In particular, we focus on an impor-
tant sub-class of the exp-concave losses: loss functions
which can be written as a strongly-convex function ap-
plied to a linear transformation of the input variables.
Such loss functions include important examples such
as the square loss for linear regression, the online port-
folio optimization loss, the logistic regression loss, and
more. While such losses are not necessarily strongly
convex in the entire space, they are strongly convex
on a certain subspace, which corresponds to the row-
span of the linear transformation. Our main result
shows that when all loss functions are of this form,
with linear transformations that satisfy certain consis-
tency conditions, and the feasible set is a convex and
compact polytope, the vanilla OGD algorithm, with a
suitable choice of learning rate, indeed guarantees log-
arithmic regret. To the best of our knowledge, this is
the first result to establish strongly-convex-like rates
for OGD without strong convexity, on an important
and wide class of applications.

Technically, at the heart of our result lies a classical
result in convex analysis, originally due to Ho↵man
[8], which roughly speaking, bounds the distance of a
point from a convex and compact polytope in terms of
the magnitude of violation of the constraints describ-
ing the polytope. In case the feasible set is a poly-
tope and the loss function is as described above (i.e.,
strongly convex applied to linear transformation), it
can be shown that Ho↵man’s bound implies a prop-
erty known as quadratic growth, which upper bounds
the `2 distance between any feasible point and a feasi-
ble optimal solution, in terms of the distance in func-
tion values - a property well known to enable faster
convergence rates in convex optimization settings (this
is often also the main consequence of strong convex-
ity needed in order to achieve fast rates for strongly-
convex optimization).

Indeed, several recent works have used this classical
result by Ho↵man [8], to achieve fast rates without
strong convexity for o✏ine optimization problems, see
for instance the recent works [14, 18, 9, 1, 19]. Im-
portantly, all of these results consider only stationary
settings, in which the objective function is fixed. As we
show in the sequel, obtaining such fast rates results in
the online convex optimization setting is considerably
more challenging since, as opposed to strong convexity
which is a property that holds in the entire space, and

hence, given a sequence of strongly convex functions,
this property holds throughout the sequence, Ho↵-
man’s bound on the other-hand, is related to a specific
subspace (which corresponds to the row-span of the
linear transformation in the losses discussed above),
and thus, given a sequence of such losses with di↵er-
ent corresponding subspaces, these subspaces need not
be, informally speaking, consistent with each other.
Hence, a main contribution of this work is to formal-
ize and analyze conditions under which this property
could indeed be leveraged towards obtaining fast rates
in a non-stationary online setting.

In particular, we show that our logarithmic-regret re-
sult holds for sequences which can be expressed as a
combination of an arbitrary (adversarial) sequence and
a stochastic sequence with certain stationary charac-
teristics, which may potentially serve as reasonable ap-
proximation to many real-world data-streams, or when
the data enjoys a low-rank structure. We report pre-
liminary experimental results on both synthetic and
real-world datasets which indeed show that OGD can
outperform the Online Netwon Step method, both in
terms of the regret and computational e�ciency, on
non-strongly convex sequences.

2 Preliminaries

Throughout this work we use k · k to denote the Eu-
clidean norm for vectors and the spectral norm (i.e.,
largest singular value) for matrices. Also, for a com-
pact set P ⇢ Rd and a matrix C 2 Rm⇥d, we use the
notation CP := {Cx | x 2 P}.

2.1 Convex optimization preliminaries

Definition 1. Given a convex and compact set K ⇢
Rd and a real-valued function f , di↵erentiable over K,
we say f is G-Lipschitz over K if 8x 2 K : krf(x)k 
G.

In particular, if f is convex, di↵erentiable and G-
Lipschitz over a convex and compact K, we have that
8x,y 2 K:

f(x)� f(y)  (x� y)>rf(x)  Gkx� yk. (1)

Definition 2. Given a convex and compact set K ⇢
Rd and a real-valued function f which is di↵erentiable
over K, we say f is ↵-strongly convex over K if 8x,y 2
K: f(x)  f(y) + (x� y)>rf(x)� ↵

2 kx� yk2.

We recall the first-order optimality condition for con-
vex di↵erentiable functions (see for instance [2]): for
any K ⇢ Rd, convex and compact, and a real-
valued function f , convex and di↵erentiable over K,
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we have that 8x 2 K, x⇤ 2 argmin
y2K f(y): (x⇤ �

x)>rf(x⇤)  0.

2.2 Online convex optimization preliminaries

We now briefly recall the setting of Online Convex Op-
timization (OCO). For a more in-depth introduction
we refer the reader to [5, 15].

In the OCO problem, a decision maker (DM) is re-
quired to iteratively choose points in a fixed convex
and compact set K ⇢ Rd. On each round t, after the
DM makes his choice, i.e., chooses some xt 2 K, a
convex function ft : K ! R is revealed, and the DM
su↵ers the loss ft(xt). This process continues for T
rounds, where T is assumed to be known in advanced.
The goal is to design an algorithm for choosing the
actions of the DM so to minimize a quantity called
regret, which is given by

regretT :=
TX

t=1

ft(xt)�min
x2K

TX

t=1

ft(x).

It is well known than an algorithm known as Online
Gradient Descent, see Algorithm 1 below, can guaran-
tee a O(GD

p
T ) bound on the regret, where D is the

`2 diameter of K and G is an `2 upper bound on the
gradients of the functions f1, . . . , fT [20], which is in
general optimal. It is also known that when all func-
tions f1, . . . , fT are ↵-strongly convex, the same algo-
rithm (though with di↵erent learning rate) guarantees
O((G2/↵) log T ) regret [6], which is also optimal under
this assumption [7].

Algorithm 1 Online (projected) Gradient Descent

1: x1  some arbitrary point in K
2: for t = 1 . . . T do
3: yt+1  xt � ⌘trft(xt)
4: xt+1  argmin

x2K kx� yt+1k2
5: end for

2.3 Ho↵man’s bound and the quadratic
growth property

Definition 3. We say a matrix C 2 Rm⇥d is �-
Ho↵man with respect to a convex and compact poly-
tope P ⇢ Rd for some � > 0, if for any vector c 2 Rm

such that the set P(C, c) := {x 2 P | Cx = c} is
not empty, it holds that 8x 2 P: dist(x,P(C, c))2 
��1kCx� ck2.

The following Lemma, originally due to Ho↵man
[8], shows that a Ho↵man parameter bounded away
from zero, always exists. Here we give the result in
rephrased form. A proof is given in the appendix for
completeness.

Lemma 1. Let P := {x 2 Rd | Ax  b} be a compact
and convex polytope and let C 2 Rm⇥d. Given a vector
c 2 Rm, define the set P(C, c) := {x 2 P | Cx = c}.
If P(C, c) 6= ;, then there exists � > 0 such that 8x 2
P: dist(x,P(C, c))2  ��1kCx� ck2. Moreover, we
have the bound � � min

Q2M �min

�
QQ>�, where M

is the set of all d⇥ d matrices whose rows are linearly
independent rows of the matrix M := (A>, C>)>,
and �min(·) denotes the smallest non-zero eigenvalue.

Definition 4. . We say a function f : Rd ! R has
the quadratic growth property with parameter  with
respect to a compact and convex set K ⇢ Rd, if it holds
that 8x 2 K: dist(x,X ⇤)2  2

 (f(x)� f⇤), where
X ⇤ := argmin

y2K f(y) and f⇤ := min
y2K f(y).

The following lemma, which will be instrumental in the
proof of our main result, demonstrates the connection
between Ho↵man’s bound and the quadratic growth
property for (possibly stochastic) convex objectives.

Lemma 2 (from Ho↵man’s bound to quadratic
growth). Let P ⇢ Rd be a convex and compact poly-
tope. Let D be a distribution over pairs (g(·),C) 2
(Rm ! R)⇥ Rm⇥d satisfying:

1. for each pair (g,C) in the support of D, the
function g is di↵erentiable, G-Lipschitz, and ↵-
strongly convex over CP.

2. the function F (x) := E(g,C)⇠D [g(Cx)] is di↵er-
entiable over P.

3. the expectation E(g(·),C)⇠D[C
>C] exists.

Let CD 2 Rk⇥d be such that C>
DCD =

E(g(·),C)⇠D[C
>C], and denote by � the Ho↵man con-

stant of CD w.r.t. P. Finally, define X ⇤ :=
argmin

y2P{F (y) := E(g,C)⇠D [g(Cy)]}. Then, there
exists cD 2 Rk such that x 2 X ⇤ () CDx = cD.
Moreover, 8x 2 P: dist(x,X ⇤)2  1

�kCDx� cDk2 
2
↵� (F (x)�min

y2P F (y)).

Proof. For any x 2 P and x⇤ 2 X ⇤ it holds that

F (x⇤)� F (x) = E(g,C)⇠D[g(Cx⇤)� g(Cx)]


(a)

E(g,C)⇠D

h
(x⇤ � x)>C>rg(Cx⇤)

� ↵
2
kC(x⇤ � x)k2

i

= (x⇤ � x)>E(g,C)⇠D

h
C>rg(Cx⇤)

i

� ↵
2
(x⇤ � x)>E(g,C)⇠D

h
C>C

i
(x⇤ � x)

=
(b)

(x⇤ � x)>rF (x⇤)� ↵
2
kCD(x⇤ � x)k2


(c)

�↵
2
kCD(x⇤ � x)k2,
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where (a) follows since each g(·) in the support
of D is di↵erentiable and ↵-strongly convex over
CP, (b) follows since F (x) is di↵erentaible over P
and hence it’s gradient vector is given by rF (x) =
E(g,C)⇠D[

d
dxg(Cx)] = E(g,C)⇠D[C

>rg(Cx)], and (c)
follows form the first-order optimality condition for
F (·). Thus, 8x⇤ 2 X ⇤,x 2 P:

kCD(x
⇤ � x)k2  2

↵
(F (x)� F (x⇤)) . (2)

Thus, setting cD = CDx⇤ for some x⇤ 2 X ⇤, directly
gives the =) direction of the first part of the lemma

To prove the (= direction of the first part of the
lemma, let x 2 P such that CDx = cD. Then we
have that

0 = (x� x⇤)C>
DCD(x� x⇤)

= E(g,C)⇠D[kCx�Cx⇤k2]

�
�
E(g,C)⇠D[kCx�Cx⇤k]

�2
.

Since for each pair (g,C) in the support of D, g is
convex and G-Lipschitz over CP, using Eq. (1) we
have that

F (x)� F (x⇤) = E(g,C)⇠D[g(Cx)� g(Cx⇤)]

 E(g,C)⇠D[GkCx�Cx⇤k] = 0,

meaning x 2 X ⇤, which completes the proof of the
first part of the lemma. The second part of the lemma
follows directly form combining the first part of the
lemma with Ho↵man’s bound (Lemma 1) and Eq. (2).

3 Informal Statement of Results and
Examples

We now give an informal statement of our theoreti-
cal results, followed by several concrete examples to
demonstrate possible applications. We then conclude
the section by drawing a connection between our set-
ting and online exp-concave optimization and the On-
line Newton Step algorithm.

3.1 Logarithmic regret for Online Gradient
Descent without strong convexity

Suppose that the feasible set P is a convex and com-
pact polytope in Rd and suppose all loss functions
are of the form ft(x) := gt(Ctx), where gt(·) is dif-
ferentiable and ↵1-strongly convex. Suppose further,
that there exists a matrix M 2 Rk⇥d such that for
all t 2 [T ], M>M ⌫ E[C>

t Ct] ⌫ ↵2M>M, where
the expectation is with respect to possible random-
ness in the choice of Ct. Then, we show there exists

a choice of step-sizes {⌘t}t2[T ] such that OGD guar-
antees O(log T ) regret (treating all other quantities as
constants).

We note that while the requirement M>M ⌫
E[C>

t Ct] ⌫ ↵2M>M seems not standard at first
glance, observe that when Ct is full-rank, and hence
ft(x) is in particular strongly convex, this requirement
holds trivially with M = I. Hence, this condition is
natural for dealing with loss functions that are strongly
convex only on a restricted subspace of Rd, requiring
them all to be consistent, at least in expectation, with
the same subspace. In Subsection 3.2 we discuss sev-
eral settings of interest in which it is reasonable to
assume this requirement holds.

3.2 Examples of relevant settings and loss
functions

Linear regression and Lasso: Consider the `p lin-
ear regression loss function ft(x) := 1

2kAtx� btk2p,
with p 2 (1, 2]. In particular, when p = 2 and the fea-
sible polytope is an `1-ball, i.e., P := {x 2 Rd | kxk1 
k}, for some k > 0, we get an online version of the fa-
mous LASSO problem [17].

For our log-regret result to hold for deterministic data,
i.e., deterministic choice of (A1,b1) . . . (At,bT ), it
must hold that row-span(A1) = row-span(A2) = · · · =
row-span(AT ). This is reasonable if At 2 Rm⇥d for a
large enough value of m, and the data, i.e., the rows of
A1, . . . ,AT lie in a certain low-dimensional subspace
1.

A di↵erent non-deterministic setting of interest is a
“semi-adversarial” model in which At := Ãt + Nt,
where the matrices Ã1, . . . ÃT are arbitrary and Nt ⇠
D i.i.d. for all t 2 [T ], for some fixed (yet un-
known) distribution D. Then, a su�cient condition
for our fast OGD rate to hold (in expectation), is that
ED[N] = 0 and ED[N>N] ⌫ ↵Ã>

t Ãt for all t 2 [T ],
for some ↵ > 0. That is, the data can be faithfully
modeled as a deterministic sequence perturbed by a
well-conditioned stochastic noise. For instance, such a
model underlies the problem of Universal Linear Fil-
tering studied in [13, 3].

Finally, if we can treat the data as generated by a
stochastic mechanism that on each time t randomly
samples At from a (unknown) distribution Dt (note
we allow the distribution to change each round), then
a su�cient condition for our log-regret result to hold
is that there exists a matrix M and ↵ > 0 such that
for all t 2 [T ]: M>M ⌫ E

At⇠Dt [A
>
t At] ⌫ ↵M>M.

1this may be natural to assume for instance, if the data
is the output of some dimension reduction technique such
as the wildly used principal component analysis procedure
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Logistic regression: In online logistic regression,
the loss on m data points organized in a ma-
trix At 2 Rm⇥d, can be written as ft(x) :=
Pm

i=1 log
⇣
1 + exp(A(i)>

t x)
⌘
, where A(i)

t denotes the

ith row of the matrix At. Observe ft(x) can
be rewritten as ft(x) := g(Atx) with g(y) :=Pm

i=1 log (1 + eyi). It not di�cult to verify that for
bounded y, g(y) is indeed strongly convex, and hence
this problem also falls into our setting. As in the linear
regression case, if the feasible set is a polytope (e.g.,
standard selections are a `1 or `1 ball), then same
assumptions on the matrices A1, . . . ,AT will allow to
apply our log-regret result.

Online portfolio selection: In the online portfolio
selection problem [5], the loss of a rebalancing portfolio
x (a point in the unit simplex) on m consecutive trad-

ing rounds is given by ft(x) = �
Pm

i=1 log
⇣
A(i)>

t x
⌘
,

where the rows of At 2 Rm⇥d, At > 0 (entry-
wise) encodes the asset prices on each round. Simi-
larly to the logistic regression example, we can write
ft(x) := g(Atx) with g(y) := �

Pm
i=1 log (yi). Again,

it is not hard to verify that if At � r (entry-wise) for
some r > 0, then g(·) is indeed strongly convex over
the transformed simplex At�d := {Atx | x 2 Rd, x �
0,

Pd
i=1 xi = 1}. Again, our log-regret result holds

under the same assumptions on the data A1, . . . ,AT ,
as above.

3.3 Connection with exp-concavity and the
Online Newton Step algorithm

A real-valued function f , twice-di↵erentiable over a
compact set K ⇢ Rd, is � exp-concave on K if and
only if 8x 2 K : r2f(x) ⌫ �rf(x)rf(x)> [5].

Note that in case f(x) := g(Cx), where g is ↵-strongly
convex and twice-di↵erentiable overCK, denotingG =
sup

x2CK krg(x)k, we have that 8x 2 K:

r2f(x) = C>r2g(Cx)C ⌫
(a)

↵C>C ⌫ ↵
G2

krg(Cx)k2C>C

⌫
(b)

↵
G2

C>rg(Cx)rg(Cx)>C =
↵
G2

rf(x)rf(x)>,

where (a) follows since g(·) is ↵-strongly convex,
and (b) follows since for any vector y we have that
y>C>rg(Cx)rg(Cx)>Cy = ((Cy)>rg(Cx))2 
krg(Cx)k2 · kCyk2 = krg(Cx)k2 · y>C>Cy. Hence,
f(x) is ↵/G2-exp-concave over K.

Thus, if all loss functions are as above, i.e., ft(x) :=
gt(Ctx), and we let G be a uniform upper bound
on the `2 norm of the gradients of gt(·) and C be
a uniform upper bound on the spectral norm of the
matrices Ct , the Online Newton Step (ONS) algo-
rithm [5], guarantees regret bound: regretT (ONS) =

O
⇣

G2

↵ + CGD
⌘
d log T , where D is the `2 diameter of

K.

4 Logarithmic Regret for OGD
Without Strong Convexity

In this section we present and prove our main result - a
logarithmic regret bound for Online Gradient Descent
(Algorithm 1) without strong-convexity. As discussed,
our result holds under certain conditions on the data
which are captured in the following assumption. In the
following Subsection 4.1 we discuss several concrete
examples in which this assumption holds.

Assumption 1. Given a convex and compact polytope
P ⇢ Rd, a distribution D over pairs (g,C) 2 (Rm !
R) ⇥ Rm⇥d, is said to satisfy Assumption 1 with pa-
rameters (M, Ḡ,↵1,↵2) 2 Rk⇥d ⇥ R3

+ w.r.t. P, if it
holds that

1. each function g, part of a pair (g,C) in the sup-
port of D, is di↵erentiable, ↵1-strongly convex
over CP := {Cx | x 2 P} and G-Lipschitz over
CP, for some finite G > 0

2. the function F (x) := E(g,C)⇠D [g(Cx)]} is di↵er-
entiable over P

3. 8x 2 P: E(g,C)⇠D
⇥
k d
dxg(Cx)k2

⇤
=

E(g,C)⇠D
⇥
kC>rg(Cx)k2

⇤
 Ḡ2

4. the expectation E(g(·),C)⇠D[C
>C] exists and sat-

isfies E(g,C)⇠D[C
>C] ⌫ ↵2M>M.

We can now state our main theorem, Theorem 1.
While the theorem holds under quite general condi-
tions, we refer the reader again to Section 3.2 for dis-
cussion of concrete applications.

Theorem 1. [OGD Master Theorem] Fix a con-
vex and compact polytope P ⇢ Rd. Consider a se-
quence of T distributions D1, . . .DT over (Rm !
R)⇥Rm⇥d which satisfy Assumption 1 with parameters
(C̄, Ḡ,↵1,↵2) w.r.t. P, where C̄ is a matrix satisfy-

ing C̄>C̄ = 1
T

PT
t=1 E(g,C)⇠Dt

[C>C]. Suppose further
that C̄ is �-Ho↵man w.r.t. P. Let f1(x) . . . fT (x) be a
sequence of loss functions such that ft(x) = gt(Ctx),
with (gt,Ct) ⇠ Dt independently of the functions
{f⌧}⌧2[T ]\{t}. Then, applying Algorithm 1 with step-
size ⌘t = 1

↵1↵2�t
, w.r.t. the losses f1 . . . fT and the

polytope P, guarantees that

max
x2P

Ef1⇠D1...fT⇠DT

"
TX

t=1

ft(xt)�
TX

t=1

ft(x)

#


↵1↵2�D
2

2
+

Ḡ2

2↵1↵2�
(1 + lnT ).
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Before we can prove the theorem, we need the follow-
ing technical lemma which extends Lemma 2 from a
single stochastic objective to a sequence of stochastic
objectives, and hence plays a key role in our regret
analysis .

Lemma 3 (from Ho↵man’s bound to quadratic
growth of a sequence). Let D1, . . . ,DT be distribu-
tions over (Rm ! R) ⇥ Rm⇥d satisfying Assump-
tion 1 with parameters (C̄, Ḡ,↵1,↵2) 2 Rk⇥d ⇥
R3

+, where C̄ is a matrix satisfying C̄>C̄ =
1
T

PT
t=1 E(g,C)⇠Dt

[C>
t Ct]. Consider the function

F (x) := 1
T

PT
t=1 E(g,C)⇠Dt

[g(Cx)], and define the
set of feasible minimizers: X ⇤ := argmin

x2P F (x).
Then, it holds that 8x⇤,y⇤ 2 X ⇤, t 2 [T ]:
E(g,C)⇠Dt

[g(Cx⇤)] = E(g,C)⇠Dt
[g(Cy⇤)]. Moreover,

letting � denote the Ho↵man constant of C̄ w.r.t.
the polytope P, we have that 8x 2 P, x⇤ 2
X ⇤ : dist(x,X ⇤)2  ��1kC̄(x� x⇤)k2.

Proof. Consider a distribution D over (Rm ! R) ⇥
Rm⇥d, described by the following sampling procedure:
pick t 2 [T ] uniformly at random, and then sample
(g,C) ⇠ Dt. Clearly, it holds that

8x 2 P : F (x) =
1

T

TX

t=1

E(g,C)⇠Dt
[g(Cx)]

= Et⇠Uni[T ][E(g,C)⇠Dt
[g(Cx)]]

= E(g,C)⇠D[g(Cx)].

Thus, it follows that X ⇤ =
argmin

x2P E(g,C)⇠D[g(Cx)].

Note that since each distribution Dt satisfies Assump-
tion 1, it also satisfies the assumptions of Lemma
2. It can be easily verified that as a consequence,
the distribution D also satisfies the assumptions of
Lemma 2, and thus there exists a matrix C̄, satisfying
C̄>C̄ = E(g,C)⇠D[C

>C], such that 8x⇤,y⇤ 2 X ⇤:

kC̄(x⇤ � y⇤)k2 = (x⇤ � y⇤)>C̄>C̄(x⇤ � y⇤) = 0.

By the definitions of C̄ and the distribution D, it holds
that

C̄>C̄ = E(g,C)⇠D[C
>C]

= Et⇠Uni[T ]

⇥
E(g,C)⇠Dt

[C>C]
⇤
=

1

T

TX

t=1

C̄>
t C̄t,

where we define C̄t to be a matrix satisfying C̄>
t C̄t =

E(g,C)⇠Dt
[C>C].

Thus, we have that

8x⇤,y⇤ 2 X ⇤ : 0 = (x⇤ � y⇤)>C̄>C̄(x⇤ � y⇤)

=
1

T

TX

t=1

(x⇤ � y⇤)>C̄>
t C̄t(x

⇤ � y⇤),

which, since each C̄>
t C̄t is positive semidefinite, im-

plies that 8x⇤,y⇤ 2 X ⇤, t 2 [T ]:

(x⇤ � y⇤)>C̄>
t C̄t(x

⇤ � y⇤) = 0. (3)

Thus, fixing some x⇤,y⇤ 2 X ⇤ and t 2 [T ], it holds
that

E(g,C)⇠Dt
[g(Cx⇤)� g(Cy⇤)] 

(a)

E(g,C)⇠Dt
[GkC(x⇤ � y⇤)k] =

G

q�
E(g,C)⇠Dt

[kC(x⇤ � y⇤)k]
�2 

G
q
E(g,C)⇠Dt

[kC(x⇤ � y⇤)k2] =

G
q
E(g,C)⇠Dt

[(x⇤ � y⇤)>C>C(x⇤ � y⇤)] =

G
q
(x⇤ � y⇤)>E(g,C)⇠Dt

[C>C](x⇤ � y⇤) =

G

q
(x⇤ � y⇤)>C̄t

>
C̄t(x⇤ � y⇤) =

(b)
0,

where (a) follows via Eq. (1) since each g(·) in the
support of Dt is convex and G-Lipschitz for some finite
G > 0, and (b) follows from Eq. (3). Thus, the first
part of the lemma follows.

The second part of the lemma is a straightforward con-
sequence of Lemma 2, when applied to the distribution
D, defined above.

Proof of Theorem 1. Let us denote the set
of of minimizers in hindsight: X ⇤ =
argmin

x2P
1
T

PT
t=1 Eft⇠Dt [ft(x)].

Given the sequence of points generated by Algorithm
1 {xt}Tt=1, we define the sequence {x⇤

t }Tt=1 as follows:
8t � 1: x⇤

t := argmin
x2X⇤ kx� xtk2, i.e., x⇤

t is the
projection of xt onto the set of optimal plays in hind-
sight X ⇤.

Let us fix some x⇤ 2 X ⇤. By an application of Lemma
3, it holds that

max
x2P

E
"

TX

t=1

ft(xt)� ft(x)

#
= E

"
TX

t=1

ft(xt)� ft(x
⇤)

#

= E
"

TX

t=1

ft(xt)� ft(x
⇤
t )

#
.

Thus, to prove the theorem, it su�ces to upper bound

RT := Ef1...fT

hPT
t=1 ft(xt)�

PT
t=1 ft(x

⇤
t )
i
.

Let us also define the sequence {rt := ft(xt) �
ft(x⇤

t )}Tt=1. Throughout the rest of the proof we write
rt as a short notation for rft(xt).

As standard in the analysis of Online Gradient De-
scent, for every t � 1, we have that
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kxt+1 � x⇤
t k2  kyt+1 � x⇤

t k2 = kxt � ⌘trt � x⇤
t k2

= kxt � x⇤
t k2 � 2⌘t(xt � x⇤

t )
>rt + ⌘2

t krtk2,

where the first inequality holds since xt+1 is the or-
thogonal projection of yt+1 onto P. Rearranging and
recalling that ft(x) = gt(Ctx) for some gt,Ct, we have
that

(Ct(xt � x⇤
t ))

>rgt(Ctxt) =(xt � x⇤
t )

>rt 
1

2⌘t
kxt � x⇤

t k2

� 1

2⌘t
kxt+1 � x⇤

t k2 +
⌘t
2
krtk2.

Since gt(·) is ↵1-strongly convex, we have

rt = gt(Ctxt)� gt(Ctx
⇤
t ) 

1

2⌘t
kxt � x⇤

t k2 �
1

2⌘t
kxt+1 � x⇤

t k2

� ↵1

2
kCt(xt � x⇤

t )k2 +
⌘t
2
krtk2.

By the definition of the sequence {x⇤
t }Tt=1, we have

rt 
1

2⌘t
dist(xt,X ⇤)2 � 1

2⌘t
dist(xt+1,X ⇤)2

� ↵1

2
kCt(xt � x⇤

t )k2 +
⌘tkrtk2

2
.

Summing over all T iterations, rearranging and taking
expectation on both sides, we have that

RT  Ef1...fT

"
1

2⌘1
dist(x1,X ⇤)2 +

Ḡ2

2

TX

t=1

⌘t

+
1

2

TX

t=2

⇣ 1

⌘t
dist(xt,X ⇤)2 � 1

⌘t�1
dist(xt,X ⇤)2

� ↵1kCt(xt � x⇤
t )k2

⌘#

 1

2
Ef1...ft

"
TX

t=2

✓
1

⌘t
� 1

⌘t�1

◆
dist(xt,X ⇤)2

� ↵1kCt(xt � x⇤
t )k2

#
+

D2

2⌘1
+

Ḡ2

2

TX

t=1

⌘t, (4)

where we have used the fact that 8t 2 [T ] :
EDt [krft(xt)k2]  Ḡ2.

Note that since for all t, Ct is independent of xt,x⇤
t ,

we have that

Ef1...ft

"✓
1

⌘t
� 1

⌘t�1

◆
dist(xt,X ⇤)2 � ↵1kCt(xt � x⇤

t )k2
#
=

Ef1...ft�1

"✓
1

⌘t
� 1

⌘t�1

◆
dist(xt,X ⇤)2

� ↵1(xt � x⇤
t )

>Eft [C
>
t Ct](xt � x⇤

t )

#
=

Ef1...ft�1

"✓
1

⌘t
� 1

⌘t�1

◆
dist(xt,X ⇤)2 � ↵1kC̄t(xt � x⇤

t )k2
#
,

(5)

where we let C̄t be such that C̄>
t C̄t =

E(g,Ct)⇠Dt
[C>

t Ct].

By Lemma 3 and the assumption of the theorem, it
holds that

8t 2 [T ] : dist(xt,X ⇤)2  ��1kC̄(xt � x⇤
t )k2

 (↵2�)
�1kC̄t(xt � x⇤

t )k2.

Thus, since the step-size ⌘t is monotonically non-
increasing with t, we have that 8t � 2:

✓
1

⌘t
� 1

⌘t�1

◆
dist(xt,X ⇤)2 � ↵1kC̄t(xt � x⇤

t )k2


✓✓

1

⌘t
� 1

⌘t�1

◆
1

↵2�
� ↵1

◆
kC̄t(xt � x⇤

t )k2. (6)

Combining Eq. (4), (5), (6), and plugging-in our
choice of step-size ⌘t =

1
↵1↵2�t

, we conclude that

RT  D2

2⌘1
+

Ḡ2

2

TX

t=1

⌘t 
↵1↵2�D

2

2
+

Ḡ2

2↵1↵2�
(1 + lnT ).

4.1 Applications of Theorem 1

Deterministic data: In case g1, . . . gT : Rm ! R
are arbitrary ↵1-strongly convex and di↵erentiable
functions over Rm, then a su�cient condition on the
matrices C1, . . . ,CT for applying the result of Theo-
rem 1 is that there exists a positive constant ↵2 such
that

8(i, j) 2 [T ]⇥ [T ] : C>
i Ci ⌫ ↵2C

>
j Cj , (7)

or in a di↵erent formulation: row-span(C1) =
row-span(C2) = · · · = row-span(CT ).

A simple application of Theorem 1 upper-bounds the

regret by ↵1↵2�D
2

2 + G2

2↵1↵2�
(1 + lnT ), where � is the

Ho↵man constant of 1
T

PT
t=1 C

>
t Ct w.r.t. the poly-

tope P.

Semi-adversarial data: A way to circumvent the
limitation of condition (7), is to consider slightly “eas-
ier” data. In particular if we let {gt(·)}t2[T ] be as in
the deterministic case, but we assume that the ma-
trices C1, . . . ,CT are perturbed realizations of some
underlying deterministic sequence C̃1, . . . , C̃T . That
is, we let C̃t be arbitrary, but the observed matrix
Ct is a perturbed version given by Ct = C̃t + Nt,
where Nt ⇠ D, where D is a fixed unknown distri-
bution. Then, the condition in (7) could be easily
replaced by the requirement: 8t 2 [T ], ED[N] = 0
and ED[N>N] ⌫ ↵2C̃>

t C̃t, where ↵2, as before, is a
positive constant.
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Figure 1: Comparing the (log) average loss vs. number of iterations for OGD and ONS.

An application of Theorem 1 upper-bounds the ex-

pected regret by ↵1↵2�D
2

2 + Ḡ2

2↵1↵2�
(1 + lnT ), where

� is the Ho↵man constant of the expected matrix
1
T

PT
t=1 C

>
t Ct+ED[N>N], w.r.t. the polytope P. As

mentioned in Section 3.2, such a setting underlies for
instance the Universal Linear Filtering problem stud-
ied in [13, 3].

Shifting stochastic data: Assuming (gt(·),Ct) is
sampled out of a distribution Dt (possibly changing
from round to round), under assumptions on gt(·) as
above, a su�cient condition on the stochastic ma-
trices Ct for applying the result of Theorem 1 is
that there exists some ↵2 > 0 such that for all
t1, t2 2 [T ]: E

C1⇠Dt1
[C>

1 C1] ⌫ ↵2EC2⇠Dt2
[C>

2 C2],
in which case we get the same bound as in the “semi-
adversarial” case with � being the Ho↵man constant
of 1

T

PT
t=1 EC⇠Dt [C

>C] w.r.t. P.

5 Experiments

In this section we provide empirical evidence for the
performance of Online Gradient Descent on curved,
though not strongly convex, losses. Since the compu-
tational advantage of OGD over competing methods is
clear, we focus on demonstrating convergence in terms
of the average loss. We consider the LASSO optimiza-
tion problem, i.e., the loss function on each round t
is ft(x) :=

1
2ka

>
t x� btk2 and the feasible polytope is

an `1 ball. In all experiments we compare OGD with
Online Newton Step (ONS).

Synthetic data: We compare OGD and ONS in an
online stochastic setting. We fix the dimension to d =
100 and generate a random PSD matrix M 2 Rd⇥d

with rank = 50 and with decaying eigenvalues given by
�i = 10 ·0.8i�1 for all i 2 [50]. We set at = v>

t M for a
random unit vector vt, and bt := a>t w

⇤+0.1nt, where
w⇤ is a fixed sparse vector chosen at random, and nt ⇠
N (0, 1). The radius of the feasible `1 ball is set to
r = 10. Since determining the Ho↵man constant is
di�cult in general, we heuristically set � according the
eigenvalue of the covariance matrix A = 1

T

PT
t=1 ata

>
t

which corresponds to the numerical rank of A. We use
this choice in all of our experiments which seems to
work well. and set the step-size accordingly to ⌘t =

1
�t

(note gt(·) in our case is 1-strongly convex). ONS is
implemented as suggested in [5]. For both methods we
plot the (log) average loss vs. number of iterations (we
use T = 10000).

MNIST data: Next we experiment with the MNIST
handwritten digit recognition dataset [11]. Specifi-
cally, we use the training dataset, keeping only the
data related to digits 3, 5. We set bt by assigning value
1 to instances corresponding to the digit 5 and �1 to
those corresponding to 3. Finally, in order to increase
the amount of data, we replicate the data and concate-
nate twice. We set the radius of the feasible `1 ball to
r = 5.

CIFAR10 data: we use the CIFAR10 tiny image
dataset [10] which contains 50000 32x32 images in
RGB format. We convert the images to grayscale and
keep only the data related to the classes ”automobile”
and ”truck”, assigning the first the label bt = �1 and
the second the label bt = 1. Here we also replicate the
data twice and set r = 5.

The results for all datasets are presented in Figure 1.
It is clearly observable that in all three cases OGD is
comparable to ONS in terms of regret and even far
better.

6 Acknowledgments

This research was supported by the ISRAEL SCI-
ENCE FOUNDATION (grant No. 1108/18).

References

[1] Amir Beck and Shimrit Shtern. Linearly con-
vergent away-step conditional gradient for non-
strongly convex functions. Math. Program.,
164(1-2):1–27, 2017.



Dan Garber

[2] Stephen Boyd and Lieven Vandenberghe. Convex
optimization. Cambridge university press, 2004.

[3] Dan Garber and Elad Hazan. Adaptive universal
linear filtering. IEEE Trans. Signal Processing,
61(7):1595–1604, 2013.
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