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Abstract

Modern online platforms rely on effective
rating systems to learn about items. We
consider the optimal design of rating sys-
tems that collect binary feedback after
transactions. We make three contributions.
First, we formalize the performance of a
rating system as the speed with which it
recovers the true underlying ranking on
items (in a large deviations sense), ac-
counting for both items’ underlying match
rates and the platform’s preferences. Sec-
ond, we provide an efficient algorithm to
compute the binary feedback system that
yields the highest such performance. Fi-
nally, we show how this theoretical perspec-
tive can be used to empirically design an
implementable, approximately optimal rat-
ing system, and validate our approach us-
ing real-world experimental data collected
on Amazon Mechanical Turk.

1 Introduction

Rating and ranking systems are everywhere, from
online marketplaces (e.g., 5 star systems where buy-
ers and sellers rate each other) to video platforms
(e.g., thumbs up/down systems on YouTube and
Netflix). However, they are uninformative in prac-
tice (Nosko and Tadelis, 2015). One recurring pat-
tern is that ratings binarize — most raters only use
the extreme choices on the rating scale, and the vast
majority of ratings receive the best possible rating.
For example, 75% of reviews on Airbnb receive a
perfect rating of 5 stars (Fradkin et al., 2017). Fur-
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thermore, several platforms have adopted a binary
rating system, in which a user rates her experience
as either positive or negative. Given the prevalence
of binary feedback (either de facto or by design), in
this work we investigate the optimal design of such
binary rating systems so that the platform can learn
as fast as possible about the items being rated.

The rating pipeline often works as follows: A buyer
enters a platform and matches with an item (e.g.
selects a video on Youtube, is paired with a driver
on Uber, or selects a home on AirBnB). She has an
experience (e.g. a view, ride, or stay). Then, the
platform asks her to rate her experience, i.e. it asks
her a question. In a binary system, she indicates
whether her experience was positive or negative. She
then leaves. The platform uses the ratings it has
received to score the quality of items, potentially
showing such scores to future buyers.

By designing such a system, we mean: the platform
can influence how the buyer rates — how likely she is
to give a positive rating, conditional on the quality
of her experience. It can do so by asking her different
questions, e.g. “Was this experience above average”
or “Was this experience the worst you’ve ever had?”.
Different questions shift the probabilities at which
items of various qualities receive positive ratings.

Our first question is: what is the structure of op-
timal binary feedback? A rating system in which
every buyer gives positive ratings after each match,
independent of item quality, will fail to learn any-
thing about the items. Clearly, better items should
be more likely to receive positive ratings than worse
ones. But how much more likely?

Informally, suppose we have a set of items that
match with buyers over time (at potentially differing
rates), and we wish to rank the items by their true
quality 6; € [0,1]. The platform cannot observe 6;,
however. Rather, in our model, after each match,
an item with quality 6; receives a positive rating
with probability 3(6;), and negative otherwise. In
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other words, the platform observes, for each item 4,
a sequence of ratings that are each Bernoulli(5(6;)).
Such ratings are the only knowledge the platform has
about items. The platform ranks the items accord-
ing to the percentage of its ratings (samples) that
were positive. The function S : [0,1] — [0, 1] affects
how quickly the platform learns the true ranking,
and it prefers to maximize the learning rate. We
show how to calculate an optimal 3.

As an example, consider three items with qualities
0o > 0, > 0., and S such that §(6,) = 0.5 and
B(0.) = 0.1, i.e. item a gets positive ratings af-
ter 50% of its matches, and item c after 10% of its
matches. It is unclear what 8(6;) should be. Triv-
ially, .1 < B(6,) < .5. Otherwise, even with in-
finitely many ratings the items will be mis-ranked.

But can we be more precise? If 5(6,) = .49, it will
take many ratings of both items a and b to learn
that 6, > 6, but only a few from ¢ to learn that
0. < 0. That may be good if the platform wants
to identify the worst item, but not if it wants to
identify the best. It may also be fine if items a and
b match much more often with buyers than item c.
Clearly, the optimal value for 3(6,) is objective and
context dependent. Of course, the problem becomes
more challenging with more items ¢ for which 5(6;)
must be chosen. Lastly, in this example, one might
intuitively think 3(6,) = 0.3 is optimal by symmetry
when the items matter equally and matching rates
are identical. This guess is incorrect. The optimal is
B(0y) =~ 0.28, due to the nature of binomial variance.

In this work, we first formalize the above problem
and show how to find an optimal 5(6), jointly for a
set of items [0, 1]. /3 changes with the platform’s ob-
jective and underlying item matching rates. Jump-
ing ahead, Figure 1 shows optimal /8 in various set-
tings under our model. For a platform that wants
to find the worst sellers, for example, the top half of
items should each get positive ratings at least 80+ %
of the time; it is more important for the bottom half
of items to be separated from one another, i.e. get
positive ratings at differing percentages.

Once we have calculated the optimal rating function
B (given context on the platform goals and matching
rates), what should we do with it?

Our second question is: How does a platform
buwild a rating system such that buyers behave near-
optimally, i.e. according to a calculated B9 The
platform cannot directly control buyer rating behav-
ior. Rather, it has to ask questions such that, for
each item quality 6, a fraction 3(6) of raters will give

the item a positive rating. For example, by asking,
“Is this the best experience you’ve had,” the plat-
form would induce behavior such that 5(6) is small
for most 6. Most platforms today ask vague ques-
tions (e.g. thumbs up/down), and items mostly get
positive ratings. We show this is highly suboptimal
for ranking items quickly.

Our main contributions and paper outline are:

Rating system design as information maxi-
mization. In Sections 3.1-3.2, we formulate the de-
sign of rating systems as an information maximiza-
tion problem. In particular, a good rating system
recovers the true ranking over items, and converge
quickly in the number of ratings.

Computing an optimal rating feedback func-
tion [. In Section 3.3, we develop an efficient algo-
rithm that calculates the optimal rating function g,
which depends on matching rates and the platform
objective. The optimal 3 provides quantitative in-
sights and principled comparisons between designs.

Real-world system design. In Section 4, we show
how a platform can use a simple experiment and
existing data to empirically design a near-optimal
rating system, and to audit the current system. In
Section 5, we demonstrate the value of this approach
through an experiment on Mechanical Turk.

2 Related work

Many empirical and model-based works docu-
ment and tackle challenges in existing rating sys-
tems (Bolton et al., 2013; Cabral and Hortasu, 2010;
Cook, 2015; Filippas et al., 2017; Fradkin et al.,
2017; Gaikwad et al., 2016; Hu et al., 2009; Immor-
lica et al., 2010; Nosko and Tadelis, 2015; Rajara-
man, 2009; Tadelis, 2016; Zervas et al., 2015). To
our knowledge, we are the first to formalize a rat-
ing system design problem and then show how one
can use empirical data to optimize such systems. In
a related paper (Garg and Johari, 2018), we test
behavioral insights using an experiment on a large
online labor platform and develop a related design
problem for a multiple-choice system, which proves
far less tractable.

Other works also optimize platform learning
rates (Acemoglu et al., 2017; Besbes and Scarsini,
2018; Che and Horner, 2015; Ifrach et al., 2017; Jo-
hari et al., 2017; Papanastasiou et al., 2017). When
prescriptive, they modify which matches occur, while
we view the matching process as given and modify
the rating system. The solutions are complementary.
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Many bandits works also seek to rank items from a
sequence of observations (Katariya et al., 2016; Maes
et al., 2011; Radlinski et al., 2008; Yue and Joachims,
2009). Our problem is the inverse of the bandit
setting: given an arm-pulling policy, we design each
arm’s feedback.! Our specific theoretical framework
is similar to that of Glynn and Juneja (2004), who
optimize a large deviations rate to derive an arm-
pulling policy for best arm identification.

The “twenty questions” interpretation of Shannon
entropy (Cover and Thomas, 2012; Dagan et al.,
2017) seeks questions that can identify an item from
its distribution. Dagan et al. (2017) show how to al-
most match the performance of Huffman codes with
only comparison and equality questions. Our work
differs in two key respects: first, we seek to rank a
set of items as opposed to identifying a single item;
second, we consider non-adaptive policies (i.e. the
platform cannot change its rating form in response
to what it knows about an item already).

3 Model and optimization

We now formalize our model and show how to op-
timize the rating function to maximize the learning
rate. We focus on finding an optimal 8 : [0,1] —
[0,1], a map from item quality 6 to the probability
it should receive a positive rating. This section re-
quires no data: we characterize the optimal system.

3.1 Model and problem specification

Our model is constructed to emphasize the rat-
ing system’s learning rate. Time is discrete (k =
0,1,2,...). Informally: there is a set of items. Each
time step, buyers match with the items and leave a
rating according to 3(6). The platform records the
ratings and ranks the items. Formally:

Items. The system consists of a set [0,1] of items,
where each item is associated with a unique (but un-
known) quality 0 € [0, 1]; i.e., the system consists of
a continuum of a unit mass of items whose unknown
qualities are uniform? in [0, 1]. Below, we discretize
the continuous quality space [0, 1] into M types, to
calculate a stepwise increasing 8. We will make clear
why we introduce a continuum but then discretize.

Matching with buyers. Items accumulate ratings
over time by matching with buyers. We assume the

Note that a rating is not the same as a reward; buyers
often give positive ratings after bad experiences.

2 Any distribution can be handled by considering 6 to
be the item’s quantile rather than its absolute quality.

existence of a nondecreasing match function g(6),
where item 6 receives ni () = |kg(6)] matches, and
thus ratings, up to time k. In other words, item
f is matched approximately every ﬁ time steps.
g(#) < 1 and bounded away from 0, i.e. 3¢ > O:
g(#) > c. This accumulation captures the feature
that better items may be more likely to match.

Ratings. The key quantity for our subsequent
analysis is the probability of a positive rating for
each 0, B(0) £ Pr(positive rating|d). Let y,(0) ~
Bernoulli(5(6)) be the rating an item of quality 6
receives at the /th time it matches.

Aggregating ratings and ranking sellers.
These ratings are aggregated into a reputation score,
xr(0), at each time k. The score is the fraction
of positive ratings received up to time k: z() =
ﬁ@) Z;ige) ye(0) with z(6) = 0 for all §. Thus,

xp(0) ~ ﬁ@Binomial(ﬁ(e), ng(0)).

System state. The state of the system is given by a
joint distribution u(©, X), which gives the mass of
items of quality §# € © C [0,1] with aggregate score
xr(0) € X C [0,1] at time k. Because our model is
a continuum, the evolution of the system state gy
follows a deterministic dynamical system.

We have described these dynamics at the level of in-
dividual items; however, such statements should be
interpreted as describing the evolution of the joint
distribution pi. The state update for py is deter-
mined by the mass of items that match and the dis-
tributions of their ratings. A formal description of
the state evolution is in Appendix Section B.1.

Platform objective. The platform wishes to rank
the items accurately. Given 8 and 6, > 65, define:

Pk(el,eg‘ﬁ) =k (xk(él) > xk(92)\91792)
— pi(x1(01) < 2x(02)]01,602) (1)

This expression captures observed score ranking’s
accuracy. When 61 > 60 but xx(61) < xx(02), the
ranking mistakenly orders 6; below 6. A good sys-
tem has large Py (61, 602]3). Integrating across items
creates the following objective for each time k:

Wk = / w(Gl,GQ)Pk(Gl,GQ\ﬂ)deldGQ (2)
01>02

Weight function w(fy,62) > 0 indicates how much
the platform cares about not mistaking a quality 6,
item with a quality 0, item. We consider scaled w
such that f91>92 w(61,02)d01dOs = 1.

Our first question then becomes: What [ yields the
highest value of Wy ¢ As discussed above, the plat-
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form influences 8 through the design of its rating
system. The optimal choice of 3 sets the benchmark.

Discussion. Objective function. The specification
(2) of the objective is quite rich. It contains scaled
versions of Kendall’s 7 (with w(f;,602) = 1 for all
61, 63) and Spearman’s p (with w(6y,602) = 01 — 63)
rank correlations. w allows the platform to en-
code, for example, that it cares more about correctly
ranking just the very best, very worst, or items at
both extremes.® Tarsitano (2009) and da Costa and
Roque (2006) discuss other well-studied examples.

Relationship between model components. Qualita-
tively, 8 affects W} as follows, as previewed in the
introduction: when 3(61) =~ [$(02), then xy(01) ~
zk(02), and so Py (67, 02|3) is small (errors are com-
mon). A good design thus would have large 5(61) —
B(02) for 1 > 0 where w(f;,0,) is large. Match-
ing function g also affects P, and thus Wj: when
g(0) is large, more ratings are sampled from item of
quality 6, i.e. ng(0) is higher, and so x(6) is more
closely concentrated around its mean (3(6). Thus,
Pi(0,0'|8) increases (for all 8") with g(f). A good
design of 8 thus considers both w and g.

Matching. As noted above, we assume items receive
a non-decreasing number of ratings based on their
true quality, through matching function g(#). This
is a reasonable approximation for our analysis, where
we focus on the asymptotic rate of convergence of the
ranking based on to the true ranking, as the num-
ber of ratings increases. In practice, items will be
more likely to match when they have a higher o0b-
served aggregate score. Similarly, our model makes
the stylized choice that all items have the same age.
In reality, items have different ages in platforms.

Non-response. In practice, many buyers choose not
to rate items, which our model does not capture.
One possible approach is to treat non-response as
a bad experience, which yields more information in
the work of Nosko and Tadelis (2015). Solutions to
non-response is an important area of work.

3.2 Large deviations & discretization

Recall the question: What 8 yields the highest value
of Wi 2. We now refine objective Wy, and constrain 8
to form a non-degenerate, feasible optimization task.

Large deviation rate function. W} is not one
objective: it has a different value per time k, and
no single ( simultaneously optimizes Wj for all

SWe use 0192(91 — 92), (1 — 91)(1 — 92)((91 — (92)7 and
(3 — 61)%(3 — 602)°(01 — 62) as examples.

k4 Considering asymptotic performance is also
insufficient: when [ is strictly increasing in 6,
limy 00 Pi(61,02|8) = 1 V01,02 by the law of large
numbers. Thus, W £ limy,_,. W = 1, and any such
[ is asymptotically optimal.

For this reason, we consider maximization of the
rate at which W} converges, i.e., how fast the esti-
mated item ranking converges to the true item rank-
ing. We use a large deviations approach (Dembo
and Zeitouni, 2010) to quantify this convergence
rate. Formally, given sequence Yy < limy_ o Yi =
Y, the large deviations rate of convergence is
—limg_ oo %bg(Y —Y;) = c. If ¢ exists then Y} ap-
proaches Y exponentially fast: Y — Y, = e~Feto(k),
Then, we wish to choose 8 to maximize Wy ’s large
deviations rate, r = — limy_, o0 %log(W - Wy).

Discretizing 5. Unfortunately, even this problem
is degenerate if we consider continuous 3: for any
that is not piecewise constant, the large deviations
rate of convergence is zero, i.e., convergence of Wy,
to its limit is only polynomially fast, and character-
izing the dependence of this convergence rate on 3
is intractable. Thus, the rate of convergence for Wy
is not a satisfactory objective with continuous .

We make progress by discretizing 3; in particular,
we restrict attention to optimization over stepwise
increasing § functions.” Among stepwise increasing
B, the large deviations rate of Wy to its limiting
value W can be shown to be nondegenerate, i.e. 3¢ >
0s.t. W—W = e *eto®) (See Lemma C.4 in the
Appendix for further discussion.)

Notationally, we will calculate an optimal stepwise
increasing 8 with M levels, i.e. there are M intervals
S; C [0,1] and levels t; such that when 6,6, € S;,
then B(61) = B(f2) £ t;. The challenge is calculat-
ing an optimal S* = {S;} and t* = {¢;}.

The physical interpretation is that we group the
items into M subsets (types) S; C [0,1]. When
items 61, 05 are in the same subset, then their asymp-
totic reputation scores are the same, limy x5 (01) =
limy 21 (f2) £ t;. These items cannot be distin-
guished from one another even asymptotically.

4For example, consider 8 such that the worst half
of items never receive a positive rating and the rest al-
ways do. It would perform comparatively well for a small
number of ratings k, as it quickly distinguishes the best
from the worst items. However it would never distin-
guish items within the same half. Some ' may make
more mistakes initially but perform better at larger k.

5Note that, even for purely computational reasons,
calculating 8 requires discretization.
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Kendall's 7, Spearman’s p Prioritizing best items

Prioritizing worst items Prioritizing extreme items

1.0
0.8 /
0.6 -

0.0 0.2 0.4 0.6 0.8 1.0
Quality 0

(a) Fix g = 1, with various objective function weights w

Linearly increasing matching —— Uniform matching

0.0 0.2 0.4 0.6 0.8 1.0
Quality 0

1+100

(b) Fix w = 1. Vary matching, g =1, and g = 5

Figure 1: Optimal g (with M = 200) with various objective weight functions w and matching rates g.

Though discretization allows us to define a large de-
viations rate for Wy, it comes at a cost: W, the
limiting value of Wy, is no longer one. Different dis-
cretization choices S result in different W.

Our optimization problem: Within the class of
stepwise increasing functions with M levels, find the
B that is optimal, i.e. is
(1) Asymptotically optimal. 1t yields the highest lim-
iting value of Wi. AND

(2) Rate optimal. Tt yields the fastest large devia-
tions rate r among asymptotically optimal 3.

A remarkable result of our paper is a O (M log? %)
procedure to find an optimal 8 with M levels.

3.3 Solving the optimization problem

The theorem below shows that the problem decom-
poses into two stages: first, find optimal discretiza-
tion intervals S*; then, find optimal t* given S*.

Theorem 3.1. The [ defined by the following
choices of S* and t* is optimal:

S* = argmaXZO§i<j<M f@zéSi,%ESJ’ w(01,02)d(91,92)

t* = argmaxr(t), where® g; = infoeg, g() and

1
r(t) = — kli_)n;o Z log(W — W) (3)
= min inf {g;y1 KL(a||ti+1) + g:KL(al|t;)}

0<i<M—2a€R

The proof is in the Appendix. The main hurdle is
showing that the continuum of rates for Py (61, 62)
for each pair 61,6, translates into a rate for Wj.

°KL(a||b) = alog £ + (1 — a)log 1=2 is the Kullback-
Leibler (KL) divergence between Bernoulli random vari-
ables with success probabilities a and b respectively.

This decomposition separates our two questions: S*
maximizes the limiting value of Wy, given any t, and
depends only on w; Then, t* maximizes the rate at
which the limiting value is reached, given g;.

For Kendall’s 7 and Spearman’s p, the optimal in-
tervals are simply equispaced in [0,1], i.e. S} =
[Jv%’ %), because the entire item quality distribu-
tion is equally important. For other objective weight
functions w, the difficulty of finding the optimal sub-
sets S™ depends on the properties of w. Since S* is
trivial for Kendall’s 7 and Spearman’s p — and w
is just an analytic tool that formalizes a platform’s

goals — we focus on finding the optimal levels t*.

Discussion. One may naturally wonder why we in-
troduced a continuum of quality [0, 1] and then dis-
cretized into M subsets, instead of starting with M
types. As established in Theorem 3.1, how we dis-
cretize (i.e. solving for S*) allows for optimization of
different objective weight functions w; it determines
which items are most valuable to distinguish.

Suppose we started with a set of M items. Then the
only remaining challenge is to equalize the rates at
which each item is separated from others: the large
deviations rate is unaffected by the weight function
w (it does not appear in the simplification of 7(t)).
In other words, given a discrete set of M items
(equiv, given S*), calculating the optimal ¢ is equiv-
alent to solving a mazimin problem for the rates at
which each type is distinguished from each of the
others. Thus, the algorithm below also solves the
inverse bandits problem in which we wish to rank
the M arms, and we can choose the structure of the
(binary) observations at each arm.

We further note that the choice of M is not conse-
quential; in the Appendix Section B.4 we show that
in an appropriate sense, a sequence of optimal 5y,
for each M converges as M gets large.
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Algorithm to find the optimal levels We now
describe how to find ¢*, the maximizer of r(¢).

The following lemma describes a system of equations
to find the t* that maximizes r. It states that ¢*
equalizes the rates at which each interval i is sepa-
rated from its neighbors. The proof involves manip-
ulation of r and convexity, and is in the appendix.

Lemma 3.1. The unique solution t* to the following
system of equations mazximizes r(t):

r(to,t1) = r(t1,ta) = - = r(tar—o,tar—1) (4)
to=0,tp-1=1

9i—

1 9di
’I“(tifl,ti) £ _ lOg I:((l — t,;l)g’i*ﬁrgi (1 — ti)g'i*ﬁrgi

gi_1 9; gi—1+9gi
+ti71 9i—1194 ti 9i1+911) :|

We do not know of any algorithm that efficiently
and provably solves such convex equality systems
in general. However, we leverage some structure in
our setting to develop an algorithm, NestedBisec-
tion, with run-time and optimality guarantees. The
efficiency of our algorithm results from the property
that, given a rate, ¢; is uniquely determined by the
value of either of the adjacent levels ¢;_1,¢;41, reduc-
ing an exponentially large search space to an almost
linear one. Physically, i.e., we only need to separate
each type of item from its neighboring types.

Below we include pseudo-code. Akin to branch and
bound, the algorithm proceeds via bisection on the
optimal value of tj;_5. For each candidate value
of tp;_o, the other values can be found using a se-
quence of bisection subroutines. These values ap-
proximately obey all the equalities in the system (4)
except the first. The direction of the first equality’s
violation reveals how to change the interval for the
next outer bisection iteration.

Theorem 3.2. NestedBisection finds an e-optimal t
in O (M log2 %) operations, where e-optimal means
that r(t) is within additive constant € of optimal.

The proof is in the appendix. The main difficulty
is finding a Lipschitz constant €(d) for how much
the rate changes with a shift § in a level ¢;. This
requires lower bounding ¢; as a function of M. In
practice, the algorithm runs instantaneously on a
modern machine (e.g. for M = 200).

3.4 Visualization and discussion

Figure 1 shows how the optimal [ varies with
weights w and matching rates g. Higher relative

ALGORITHM 1: Nested Bisection
Data: Number of intervals M, match function g
Result: 3 levels, i.e. {to...tp—1}
Function main (M, §, g)
while Uncertainty region for ta—2 is bigger
than error tolerance do
Calculate r(ty—2,1), the rate between
current guess for tyr—2, and tar—1 = 1.
Fixing ta—2, find ¢; ...¢ta—3 such that
T'(tl,tg) = T(tz,tg) ==
r(ty—s3,ta—2) = r(tam—2, 1), which can be
done through a sequence of bisection
routines.
Calculate r(0,¢1), the rate between current
guess for t1, and to = 0.
Compare r(tapr—2,1) and r(0,¢1), adjust
uncertainty region for ¢ps/—o accordingly.
return {¢;}

weights in a region lead to a larger range of 5(6)
there to make it easier to distinguish those items
(e.g., prioritizing the best items induces a 3 shifted
right). Higher relative matching rates g(6) have the
opposite effect, as frequent sampling naturally in-
creases accuracy for the best items. We formalize
this shifting in Appendix Section B.3.

It is interesting that even the basic case, with w =1
and g = 1, has a non-trivial 5. One would expect,
with weight and matching functions that treat all
items the same, that 8 would be linear, i.e. 3(0) = 6.
Instead, a third factor non-trivially impacts optimal
design: binomial variance is highest near 5(6) = 3.
Items that receive positive ratings at such frequency
have high-variance scores, and thus the optimal

has a smaller mass of items with such scores.

4 Designing approximately optimal,
implementable rating systems

We now turn to our second question: How does a
platform build and implement a real rating system
such that buyers behave near-optimally, i.e. accord-
ing to a calculated B%. In this section, we give an
example design procedure for how a platform would
do so, and in the next section we validate our pro-
cedure through an experiment on Mechanical Turk.

Recall that §5(6) gives the probability at which an
item of quality 6 should receive a positive rating.
However, the platform cannot force buyers to rate
according to this function. Rather, it must ask ques-
tions of buyers that will induce a proportion 5(6) of
them to give positive ratings for an item 6.

Throughout the section, we assume that an optimal
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B(0) has been calculated (for some M, g, and w).

Resources available to platform. We suppose
the platform has a set ) of possible binary ques-
tions that it could ask a buyer, e.g., “Are you sat-
isfied with your experience” or “Is this experience
your best on our platform?”. Informally, at each
rating opportunity (i.e., match made), the rater can
be shown a single question y € Y. Let ¥(6,y) be the
probability an item quality # would receive a positive
rating when the rater is asked question y € Y.

We further suppose the platform has a set © of rep-
resentative items for which it has access to item qual-
ity. ©, then, is the granularity at which the platform
can collect data about historical performance, or
otherwise get expert labels. (We assume M > |0)]).

Using known set O, the platform can run an exper-
iment to create an estimate ¥ (6,y),Vy € J,0 € O.

Design heuristic. How can the platform build an
effective rating system using these primitives and
B?7 We consider the following heuristic design: the
platform randomly shows a question y € ) to each
buyer. The choice of the platform is a distribution
H(y) over y € Y; in other words, for the platform
the design of the system amounts to choosing the fre-
quency with which each question is shown. At each
rating opportunity, y is chosen from ) according to
H, independently across opportunities.

Clearly, the probability that an item 6 receives a
positive rating is: 5(0) £ > yey (0, y)H(y).

We want a distribution H such that 3(8) = 5(6) for
all § € [0, 1], i.e., that the positive rating probability
for each item is exactly the optimal value. However,

there may not exist any set of questions ) with as-
sociated v and choice of H such that g = 5.7

We propose the following heuristic to address this
difficulty. Choose a probability distribution H to
minimize the following L, distance:

min Y |8(0) - Y (0.9 H()|  (5)

H:||H|1=1
[ZSC) yey

This heuristic uses the data available to the plat-
form, 1[)(97 y) for a set of items 6 € O, and designs H
so at least these items receive ratings close to their
optimal ratings 3(6;). Then, as long as ¢ is well-
behaved, and © is representative of the full set, one
can hope that 3(8) = 5(6), for all 6 € [0,1].

Discussion. Real-world analogue € constraints. A
special case of this system is already in place on

"There are special cases where an exact solution ex-
ists. For example, let Y = [0, 1], and ¥(6,y) = 1[0 > y].

many platforms, where the same question is always
shown. Static systems can be designed by restricting
H to only have mass at one question y. More gen-
erally, constraints can be used in optimization (5).

Limitations. Our model does not allow for y to be
chosen adaptively based on the platform’s current
knowledge of the item. In practice, this may be a
reasonable restriction for implementation purposes.
Our model also restricts aggregation to be binary;
the platform in our model does not use information
on how “hard” a question y is.

5 Mechanical Turk experiment

In the previous sections, we showed how to find an
optimal rating function S and we how to apply such
a (3 to design a binary rating system using empiri-
cal data. In this section, we deploy an experiment
on Amazon Mechanical Turk to apply these insights
in practice. First, we collect data that can be used
to create a reasonable real-world example of (6, y),
as a proof of concept with which we can apply our
optimization approach. Then, we use this model
to demonstrate some key features of optimal and
heuristic designs as computed via our methodology,
and show that they perform well relative to natural
benchmarks. Details of experimental design, simu-
lation methodology, and results are in Appendix A.

Experiment description. We have a set of 10
English paragraphs of various writing quality, with
expert scores 0, from a TOEFL book (Educational
Testing Service, 2005); there were 5 unique possi-
ble experts ratings, i.e. 6 € {.1,.3,.5,.7,.9}. For
each possible rating, we have two paragraphs who
received that score from experts.

We asked workers on Mechanical Turk to rate the
writing quality of the paragraphs from a set of ad-
jectives, Y. Using this data, we estimate ¥ (6,y),
i.e., the probability of positive rating when a ques-
tion based on adjective y € ) is shown for paragraph
with quality 6 € ©. (e.g., “Would you consider this
paragraph of quality [adjective] or better?”) Fig-
ure 2a shows our estimated 1[) for our 10 paragraphs.

Optimization. Next, we find the optimal 3 for var-
ious matching and weight functions using the meth-
ods from Section 3. In particular, we have g for all
permutations of the cases g = 1,9 = 1+171109, and w =
]., w = 9192(91—02), and w = (1—01)(1—92)(91—02)
Recall that this step does not use experimental data.

Then, using zﬂ and calculated Bs, we apply the
heuristic from Section 4 to find the distribution H
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Figure 2: Experiment and simulation results

with which to sample the questions (adjectives) in V.
Figure 2b shows the optimal 8 (with g =1, w = 1),
and estimated 8 from the procedure.

Simulation. Finally, we study the performance of
these designs via simulation in various settings. We
simulate a system with 500 items and 100 buyers
according to the model in Section 3.1, except that
matching is stochastic: at each time, a random 100
items receive ratings, based on observed scores x(6)
rather than true quality . Furthermore, in some
simulations, we have sellers entering and eziting the
market with some probability at each time step. We
measure the performance of all the designs. For com-
parison, we also simulate a naive H = |71\

Note that our experiment only provides 1/; associ-
ated with qualities § € ©, and for simulations we
construct a full ¥(6,y),V8 € [0,1] from these points
by averaging and interpolating (in order to model
human behavior for the full system). Further, our
calibrated simulations only provide rough evidence
for the approach: although we use real-world data,
the simulations assume that our model reflects real-
ity, except for where we deviate as described above.

Results and discussion. Figure 2c¢ shows the
simulated performance (as measured by Kendall’s
7 correlation) of the various designs over time, when
g = 1. Further plots are in the Appendix Figure 4,
showing performance under various weight functions
w and matching functions g, and with items entering
and exiting the market. We find that:

First, the optimal S8 for each setting outperforms
other possible functions, as expected. The designs
are robust to (some) assumptions in the model being
broken, especially regarding matching.

Second, the H from our procedure outperforms other
designs, but is worse than the optimal system 3. In

general, the simulated gap between an implemented
system and optimal design  provides the platform
quantitative insight on the system’s sub-optimality.

Third, comparing B to f8 gives qualitative insight on
how to improve the system. For example, in Fig-
ure 2b, (3 is especially inaccurate for 6 € [0,.4]. The
platform must thus find better questions for items of
such quality. Figure 2a corroborates: our questions
cannot separate two low quality paragraphs rated
differently by experts (in dark blue and green).

A wide range of recent empirical work has docu-
mented that real-world rating systems experience
substantial inflation; almost all items receive pos-
itive ratings almost every match (Filippas et al.,
2017; Fradkin et al., 2017; Tadelis, 2016). Our for-
mulation helps understand how — and whether —
such inflation is suboptimal, and provides guidance
to platform designers. In particular, rating inflation
can be interpreted as a current ((6) that is very
high for almost all item qualities #. This system is
well-performing if the platform objective is to sepa-
rate the worst items from the rest, or if high quality
items receive many more ratings than low quality
ones; it is clearly sub-optimal in other cases. Our
paper provides a template for how a platform might
address such a situation.
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