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Abstract

Optimal transport (OT) distances and max-
imum mean discrepancies (MMD) are now
routinely used in machine learning to com-
pare probability measures. Our focus in this
paper is on Sinkhorn divergences (SDs), a
regularized variant of OT distances that can
interpolate, depending on the regularization
strength ε, between OT (ε = 0) and MMD
(ε = ∞). Although the tradeoff induced by
that regularization is by now well understood
computationally (OT, SDs and MMD require
respectively O(n3 log n), O(n2) and n2 oper-
ations to compare two samples of size n),
much less is known in terms of the sample
complexity of SDs, namely bounding the gap
between the evaluation of SDs on two densi-
ties vs. samples from these densities. That
complexity for OT and MMD stand at two
extremes: O(1/n1/d) for OT in dimension d
and O(1/

√
n) for MMD. that for SDs has only

been studied empirically. In this paper, we
(i) derive a bound on the approximation error
made with SDs when approximating OT as a
function of the regularizer ε, (ii) prove that
the optimizers of regularized OT are bounded
in a Sobolev (RKHS) ball independent of the
two measures and (iii) reformulate SDs as a
maximization problem in a RKHS to obtain
a sample complexity in 1/

√
n (as in MMD),

with a constant that depends however on ε,
making the bridge between OT and MMD
complete.
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1 Introduction

Optimal Transport (OT) has emerged in recent years
as a powerful tool to compare probability distribu-
tions. Indeed, Wasserstein distances endow the space
of probability measures with a rich Riemannian struc-
ture (Ambrosio et al., 2006), one that is able to capture
meaningful geometric features between measures even
when their supports do not overlap. OT has been,
however, long neglected in data sciences for two main
reasons, which could be loosely described as computa-
tional—computing OT is costly since it usually requires
solving a network flow problem—and statistical—OT
suffers from the curse-of-dimensionality, since has re-
called later in this paper, the Wasserstein distance
computed between two samples converges only very
slowly to its population counterpart.

Recent years have witnessed significant advances on
those computational aspects that hindered the appli-
cation of OT. A recent wave of works have exploited
entropic regularization, both to compare discrete mea-
sures with finite support (Cuturi, 2013) or measures
that can be sampled from (Genevay et al., 2016).
Among the many learning tasks performed with this
regularization, one may cite domain adaptation (Courty
et al., 2014), text retrieval (Huang et al., 2016) or multi-
label classification (Frogner et al., 2015). The ability of
OT to compare probability distributions with disjoint
supports (as opposed to the Kullback-Leibler diver-
gence) has also made it popular as a loss function to
learn generative models (Genevay et al., 2018; Salimans
et al., 2018; Beaumont et al., 2002) as an alternative
to the approximation considered in (Arjovsky et al.,
2017).

At the other end of the spectrum, the maximum mean
discrepancy (MMD) (Gretton et al., 2006) is an integral
probability metric (Sriperumbudur et al., 2012) on
a reproducing kernel Hilbert space (RKHS) of test
functions. The MMD is easy to compute, and has
also been used in a very wide variety of applications,
notably to estimate of generative models (Li et al.,
2015; Dziugaite et al., 2015; Li et al., 2017).
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OT and MMD differ, however, on a fundamental as-
pect: their sample complexity. The definition of sample
complexity that we choose here is the convergence rate
of a given metric between a measure and its empirical
counterpart, as a function of the number of samples.
This notion is crucial in machine learning, as bad sam-
ple complexity implies overfitting and high gradient
variance when using these divergences for parameter
estimation. In that context, it is well known that the
sample complexity of MMD is independent of the di-
mension, scaling as 1√

n
(Gretton et al., 2006) where

n is the number of samples. In contrast, it is well
known that standard OT suffers from the curse of di-
mensionality (Dudley, 1969): Its sample complexity
is exponential in the dimension of the ambient space.
Although it was recently shown that these results can
be refined by considering the implicit dimension of data
(Weed and Bach, 2017) or the densitie properties’ Weed
and Berthet (2019), the sample complexity of OT ap-
pears now to be the major bottleneck for the use of
OT in high-dimensional machine learning problems.

A remedy to this problem may lie, again, in regular-
ization. Divergences defined through regularized OT,
known as Sinkhorn divergences, seem to be indeed less
prone to over-fitting. Indeed, a certain amount of reg-
ularization seems to improve performance in simple
learning tasks (Cuturi, 2013). Additionally, recent pa-
pers (Ramdas et al., 2017; Genevay et al., 2018) have
pointed out the fact that Sinkhorn divergences are in
fact interpolating between OT (when regularization
goes to zero) and MMD (when regularization goes to
infinity). However, aside from a recent central limit
theorem in the case of measures supported on discrete
spaces (Bigot et al., 2017), the convergence of empirical
Sinkhorn divergences, and more generally their sample
complexity, remains an open question.

Contributions. This paper provides three main con-
tributions, which all exhibit theoretical properties of
Sinkhorn divergences. Our first result is a bound on
the speed of convergence of regularized OT to standard
OT as a function of the regularization parameter, in
the case of continuous measures. The second theorem
proves that the optimizers of the regularized optimal
transport problem lie in a Sobolev ball which is inde-
pendent of the measures. This allows us to rewrite
the Sinkhorn divergence as an expectation maximiza-
tion problem in a RKHS ball and thus justify the
use of kernel-SGD for regularized OT as advocated in
(Genevay et al., 2016). As a consequence of this refor-
mulation, we provide as our third contribution a sample
complexity result. We focus on how the sample size and
the regularization parameter affect the convergence of
the empirical Sinkhorn divergence (i.e., computed from
samples of two continuous measures) to the continuous

Sinkhorn divergence. We show that the Sinkhorn di-
vergence benefits from the same sample complexity as
MMD, scaling in 1√

n
but with a constant that depends

on the inverse of the regularization parameter. Thus
sample complexity worsens when getting closer to stan-
dard OT, and there is therefore a tradeoff between a
good approximation of OT (small regularization pa-
rameter) and fast convergence in terms of sample size
(larger regularization parameter). We conclude this
paper with a few numerical experiments to asses the
dependence of the sample complexity on ε and d in
very simple cases.

Notations. We consider X and Y two bounded sub-
sets of Rd and we denote by |X | and |Y| their respective
diameter sup{||x− x′|||x, x′ ∈ X (resp.Y)}. The space
of positive Radon measures of mass 1 on X is denoted
M1

+(X ) and we use upper cases X,Y to denote ran-
dom variables in these spaces. We use the notation
ϕ = O(1 + xk) to say that ϕ ∈ R is bounded by a
polynomial of order k in x with positive coefficients.

2 Reminders on Sinkhorn Divergences

We consider two probability measures α ∈M1
+(X ) and

β onM1
+(Y). The Kantorovich formulation (1942) of

optimal transport between α and β is defined by

W (α, β)
def.
= min

π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y), (P)

where the feasible set is composed of probability dis-
tributions over the product space X × Y with fixed
marginals α, β:

Π(α, β)
def.
=
{
π ∈M1

+(X × Y) ; P1]π = α, P2]π = β
}
,

where P1]π (resp. P2]π) is the marginal distribution
of π for the first (resp. second) variable, using the
projection maps P1(x, y) = x;P2(x, y) = y along with
the push-forward operator ].

The cost function c represents the cost to move a unit
of mass from x to y. Through this paper, we will
assume this function to be C∞ (more specifically, we
need it to be C d2 +1). When X = Y is endowed with a
distance dX , choosing c(x, y) = dX (x, y)p where p > 1
yields the p-Wasserstein distance between probability
measures.

We introduce regularized optimal transport, which con-
sists in adding an entropic regularization to the optimal
transport problem, as proposed in (Cuturi, 2013). Here
we use the relative entropy of the transport plan with re-
spect to the product measure α⊗β following (Genevay
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et al., 2016):

Wε(α, β)
def.
= min

π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y)

+ εH(π | α⊗ β), (Pε)

where

H(π | α⊗ β)
def.
=

∫
X×Y

log

(
dπ(x, y)

dα(x)dβ(y)

)
dπ(x, y).

(1)

Choosing the relative entropy as a regularizer allows
to express the dual formulation of regularized OT as
the maximization of an expectation problem, as shown
in (Genevay et al., 2016)

Wε(α, β) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dα(x) +

∫
Y
v(y)dβ(y)

− ε
∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε

= max
u∈C(X),v∈C(Y )

Eα⊗β
[
fXYε (u, v)

]
+ ε

where fxyε (u, v) = u(x) + v(y)− εe
u(x)+v(y)−c(x,y)

ε . This
reformulation as the maximum of an expectation will
prove crucial to obtain sample complexity results. The
existence of optimal dual potentials (u, v) is proved in
the appendix. They are unique α− and β−a.e. up to
an additive constant.

To correct for the fact that Wε(α, α) 6= 0, (Genevay
et al., 2018) propose Sinkhorn divergences, a natural
normalization of that quantity defined as

W̄ε(α, β) = Wε(α, β)− 1

2
(Wε(α, α) +Wε(β, β)). (2)

This normalization ensures that W̄ε(α, α) = 0, but also
has a noticeable asymptotic behavior as mentioned
in (Genevay et al., 2018). Indeed, when ε→ 0 one re-
covers the original (unregularized) OT problem, while
choosing ε→ +∞ yields the maximum mean discrep-
ancy associated to the kernel k = −c/2, where MMD
is defined by:

MMDk(α, β) = Eα⊗α[k(X,X ′)] + Eβ⊗β [k(Y, Y ′)]

− 2Eα⊗β [k(X,Y )].

In the context of this paper, we study in detail the
sample complexity of Wε(α, β), knowing that these
results can be extended to W̄ε(α, β).

3 Approximating Optimal Transport
with Sinkhorn Divergences

In the present section, we are interested in bound-
ing the error made when approximating W (α, β) with
Wε(α, β).

Theorem 1. Let α and β be probability measures on
X and Y subsets of Rd such that |X | = |Y| 6 D and
assume that c is L-Lipschitz w.r.t. x and y. It holds

0 6Wε(α, β)−W (α, β) 6 2εd log
(
e2·L·D√
d·ε

)
(3)

∼ε→0 2εd log(1/ε). (4)

Proof. For a probability measure π on X × Y, we de-
note by C(π) =

∫
cdπ the associated transport cost

and by H(π) its relative entropy with respect to the
product measure α ⊗ β as defined in (1). Choosing
π0 a minimizer of minπ∈Π(α,β) C(π), we will build our
upper bounds using a family of transport plans with
finite entropy that approximate π0. The simplest ap-
proach consists in considering block approximation.
In contrast to the work of Carlier et al. (2017), who
also considered this technique, our focus here is on
quantitative bounds.

Definition 1 (Block approximation). For a resolu-
tion ∆ > 0, we consider the block partition of Rd in
hypercubes of side ∆ defined as

{Q∆
k = [k1 ·∆, (k1 + 1) ·∆[× . . . [kd ·∆, (kd + 1) ·∆[ ;

k = (k1, . . . , kd) ∈ Zd}.

To simplify notations, we introduce Q∆
ij

def.
= Q∆

i ×Q∆
j ,

α∆
i

def.
= α(Q∆

i ), β∆
j

def.
= β(Q∆

j ). The block approxima-
tion of π0 of resolution ∆ is the measure π∆ ∈ Π(α, β)
characterized by

π∆|Q∆
ij

=
π0(Q∆

ij)

α∆
i · β

∆
j

(α|Q∆
i
⊗ β|Q∆

j
)

for all (i, j) ∈ (Zd)2, with the convention 0/0 = 0.

π∆ is nonnegative by construction. Observe also that
for any Borel set B ⊂ Rd, one has

π∆(B × Rd) =
∑

(i,j)∈(Zd)2

π0(Q∆
ij)

α∆
i · β

∆
j

· α(B ∩Q∆
i ) · β∆

j

=
∑
i∈Zd

α(B ∩Q∆
i ) = α(B),

which proves, using the symmetric result in β, that π∆

belongs to Π(α, β). As a consequence, for any ε > 0
one has Wε(α, β) 6 C(π∆) + εH(π∆). Recalling also
that the relative entropy H is nonnegative over the set
of probability measures, we have the bound

0 6Wε(α, β)−W (α, β) 6 (C(π∆)−C(π0))+εH(π∆).

We can now bound the terms in the right-hand side,
and choose a value for ∆ that minimizes these bounds.
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The bound on C(π∆)− C(π0) relies on the Lipschitz
regularity of the cost function. Using the fact that
π∆(Q∆

ij) = π0(Q∆
ij) for all i, j, it holds

C(π∆)− C(π0) =
∑

(i,j)∈(Zd)2

π0(Q∆
ij)
(

sup
x,y∈Q∆

ij

c(x, y)

− inf
x,y∈Q∆

ij

c(x, y)
)

6 2L∆
√
d,

where L is the Lipschitz constant of the cost (separately
in x and y) and ∆

√
d is the diameter of each set Q∆

i .

As for the bound on H(π∆), using the fact that
π0(Q∆

ij) 6 1 we get

H(π∆) =
∑

(i,j)∈(Zd)2

log

(
π0(Q∆

ij)

α∆
i · β

∆
j

)
π0(Q∆

ij)

6
∑

(i,j)∈(Zd)2

(
log(1/α∆

i ) + log(1/β∆
j )
)
π0(Q∆

ij)

= −H∆(α)−H∆(β),

where we have defined H∆(α) =
∑
i∈Zd α

∆
i log(α∆

i )
and similarly for β. Note that in case α is a discrete
measure with finite support, H∆(α) is equal to (minus)
the discrete entropy of α as long as ∆ is smaller than
the minimum separation between atoms of α. However,
if α is not discrete then H∆(α) blows up to −∞ as ∆
goes to 0 and we need to control how fast it does so.
Considering α∆ the block approximation of α with con-
stant density α∆

i /∆
d on each block Q∆

i and (minus) its
differential entropy HLd(α∆) =

∫
Rd α

∆(x) logα∆(x)dx,
it holds H∆(α) = HLd(α

∆) − d · log(1/∆). More-
over, using the convexity of HLd , this can be compared
with the differential entropy of the uniform probabil-
ity on a hypercube containing X of size 2D. Thus
it holds HLd(α∆) > −d log(2D) and thus H∆(α) >
−d · log(2D/∆).

Summing up, we have for all ∆ > 0

Wε(α, β)−W (α, β) 6 2L∆
√
d+ 2εd · log(2D/∆).

The above bound is convex in ∆, minimized with ∆ =
2
√
d · ε/L. This yields

Wε(α, β)−W (α, β) 6 4εd+ 2εd log

(
L ·D√
d · ε

)
.

4 Properties of Sinkhorn Potentials

We prove in this section that Sinkhorn potentials are
bounded in the Sobolev space Hs(Rd) regardless of the
marginals α and β. For s > d

2 , H
s(Rd) is a reproducing

kernel Hilbert space (RKHS): This property will be
crucial to establish sample complexity results later on,
using standard tools from RKHS theory.

Definition 2. The Sobolev space Hs(X ), for s ∈ N∗,
is the space of functions ϕ : X ⊆ Rd → R such that
for every multi-index k with |k| 6 s the mixed par-
tial derivative ϕ(k) exists and belongs to L2(X ). It is
endowed with the following inner-product

〈ϕ,ψ〉Hs(X ) =
∑
|k|6s

∫
X
ϕ(k)(x)ψ(k)(x)dx. (5)

Theorem 2. When X and Y are two compact sets
of Rd and the cost c is C∞, then the Sinkhorn poten-
tials (u, v) are uniformly bounded in the Sobolev space
Hs(Rd) and their norms satisfy

||u||Hs = O

(
1 +

1

εs−1

)
and ||v||Hs = O

(
1 +

1

εs−1

)
,

with constants that only depend on |X | (or |Y| for v),d,
and

∥∥c(k)
∥∥
∞ for k = 0, . . . , s. In particular, we get the

following asymptotic behavior in ε: ||u||Hs = O(1) as
ε→ +∞ and ||u||Hs = O( 1

εs−1 ) as ε→ 0.

To prove this theorem, we first need to state some
regularity properties of the Sinkhorn potentials.
Proposition 1. If X and Y are two compact sets of
Rd and the cost c is C∞, then

• u(x) ∈ [miny v(y)−c(x, y),maxy v(y)−c(x, y)] for
all x ∈ X

• u is L-Lipschitz, where L is the Lipschitz constant
of c

• u ∈ C∞(X ) and
∥∥u(k)

∥∥
∞ = O(1 + 1

εk−1 )

and the same results also stand for v (inverting u and
v in the first item, and replacing X by Y).

Proof. The proofs of all three claims exploit the opti-
mality condition of the dual problem:

exp

(
−u(x)

ε

)
=

∫
exp

(
v(y)− c(x, y)

ε

)
β(y)dy. (6)

Since β is a probability measure, e
−u(x)
ε is a convex

combination of ϕ : x 7→ e
v(x)−c(x,y)

ε and thus e
−u(x)
ε ∈

[miny ϕ(y),maxy ϕ(y)]. We get the desired bounds by
taking the logarithm. The two other points use the
following lemmas:

Lemma 1. The derivatives of the potentials are given
by the following recurrence

u(n)(x) =

∫
gn(x, y)γε(x, y)β(y)dy, (7)

where

gn+1(x, y) = g′n(x, y) +
u′(x)− c′(x, y)

ε
gn(x, y),

g1(x, y) = c′(x, y) and γε(x, y) = exp(u(x)+v(y)−c(x,y)
ε ).
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Lemma 2. The sequence of auxiliary functions
(gk)k=0... verifies

∥∥u(k)
∥∥
∞ 6 ‖gk‖∞. Besides, for all

j = 0, . . . , k, for all k = 0, . . . , n − 2,
∥∥∥g(j)
n−k

∥∥∥
∞

is

bounded by a polynomial in 1
ε of order n− k + j − 1.

The detailed proofs of the lemmas can be found in the
appendix. We give here a sketch in the case where
d = 1. Lemma 1 is obtained by a simple recurrence,
consisting in differentiating both sides of the dual opti-
mality condition. Differentiating under the integral is
justified with the usual domination theorem, bounding
the integrand thanks to the Lipschitz assumption on
c, and this bound is integrable thanks to the marginal
constraint. Differentiating once and rearranging terms
gives:

u′(x) =

∫
c′(x, y)γε(x, y)β(y)dy. (8)

where γε is defined in Lemma 1. One can easily see
that γ′ε(x, y) = u′(x)−c′(x,y)

ε γε(x, y) and this allows to
conclude the recurrence, by differentiating both sides
of the equality. From the primal constaint, we have
that

∫
Y γε(x, y)β(y)dy = 1. Thus thanks to Lemma 1

we immediately get that
∥∥u(n)

∥∥
∞ 6 ‖gn‖∞. For n = 1,

since g1 = c′ we get that ‖u′‖∞ = ‖c′‖∞ = L and this
proves the second point of Proposition 1. For higher
values of n, we need the result from Lemma 2. This
property is also proved by recurrence, but requires a
bit more work. To prove the induction step, we need
to go from bounds on g(i)

n−k, for k = 0, . . . , n − 2 and
i = 0, . . . , k to bounds on g(i)

n+1−k, for k = 0, . . . , n− 1
and i = 0, . . . , k. Hence only new quantities that we
need to bound are g(k)

n+1−k, k = 0, . . . , n − 1. This is
done by another (backwards) recurrence on k which
involves some tedious computations, based on Leibniz
formula, that are detailed in the appendix.

Combining the bounds of the derivatives of the poten-
tials with the definition of the norm in Hs, is enough
to complete the proof of Theorem 2.

Proof. (Theorem 2) The norm of u in Hs(X ) is

||u||Hs =

∑
|k|6s

∫
X

(u(k))2

 1
2

6 |X |

∑
|k|6s

∥∥∥u(k)
∥∥∥2

∞

 1
2

.

From Proposition 1 we have that ∀k,
∥∥u(k)

∥∥
∞ = O(1 +

1
εk−1 ) and thus we get that ||u||Hs = O(1 + 1

εs−1 ). We
just proved the bound in Hs(X ) but we actually want
to have a bound on Hs(Rd). This is immediate thanks
to the Sobolev extension theorem (Calderón, 1961)
which guarantees that ||u||Hs(Rd) 6 C||u||Hs(X ) under
the assumption that X is a bounded Lipschitz domain.

This result, aside from proving useful in the next section
to obtain sample complexity results on the Sinkhorn
divergence, also proves that kernel-SGD can be used
to solve continuous regularized OT. This idea intro-
duced in Genevay et al. (2016) consists in assuming the
potentials are in the ball of a certain RKHS, to write
them as a linear combination of kernel functions and
then perform stochastic gradient descent on these coef-
ficients. Knowing the radius of the ball and the kernel
associated with the RKHS (here the Sobolev or Matérn
kernel) is crucial to obtain good numerical performance
and ensure the convergence of the algorithm.

5 Approximation from Samples

In practice, measures α and β are only known through
a finite number of samples. Thus, what can be actu-
ally computed in practice is the Sinkhorn divergence
between the empirical measures α̂n

def.
= 1

n

∑n
i=1 δXi

and β̂n
def.
= 1

n

∑n
i=1 δYi , where (X1, . . . , Xn) and

(Y1, . . . , Yn) are n-samples from α and β, that is

Wε(α̂n, β̂n) = max
u,v

n∑
i=1

u(Xi) +

n∑
i=1

v(Yi)

− ε
n∑
i=1

exp

(
u(Xi) + v(Yi)− c(Xi, Yi)

ε

)
+ ε

= max
u,v

1

n

n∑
i=1

fXiYiε (u, v) + ε,

where (Xi, Yi)
n
i=1 are i.i.d random variables distributed

according to α⊗β. On actual samples, these quantities
can be computed using Sinkhorn’s algorithm (Cuturi,
2013).

Our goal is to quantify the error that is made by ap-
proximating α, β by their empirical counterparts α̂n, β̂n,
that is bounding the following quantity:

|Wε(α, β)−Wε(α̂n, β̂n)| =

|EfXYε (u∗, v∗)− 1

n

n∑
i=1

fXiYiε (û, v̂)|, (9)

where (u∗, v∗) are the optimal Sinkhorn potentials as-
sociated with (α, β) and (û, v̂) are their empirical coun-
terparts.
Theorem 3. Consider the Sinkhorn divergence be-
tween two measures α and β on X and Y two bounded
subsets of Rd, with a C∞, L-Lipschitz cost c. One has

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
e
κ
ε

√
n

(
1 +

1

εbd/2c

))
where κ = 2L|X | + ‖c‖∞ and constants only depend
on |X |,|Y|,d, and

∥∥c(k)
∥∥
∞ for k = 0 . . . bd/2c. In par-

ticular, we get the following asymptotic behavior in
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ε:

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
e
κ
ε

εbd/2c
√
n

)
as ε→ 0

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
1√
n

)
as ε→ +∞.

An interesting feature from this theorem is the fact
when ε is large enough, the convergence rate does not
depend on ε anymore. This means that at some point,
increasing ε will not substantially improve convergence.
However, for small values of ε the dependence is critical.

We prove this result in the rest of this section. The main
idea is to exploit standard results from PAC-learning in
RKHS. Our theorem is an application of the following
result from Bartlett and Mendelson (2002) ( combining
Theorem 12,4) and Lemma 22 in their paper):

Proposition 2. (Bartlett-Mendelson ’02) Consider α
a probability distribution, ` a B-lipschitz loss and G a
given class of functions. Then

Eα

[
sup
g∈G

Eα`(g,X)− 1

n

n∑
i=1

`(g,Xi)

]
6 2BEαR(G(Xn

1 ))

where R(G(Xn
1 )) is the Rademacher complexity of class

G defined by R(G(Xn
1 )) = supg∈G Eσ 1

n

∑n
i=1 σig(Xi)

where (σi)i are iid Rademacher random variables. Be-
sides, when G is a ball of radius λ in a RKHS with
kernel k the Rademacher complexity is bounded by

R(Gλ(Xn
1 )) 6

λ

n

√√√√ n∑
i=1

k(Xi, Xi).

Our problem falls in this framework thanks to the
following lemma:

Lemma 3. Let Hsλ
def.
= {u ∈ Hs(Rd) | ||u||Hs(Rd) 6 λ},

then there exists λ such that:

|Wε(α, β)−Wε(α̂n, β̂n)| 6

3 sup
(u,v)∈(Hsλ)2

|EfXYε (u, v)− 1

n

n∑
i=1

fXiYiε (u, v)|.

Proof. Inserting EfXYε (û, v̂) and using the triangle in-
equality in (9) gives

|Wε(α, β)−Wε(α̂n, β̂n)| 6 |EfXYε (u∗, v∗)−EfXYε (û, v̂)|

+ |EfXYε (û, v̂)− 1

n

n∑
i=1

fXiYiε (û, v̂)|.

From Theorem 2, we know that the all the dual
potentials are bounded in Hs(Rd) by a constant λ

which doesn’t depend on the measures. Thus the
second term is bounded by sup(u,v)∈(Hsλ)2 |Efε(u, v)−
1
n

∑n
i=1 fε(u, v)| .

The first quantity needs to be broken down further.
Notice that it is non-negative since (u∗, v∗) is the maxi-
mizer of Efε(·, ·) so we can leave out the absolute value.
We have:

EfXYε (u∗, v∗)− EfXYε (û, v̂) 6

EfXYε (u∗, v∗)− 1

n

n∑
i=1

fXiYiε (u∗, v∗) (10)

+
1

n

n∑
i=1

fXiYiε (u∗, v∗)− 1

n

n∑
i=1

fXiYiε (û, v̂) (11)

+
1

n

n∑
i=1

fXiYiε (û, v̂)− EfXYε (û, v̂) (12)

Both (10) and (12) can be bounded by
sup(u,v)∈(Hsλ)2 |EfXYε (u, v) − 1

n

∑n
i=1 f

XiYi
ε (u, v)|

while (11) is non-positive since (û, v̂) is the maximizer
of 1

n

∑n
i=1 f

XiYi
ε (·, ·).

To apply Proposition 2 to Sinkhorn divergences we
need to prove that (a) the optimal potentials are in a
RKHS and (b) our loss function fε is Lipschitz in the
potentials.

The first point has already been proved in the previous
section. The RKHS we are considering is Hs(Rd) with
s = bd2c+ 1. It remains to prove that fε is Lipschitz in
(u, v) on a certain subspace that contains the optimal
potentials.

Lemma 4. Let A = {(u, v) | u⊕ v 6 2L|X |+ ‖c‖∞}.
We have:

(i) the pairs of optimal potentials (u∗, v∗) such that
u∗(0) = 0 belong to A,

(ii) fε is B-Lipschitz in (u, v) on A with B 6 1 +

exp(2
L|X |+‖c‖∞

ε ).

Proof. Let us prove that we can restrict ourselves to a
subspace on which fε is Lipschitz in (u, v).

fxyε (u, v) = u(x)+v(y)−ε exp

(
u(x) + v(y)− c(x, y)

ε

)

∇fε(u, v) = 1− exp

(
u+ v − c

ε

)
.

To ensure that fε is Lipschitz, we simply need to en-
sure that the quantity inside the exponential is upper-
bounded at optimality and then restrict the function
to all (u, v) that satisfy that bound.
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Figure 1: W̄ε(α̂n, α̂
′
n) as a function of n in log-log space : Influence of ε for fixed d on two uniform distributions

on the hypercube with quadratic cost.

Figure 2: W̄ε(α̂n, α̂
′
n) as a function of n in log-log space : Influence of d for fixed ε on two uniform distributions

on the hypercube with quadratic cost.

Recall the bounds on the optimal potentials from Propo-
sition 1. We have that ∀x ∈ X , y ∈ Y,

u(x) 6 L|x| and v(y) 6 max
x

u(x)− c(x, y).

Since we assumed X to be a bounded set, denoting by
|X | the diameter of the space we get that at optimality
∀x ∈ X , y ∈ Y

u(x) + v(y) 6 2L|X |+ ‖c‖∞ .

Let us denote A = {(u, v) ∈ (Hs(Rd))2 | u ⊕ v 6
2L|X |+ ‖c‖∞}, we have that ∀(u, v) ∈ A,

|∇fε(u, v)| 6 1 + exp(2
L|X |+ ‖c‖∞

ε
).

We now have all the required elements to prove our sam-
ple complexity result on the Sinkhorn loss, by applying
Proposition 2.

Proof. (Theorem 3) Since fε is Lipschitz and we are
optimizing over Hs(Rd) which is a RKHS, we can apply
Proposition 2 to bound the sup in Lemma 3. We get:

E|Wε(α, β)−Wε(α̂n, β̂n)| 6 3
2Bλ

n
E

√√√√ n∑
i=1

k(Xi, Xi)

where B 6 1 + exp(2
L|X |+‖c‖∞

ε ) (Lemma 4), λ =
O(max(1, 1

εd/2
)) (Theorem 2). We can further bound

√∑n
i=1 k(Xi, Xi) by

√
nmaxx∈X k(x, x) where k is

the kernel associated to Hs(Rd) (usually called
Matern or Sobolev kernel) and thus maxx∈X k(x, x) =
k(0, 0) := K which doesn’t depend on n or ε. Combin-
ing all these bounds, we get the convergence rate in

1√
n
with different asymptotic behaviors in ε when it is

large or small.

Using similar arguments, we can also derive a concen-
tration result:

Corollary 1. With probability at least 1− δ,

|Wε(α, β)−Wε(α̂n, β̂n)| 6 6B
λK√
n

+ C

√
2 log 1

δ

n

where B, λ,K are defined in the proof above, and C =
κ+ ε exp(κε ) with κ = 2L|X |+ ‖c‖∞.

Proof. We apply the bounded differences (Mc Diarmid)
inequality to g : (x1, . . . , xn) 7→ supu,v∈Hsλ(EfXYε −
1
nf

Xi,Yi
ε ). From Lemma 4 we get that ∀x, y, fxyε (u, v) 6

κ+εeκ/ε
def.
= C, and thus, changing one of the variables

in g changes the value of the function by at most 2C/n.
Thus the bounded differences inequality gives

P (|g(X1, . . . , Xn)− Eg(X1, . . . , Xn)| > t) 6 2 exp(
t2n

2C2
)
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Choosing t = C

√
2 log 1

δ

n yields that with probability at
least 1− δ

g(X1, . . . , Xn) 6 Eg(X1, . . . , Xn) + C

√
2 log 1

δ

n

and from Theorem 3 we already have

Eg(X1, . . . , Xn) = E sup
u,v∈Hsλ

(EfXYε − 1

n
fXi,Yiε ) 6

2BλK√
n

.

6 Experiments

We conclude with some numerical experiments on the
sample complexity of Sinkhorn Divergences. Since
there are no explicit formulas for Wε in general, we
consider W̄ε(α̂n, α̂

′
n) where α̂n

def.
= 1

n

∑n
i=1 δXi, α̂

′
n

def.
=

1
n

∑n
i=1 δXi′ and (X1, . . . , Xn) and (X ′1, . . . , X

′
n) are

two independent n-samples from α. Note that we use
in this section the normalized Sinkhorn Divergence as
defined in (2), since we know that W̄ε(α, α) = 0 and
thus W̄ε(α̂n, α̂

′
n)→ 0 as n→ +∞ .

Each of the experiments is run 300 times, and we plot
the average of W̄ε(α̂n, α̂

′
n) as a function of n in log-log

space, with shaded standard deviation bars.

First, we consider the uniform distribution over a hyper-
cube with the standard quadratic cost c(x, y) = ||x−y||22,
which falls within our framework, as we are dealing
with a C∞ cost on a bounded domain. Figure 1 shows
the influence of the dimension d on the convergence,
while Figure 2 shows the influence of the regulariza-
tion ε on the convergence for a given dimension. The
influence of ε on the convergence rate increases with
the dimension: the curves are almost parallel for all
values of ε in dimension 2 but they get further apart
as dimension increases. As expected from our bound,
there is a cutoff which happens here at ε = 1. All
values of ε > 1 have similar convergence rates, and the
dependence on 1

ε becomes clear for smaller values. The
same cutoff appears when looking at the influence of
the dimension on the convergence rate for a fixed ε.
The curves are parallel for all dimensions for ε > 1 but
they have very different slopes for smaller ε.

We relax next some of the assumptions needed in our
theorem to see how the Sinkhorn divergence behaves
empirically. First we relax the regularity assumption
on the cost, using c(x, y) = ||x−y||1. As seen on the two
left images in figure 3 the behavior is very similar to the
quadratic cost but with a more pronounced influence
of ε, even for small dimensions. The fact that the
convergence rate gets slower as ε gets smaller is already

very clear in dimension 2, which wasn’t the case for
the quadratic cost. The influence of the dimension for
a given value of ε is not any different however.

We also relax the bounded domain assumption, consid-
ering a standard normal distribution over Rd with a
quadratic cost. While the influence of ε on the conver-
gence rate is still obvious, the influence of the dimension
is less clear. There is also a higher variance, which can
be expected as the concentration bound from Corol-
lary 1 depends on the diameter of the domain.

For all curves, we observe that d and ε impact variance,
with much smaller variance for small values of ε and
high dimensions. From the concentration bound, the
dependency on ε coming from the uniform bound on fε
is of the form ε exp(κ/ε), suggesting higher variance for
small values of ε. This could indicate that our uniform
bound on fε is not tight, and we should consider other
methods to get tighter bounds in further work.

7 Conclusion

We have presented two convergence theorems for SDs: a
bound on the approximation error of OT and a sample
complexity bound for empirical Sinkhorn divergences.
The 1/

√
n convergence rate is similar to MMD, but

with a constant that depends on the inverse of the
regularization parameter, which nicely complements
the interpolation property of SDs pointed out in recent
papers. Furthermore, the reformulation of SDs as the
maximization of an expectation in a RKHS ball also
opens the door to a better use of kernel-SGD for the
computation of SDs.

Our numerical experiments suggest some open prob-
lems. It seems that the convergence rate still holds for
unbounded domains and non-smooth cost functions.
Besides, getting tighter bounds in our theorem might
allow us to derive a sharp estimate on the optimal ε to
approximate OT for a given n, by combining our two
convergence theorems together.
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Appendix
1 Proof of Lemma 1 and Lemma 2

Lemma 1. The derivatives of the potentials are given by the following recurrence

u(n)(x) =

∫
gn(x, y)γε(x, y)β(y)dy, (13)

where
gn+1(x, y) = g′n(x, y) +

u′(x)− c′(x, y)

ε
gn(x, y),

g1(x, y) = c′(x, y) and γε(x, y) = exp(u(x)+v(y)−c(x,y)
ε ).

Proof. (Lemma 1) For better clarity, we carry out the computations in dimension 1 but all the arguments are
valid in higher dimension and we will clarify delicate points throughout the proof.

Differentiating both sides of the optimality condition (6) and rearranging yields

u′(x) =

∫
c′(x, y)γε(x, y)β(y)dy. (14)

Notice that γ′ε(x, y) = u′(x)−c′(x,y)
ε γε(x, y). Thus by immediate recurrence (differentiating both sides of the

equality again) we get that

u(n)(x) =

∫
gn(x, y)γε(x, y)β(y)dy, (15)

where gn+1(x, y) = g′n(x, y) + u′(x)−c′(x,y)
ε gn(x, y) and g1(x, y) = c′(x, y)

To extend this first lemma to the d-dimensional case, we need to consider the sequence of indexes σ = (σ1, σ2, . . . ) ∈
{1, . . . , d}N which corresponds to the axis along which we successively differentiate. Using the same reasoning as
above, it is straightforward to check that

∂ku

∂xσ1
. . . ∂xσk

=

∫
gσ,kγε

where gσ,1 = ∂c
∂xσ1

and gσ,k+1 =
∂gσ,k+1

∂xσk+1
+ 1

ε

(
∂u

∂xσk+1
− ∂c

∂xσk+1

)
gσ,k+1

Lemma 2. The sequence of auxiliary functions (gk)k=0... verifies
∥∥u(k)

∥∥
∞ 6 ‖gk‖∞. Besides, for all j = 0, . . . , k,

for all k = 0, . . . , n− 2,
∥∥∥g(j)
n−k

∥∥∥
∞

is bounded by a polynomial in 1
ε of order n− k + j − 1.

Proof. (Lemma 2) The proof is made by recurrence on the following property :
Pn : For all j = 0, . . . , k, for all k = 0, . . . , n−2,

∥∥∥g(j)
n−k

∥∥∥
∞

is bounded by a polynomial in 1
ε of order n−k+ j−1.

Let us initialize the recurrence with n = 2

g2 = g′1 +
u′ − c′

ε
g1 (16)

‖g2‖∞ 6 ‖g′1‖∞ +
‖u′‖∞ + ‖c′‖∞

ε
‖g1‖∞ (17)

Recall that ‖u′‖∞ = ‖g1‖∞ = ‖c′‖∞. Let C = maxk
∥∥c(k)

∥∥
∞, we get that ‖g2‖∞ 6 C + C+C

ε C which is of the
required form.

Now assume that Pn is true for some n > 2. This means we have bounds on g
(i)
n−k, for k = 0, . . . , n − 2 and

i = 0, . . . , k. To prove the property at rank n+ 1 we want bounds on g(i)
n+1−k, for k = 0, . . . , n− 1 and i = 0, . . . , k.
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The only new quantity that we need to bound are g(k)
n+1−k, k = 0, . . . , n − 1. Let us start by bounding g(n−1)

2

which corresponds to k = n− 1 and we will do a backward recurrence on k. By applying Leibniz formula for the
successive derivatives of a product of functions, we get

g2 = g′1 +
u′ − c′

ε
g1 (18)

g
(n−1)
2 = g

(n)
1 +

n−1∑
p=0

(
n− 1

p

)
u(p+1) − c(p+1)

ε
g

(n−1−p)
1 (19)

∥∥∥g(n−1)
2

∥∥∥
∞

6
∥∥∥g(n)

1

∥∥∥
∞

+

n−1∑
p=0

(
n− 1

p

)∥∥u(p+1)
∥∥
∞ +

∥∥c(p+1)
∥∥
∞

ε

∥∥∥g(n−1−p)
1

∥∥∥
∞

(20)

6 C +

n−1∑
p=0

(
n− 1

p

)
‖gp+1‖∞ + C

ε
C (21)

Thanks to Pn we have that ‖gp‖∞ 6
∑p
i=0 ai,p

1
εi , p = 1, . . . , n so the highest order term in ε in the above

inequality is 1
εn . Thus we get

∥∥∥g(n−1)
2

∥∥∥
∞

6
∑n+1
i=0 ai,2,n−1

1
εi which is of the expected order

Now assume g(j)
n+1−j are bounded with the appropriate polynomials for j < k 6 n− 1. Let us bound g(k)

n+1−k∥∥∥g(k)
n+1−k

∥∥∥
∞

6
∥∥∥g(k+1)
n−k

∥∥∥
∞

+

k∑
p=0

(
k

p

)∥∥u(p+1)
∥∥
∞ +

∥∥c(p+1)
∥∥
∞

ε

∥∥∥g(k−p)
n−k

∥∥∥
∞

(22)

6
∥∥∥g(k+1)
n−k

∥∥∥
∞

+

k∑
p=0

(
k

p

)
‖gp+1‖∞ + C

ε

∥∥∥g(k−p)
n−k

∥∥∥
∞

(23)

The first term
∥∥∥g(k+1)
n−k

∥∥∥
∞

is bounded with a polynomial of order 1
εn+1 by recurrence assumption. Regarding the

terms in the sum, they also have all been bounded and

‖gp+1‖∞
∥∥∥g(k−p)
n−k

∥∥∥
∞

6

(
p∑
i=0

ai,p+1
1

εi

)(
n−p∑
i=0

ai,n−k,k−p
1

εi

)
6

n∑
i=0

ãi
1

εi

So
∥∥∥g(k)
n+1−k

∥∥∥
∞

6
∑n+1
i=0 ai,n+1−k,k

1
εi

To extend the result in Rd, the recurrence is made on the the following property∥∥∥g(j)
σ,n−k

∥∥∥
∞

6
n−k+|j|−1∑

i=0

ai,n−k,j,σ
1

εi
∀j | |j| = 0, . . . , k ∀k = 0, . . . , n− 2 ∀σ ∈ {1, . . . , d}N (24)

where j is a multi-index since we are dealing with multi-variate functions, and gσ,n−k is defined at the end of the
previous proof. The computations can be carried out in the same way as above, using the multivariate version of
Leibniz formula in (19) since we are now dealing with multi-indexes.

2 Existence of the Dual Potentials

We prove the following theorem, which guarantees the existence of solutions to the dual problem, in a general
setting. This proof is based on the same idea from that of the existence of a solution to Schrodinger’s system
(which shares strong links with regularized OT) in (Chen et al., 2016), inspired from the original proof of (Franklin
and Lorenz, 1989) which deals with discrete regularized OT.
Theorem 4. (Existence of a dual solution) Consider the dual of entropy-regularized OT, with marginals
α, β ∈ M1

+(X ) ×M1
+(Y) supported on two subsets of Rd, and with a cost function c bounded on X × Y. Let

L∞(α)
def.
= {f : X → R|∃C > 0 such that f(x) 6 C α-a.e.} and L∞(α) the quotient set of L∞(α) by the

equivalence relation ‘being equal α-a.e.’. Then the dual problem has solutions (u∗, v∗) ∈ L∞(α)× L∞(β) which
are unique α− and β−a.e. up to an additive constant.
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It is straightforward to see that for any solution (u∗, v∗) to the dual problem, the pair (u∗ + k, v∗ − k) for k ∈ R
is also a solution to the dual problem. Besides, modifying the values of u∗ and v∗ outside of the support of the
measures does not have any effect on the value of the problem.

The proof of existence of a solution to the dual problem essentially amounts to rewriting the optimality condition
as a fixed point equation, and proving that a fixed point exists. To do so, we show that the operator in the fixed
point equation is a contraction for a certain metric, called the Hilbert metric. We prove the existence of potentials
in a general framework, as we consider arbitrary measures α and β and any bounded regular cost function c.

The dual problem is unconstrained, and it is jointly concave in both variables. Thus, we can fix one and optimize
over the other, and the first order condition for u gives:

u(x) = −ε log

(∫
Y
e
v(y)−c(x,y)

ε dβ(y)

)
for a.e. x ∈ X , (25)

and similarly for v:

v(y) = −ε log

(∫
X
e
u(x)−c(x,y)

ε dα(y)

)
for a.e. y ∈ Y. (26)

Remark 1. Although the optimality conditions (25) and (26) only fix the value of the optimal potentials (u∗, v∗)
on the supports of α and β respectively, they allow to extrapolate the values of the potentials outside of this
support.

2.1 Hilbert Metric

We start with a few definitions and properties of the Hilbert metric, which will be useful later on. Proof of these
results can be found in (Bushell, 1973).

Definition 3. (Hilbert metric) Consider K a closed solid cone on a real Banach space B i.e. K satisfies the 4
following properties:

1. the interior of K is not empty,

2. K +K ⊆ K,

3. αK ⊆ K ∀α > 0,

4. K ∩−K = {0}.

We use the partial order induced by the cone, meaning x 6 y ⇔ y − x ∈ K, and define the following quantities

M(a, b)
def.
= inf{λ|a 6 λb} and m(a, b)

def.
= sup{λ|a 6 λb} for a, b ∈ K+ def.

= K \ {0}.

Then the Hilbert metric dH on K+ is given by

dH(a, b)
def.
= log

M(a, b)

m(a, b)
. (27)

Note that the Hilbert metric is projective, meaning that it is invariant by multiplication by a positive factor:
dH(a, b) = dH(αa, b) = dH(a, αb), ∀ α > 0.

We denote by x ∼ y the equivalence relation induced by the Hilbert metric, i.e. x ∼ y ⇔ dH(x, y) = 0 .The
Hilbert metric is a pseudo-metric on the interior of the cone K̊, and a metric on the quotient of K̊ to the unit
sphere:

Proposition 3. (Bushell, 1973) (K̊, dH) is a pseudo-metric space and (K̊/ ∼, dH) is a metric space. Besides if
the norm induced by the cone is monotonic, i.e. 0 6 x 6 y ⇒ ||x|| 6 ||y||, then (K̊/ ∼, dH) is a complete metric
space.

To use Banach’s fixed point theorem on (K̊/ ∼, dH), we need to introduce the notion of contraction ratio:
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Definition 4. We say that an operator E is a positive map in the cone if E(K̊) ⊂ K̊. For a positive map E, we
denote its projective diameter by

∆(E)
def.
= sup{dH(E(a), E(b)) | a, b ∈ K̊},

and its contraction ratio

κ(E)
def.
= inf{λ | dH(E(a), E(b)) 6 λdH(x, y)∀x, y ∈ K̊}.

In the case where the mapping is linear, we have a relation between the contraction ratio and the projective
diameter.

Proposition 4. Consider a linear positive map E on K̊, then

κ(E) 6 tanh

(
1

4
∆(E)

)
,

and ∆(E) 6 2 supa{dH(E(a), 1)) | a ∈ K+}.

Since | tanh(x)| < 1 for |x| < +∞, this means that if the projective diameter of a positive mapping is finite,
then it is a contraction. The proof of the first inequality is given in (Bushell, 1973) while the second is a direct
application of the triangle inequality.

2.2 Fixed Point Theorem

Now let us rewrite the optimality condition as a fixed point equation. We consider the exponential scalings (a, b)
of the dual variables (u, v). At optimality we have that

a(x) =

(∫
Y
b(y)e

−c(x,y)
ε dβ(y)

)−1

and b(y) =

(∫
X
a(x)e

−c(x,y)
ε dα(x)

)−1

. (28)

We define the operators ϕε,α and ϕε,β such that

ϕε,α(f)
def.
=

∫
X
f(x)e

−c(x,y)
ε dα(x) and ϕε,β(f)

def.
=

∫
Y
f(y)e

−c(x,y)
ε dβ(y), (29)

and we denote by E the operator such that E(a)
def.
= 1/a.

Proposition 5. The optimal exponential scalings (a∗, b∗) satisfy the following fixed-point equations:

a∗ = Φ(a∗) where Φ
def.
= E ◦ ϕε,β ◦ E ◦ ϕε,α, (30)

and
b∗ = Φ̃(b∗) where Φ̃

def.
= E ◦ ϕε,α ◦ E ◦ ϕε,β . (31)

To prove the existence of solutions to (28) we first need to prove the following lemma

Lemma 3. Consider the operators Φ defined in (30) and Φ̃ defined in (31), and let L∞+ (α)
def.
= {a ∈ L∞(α) |

a(x) > 0, α − a.e.}. Then Φ and Φ̃ are contractions on L∞+ (α) and L∞+ (β) respectively with contraction ratio

∆(Φ) 6 tanh
(

1
4

2‖c‖∞
ε

)
< 1.

Proof. (Lemma 3) We consider the space of positive bounded functions L∞+ (α)
def.
= {f ∈ L∞(α)|f(x) > 0∀x ∈ X}

and L∞+ (β). It is easy to check that it is a cone with non-empty interior and we can thus endow L∞+ (α) and
L∞+ (β) with Hilbert’s metric. We also have that E , ϕε,α and ϕε,β are positive maps mapping L∞+ to itself, L∞+ (α)
to L∞+ (β) and L∞+ (β) to L∞+ (α) respectively.

To compute the contraction ratio of the composition Φ, we can simply compute the contraction ratio of each of
the composing functions and multiply them to get the whole contraction ratio.
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The inversion operator E is an isometry for Hilbert’s metric:

dH(E(a), E(b)) =
inf{λ|1/a 6 λ1/b}
sup{λ|1/a 6 λ1/b}

=
inf{λ|a 6 λb}
sup{λ|b 6 λa}

= dH(b, a) = dH(a, b).

We are left with computing the contraction ratio of ϕε,α and ϕε,β . Since they are both linear maps, we can
instead consider the quantity supa{dH(ϕε(a), 1) | a ∈ K+} thanks to proposition 4. We focus on ϕε,α as ϕε,β
behaves the same way. We have that ∀a ∈ L∞(α)

e
−‖c‖∞

ε

∫
X

a(x)dα(x) 6
∫
X

a(x)e
−c(x,y)

ε dα(x) 6 e
‖c‖∞
ε

∫
X

a(x)dα(x),

and thus
∆(ϕε,α) 6 2 sup

a

(
log

supϕε,α(a)

inf ϕε,α(a)

)
6 2 log

(
e

2‖c‖∞
ε

)
<∞.

Combining all contraction ratios, we get ∆(Φ) 6 tanh
(

1
4 log

(
e

2‖c‖∞
ε

))
< 1 and thus Φ is a contraction for the

Hilbert metric.

Proof. (Theorem 4) The norm induced by the cone L∞+ (α) is monotonic, as one can check that x 6 y ⇒ ‖x‖∞ 6
‖y‖∞. Thus, (L∞+ (α)/ ∼, dH) is a complete metric space according to Proposition 3. Thanks to Lemma 3 and
Proposition 5, we can conclude with Banach’s fixed point theorem that Φ and Φ̃ admit a unique fixed point
in L∞+ (X )/ ∼. Since dual potentials are the log of these exponential scalings, we therefore have unicity of the
potential scalings, up to an additive constant, instead of a multiplicative constant for the exponential scalings.
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