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Abstract

Games generalize the single-objective opti-
mization paradigm by introducing different
objective functions for different players. Dif-
ferentiable games often proceed by simulta-
neous or alternating gradient updates. In
machine learning, games are gaining new im-
portance through formulations like genera-
tive adversarial networks (GANSs) and actor-
critic systems. However, compared to single-
objective optimization, game dynamics is
more complex and less understood. In this
paper, we analyze gradient-based methods
with momentum on simple games. We prove
that alternating updates are more stable than
simultaneous updates. Next, we show both
theoretically and empirically that alternating
gradient updates with a negative momentum
term achieves convergence in a difficult toy ad-
versarial problem, but also on the notoriously
difficult to train saturating GANs.

1 INTRODUCTION

Recent advances in machine learning are largely driven
by the success of gradient-based optimization methods
for the training process. A common learning paradigm
is empirical risk minimization, where a (potentially non-
convex) objective, that depends on the data, is mini-
mized. However, some recently introduced approaches
require the joint minimization of several objectives.
For example, actor-critic methods can be written as a
bi-level optimization problem (Pfau and Vinyals, 2016)
and generative adversarial networks (GANSs) (Goodfel-
low et al., 2014) use a two-player game formulation.
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Games generalize the standard optimization framework
by introducing different objective functions for different
optimizing agents, known as players. We are commonly
interested in finding a local Nash equilibrium: a set of
parameters from which no player can (locally and uni-
laterally) improve its objective function. Games with
differentiable objectives often proceed by simultaneous
or alternating gradient steps on the players’ objectives.
Even though the dynamics of gradient based methods
is well understood for minimization problems, new is-
sues appear in multi-player games. For instance, some
stable stationary points of the dynamics may not be
(local) Nash equilibria (Adolphs et al., 2018).

Motivated by a decreasing trend of momentum values
in GAN literature (see Fig. 1), we study the effect of
two particular algorithmic choices: (i) the choice be-
tween simultaneous and alternating updates, and (ii)
the choice of step-size and momentum value. The idea
behind our approach is that a momentum term com-
bined with the alternating gradient method can be used
to manipulate the natural oscillatory behavior of ad-
versarial games. We summarize our main contributions
as follows:

e We prove in §5 that the alternating gradient
method with negative momentum is the only set-
ting within our study parameters (Fig. 2) that
converges on a bilinear smooth game. Using a zero
or positive momentum value, or doing simultane-
ous updates in such games fails to converge.

e We show in §4 that, for general dynamics, when the
eigenvalues of the Jacobian have a large imaginary
part, negative momentum can improve the local
convergence properties of the gradient method.

e We confirm the benefits of negative momentum for
training GANs with the notoriously ill-behaved sat-
urating loss on both toy settings, and real datasets.

Outline. §2 describes the fundamentals of the ana-
lytic setup that we use. §3 provides a formulation for
the optimal step-size, and discusses the constraints and
intuition behind it. §4 presents our theoretical results
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Figure 1: Decreasing trend in the value of momentum used
for training GANs across time.

and guarantees on negative momentum. §5 studies
the properties of alternating and simultaneous meth-
ods with negative momentum on a bilinear smooth
game. §6 contains experimental results on toy and real
datasets. Finally, in §7, we review some of the existing
work on smooth game optimization as well as GAN
stability and convergence.

2 BACKGROUND

Notation In this paper, scalars are lower-case letters
(e.g., A\), vectors are lower-case bold letters (e.g., 0),
matrices are upper-case bold letters (e.g., A) and opera-
tors are upper-case letters (e.g., F'). The spectrum of a
squared matrix A is denoted by Sp(A), and its spectral
radius is defined as p(A) := max{|)\| for A € Sp(A)}.
We respectively note omin(A) and omax(A) the small-
est and the largest positive singular values of A. The
identity matrix of R™*™ is written I,,,. We use R and
S to respectively denote the real and imaginary part of
a complex number. O, 2 and O stand for the standard
asymptotic notations. Finally, all the omitted proofs
can be found in §D.

Game theory formulation of GANs Generative
adversarial networks consist of a discriminator D, and
a generator Gg. In this game, the discriminator’s objec-
tive is to tell real from generated examples. The gener-
ator’s goal is to produce examples that are sufficiently
close to real examples to confuse the discriminator.

From a game theory point of view, GAN training is a
differentiable two-player game: the discriminator D,
aims at minimizing its cost function £p and the gener-
ator Gg aims at minimizing its own cost function L.
Using the same formulation as the one in Mescheder
et al. (2017) and Gidel et al. (2018), the GAN objective

has the following form,

0" € argmin L;(60, ™)
0co (1)
p" € argmin Lp(0%, ).
ped
Given such a game setup, GAN training consists of find-
ing a local Nash Equilibrium, which is a state (¢*, 8*)
in which neither the discriminator nor the generator
can improve their respective cost by a small change in
their parameters. In order to analyze the dynamics of
gradient-based methods near a Nash Equilibrium, we
look at the gradient vector field,

v(0.0) = [VoLo(p.6) VoLlo(w.0)] ., (2)

and its associated Jacobian Vv (ep,8),

VQLPL:D(<Pv 0) V(PVB‘CD(Sov 0) (3)
VoVeLla(p,0)'  ViLla(e,0) |
Games in which Lo = —Lp are called zero-sum games

and (1) can be reformulated as a min-max problem.
This is the case for the original min-maz GAN formula-
tion, but not the case for the non-saturating loss (Good-
fellow et al., 2014) which is commonly used in practice.

For a zero-sum game, we note Lg = —Lp = L. When
the matrices VZ,L(,0) and Vg L(p,0) are zero, the
Jacobian is anti-symmetric and has pure imaginary
eigenvalues. We call games with pure imaginary eigen-
values purely adversarial games. This is the case in
a simple bilinear game L(¢p,0) := ¢ Af. This game
can be formulated as a GAN where the true distribu-
tion is a Dirac on 0, the generator is a Dirac on 6 and
the discriminator is linear. This setup was extensively
studied in 2D by Gidel et al. (2018).

Conversely, when V,VgL(p,0) is zero and the ma-
trices V?P/J(cp, 0) and —V3L (¢, 0) are symmetric and
definite positive, the Jacobian is symmetric and has
real positive eigenvalues. We call games with real posi-
tive eigenvalues purely cooperative games. This is the
case, for example, when the objective function L is
separable such as L(p,0) = f(¢) — g(0) where f and
g are two convex functions. Thus, the optimization
can be reformulated as two separated minimization of
f and g with respect to their respective parameters.

These notions of adversarial and cooperative games can
be related to the notions of potential games (Monderer
and Shapley, 1996) and Hamiltonian games recently
introduced by Balduzzi et al. (2018): a game is a po-
tential game (resp. Hamiltonian game) if its Jacobian
is symmetric (resp. asymmetric). Our definition of co-
operative game is a bit more general than the definition
of potential game since some non-symmetric matrices
may have positive eigenvalues. Similarly, the notion of
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Figure 2: Left: Effect of gradient methods on an unconstrained bilinear example: ming max, 0" Ay . The quantity A,
is the distance to the optimum (see formal definition in §5) and (3 is the momentum value. Right: Graphical intuition of

the role of momentum in two steps of simultaneous updates (
(red) drives the iterates outwards whereas negative momentum (

only strong enough for alternated updates.

adversarial game generalizes the Hamiltonian games
since some non-antisymmetric matrices may have pure
imaginary eigenvalues, for instance,

(s ) w( ) -en

In this work, we are interested in games in between
purely adversarial games and purely cooperative ones,
i.e., games which have eigenvalues with non-negative
real part (cooperative component) and non-zero imagi-
nary part (adversarial component). For A € R¥*P  a
simple class of such games is parametrized by « € [0, 1],

in ma 05+ (1— )0 Ap — 5
min mas 0] + (1 - )T Ag —allgl, (1)

Simultaneous Gradient Method. Let us consider
the dynamics of the simultaneous gradient method. It
is defined as the repeated application of the operator,

Fy(p,0) == [ H]T—nv(%H), (p,0) e R™, (5)

where 7 is the learning rate. Now, for brevity we write
the joint parameters w := (¢, 0) € R™. For t € N, let
w; = (¢, 0;) be the t** point of the sequence computed
by the gradient method,

wy = Fyo...0F,(w) = F{"(w). (6)
t

Then, if the gradient method converges, and its limit
point w* = (¢*,0%) is a fized point of F; such that
Vu(w*) is positive-definite, then w* is a local Nash equi-
librium. Interestingly, some of the stable stationary
points of gradient dynamics may not be Nash equilib-
rium (Adolphs et al., 2018). In this work, we focus
on the local convergence properties near the station-
ary points of gradient . To the best of our knowledge,
there is no first order method alleviating this issue. In
the following, w* is a stationary point of the gradient
dynamics (i.e. a point such that v(w*) = 0).

) or alternated updates (olive). Positive momentum
) pulls the iterates back towards the center, but it is

3 TUNING THE STEP-SIZE

Under certain conditions on a fixed point operator,
linear convergence is guaranteed in a neighborhood
around a fixed point.

Theorem 1 (Prop. 4.4.1 Bertsekas (1999)). If the
spectral radius pmax = p(VE,(w*)) < 1, then, for
wo n a neighborhood of w*, the distance of w; to
the stationary point w* converges at a linear rate of

O((pmax + €)*) , Ye > 0.
From the definition in (5), we have:

VF,(w*) =1, —nVv(w"), (7)
and  Sp(VF,(w*)) = {1 —nA|X € Sp(Vo(w™))} .

If the eigenvalues of Vv (w*) all have a positive real-
part, then for small enough 7, the eigenvalues of
VF,(w*) are inside a convergence circle of radius
Pmax < 1, as illustrated in Fig. 3. Thm. 1 guaran-
tees the existence of an optimal step-size 7pes; which
yields a non-trivial convergence rate ppax < 1. Thm. 2
gives analytic bounds on the optimal step-size Mpest,
and lower-bounds the best convergence rate pmax(Mpest)
we can expect.

Theorem 2. If the eigenvalues of Vv(w*) all have a
positive real-part, then, the best step-size Npest, which
minimizes the spectral radius pmax(n) of VE,(¢*,0%),
is the solution of a (convex) quadratic by parts problem,
and satisfies,

. 2 2 —
lg}caéxm Sln(wk) < pmax(nbest) < 1 %<1/)‘1>67 (8)

with § := 1?/1912 Ae2(2R(1/Ak) — R(1/A1)) 9)
and R(L/A1) < Mpest < 2R(1/ A1) (10)
where (A, = Tkew’“hgkgm = Sp(Vu(e*,0%)) are
sorted such that 0 < R(1/A1) < --- < R(1/Ap). Par-

ticularly, when Myest = R(1/A1) we are in the case of
the top plot of Fig.3 and pmax(Mbest)? = sin(11)? .
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Figure 3: Eigenvalues \; of the Jacobian Vv (¢*,0*) and
their trajectories 1 — nA; for growing step-sizes. The unit
circle is drawn in black, and the red dashed circle has
radius equal to the largest eigenvalue fimax, which is directly
related to the convergence rate. Therefore, smaller red
circles mean better convergence rates. Top: The red circle
is limited by the tangent trajectory line 1 — nA;, which
means the best convergence rate is limited only by the
eigenvalue which will pass furthest from the origin as 7
grows, i.e., A; = argminf(1/);). Bottom: The red circle
is cut (not tangent) by the trajectories at points 1 — nA;
and 1 — nA3. The 7 is optimal because any increase in 7
will push the eigenvalue \; out of the red circle, while any
decrease in step-size will retract the eigenvalue A3 out of
the red circle, which will lower the convergence rate in any
case. Figure inspired by Mescheder et al. (2017).

When Vv is positive-definite, the best mps; is attained
either because of one or several limiting eigenvalues.
We illustrate and interpret these two cases in Fig. 3. In
multivariate convex optimization, the optimal step-size
depends on the extreme eigenvalues and their ratio,
the condition number. Unfortunately, the notion of the
condition number does not trivially extend to games,
but Thm. 2 seems to indicate that the real part of the
inverse of the eigenvalues play an important role in the
dynamics of smooth games. We think that a notion of
condition number might be meaningful for such games
and we propose an illustrative example to discuss this
point in §B. Note that when the eigenvalues are pure
positive real numbers belonging to [u, L], (8) provides
the standard bound ppax < 1 — p/L obtained with a
step-size n = 1/L (see §D.2 for details).

Note that, in (9), we have § > 0 because (\;) are sorted
such that, R(1/Ax) > R(1/A1), V1 <k < m. In (8),
we can see that if the Jacobian of v has an almost purely
imaginary eigenvalue r;e%i then sin(1;) is close to 1

and thus, the convergence rate of the gradient method
may be arbitrarily close to 1. Zhang and Mitliagkas
(2017) provide an analysis of the momentum method
for quadratics, showing that momentum can actually
help to better condition the model. One interesting
point from their work is that the best conditioning is
achieved when the added momentum makes the Jaco-
bian eigenvalues turn from positive reals into complex
conjugate pairs. Our goal is to use momentum to wran-
gle game dynamics into convergence manipulating the
eigenvalues of the Jacobian.

4 NEGATIVE MOMENTUM

As shown in (8), the presence of eigenvalues with
large imaginary parts can restrict us to small step-
sizes and lead to slow convergence rates. In order
to improve convergence, we add a negative momen-
tum term into the update rule. Informally, one can
think of negative momentum as friction that can
damp oscillations. The new momentum term leads
to a modification of the parameter update operator
F,(w) of (5). We use a similar state augmentation
as Zhang and Mitliagkas (2017) to form a compound

state (wi,wi_1) := (¢, 0:,0¢-1,0;_1) € R*™. The
update rule (5) turns into the following,
Fyplwi, wio1) = (wig1,wr) (11)

where wii1 = wy — nu(wy) + Blwr —wi—1), (12)

in which 8 € R is the momentum parameter. Therefore,
the Jacobian of F;, g has the following form,

I, 0, Vo(w:) 0, I, -1,
{In OJ — { o, o, P, o, 1
Note that for 8 = 0, we recover the gradient method.

In some situations, if S < 0 is adjusted properly, nega-
tive momentum can improve the convergence rate to a
local stationary point by pushing the eigenvalues of its
Jacobian towards the origin. In the following theorem,
we provide an explicit equation for the eigenvalues of
the Jacobian of F), g.

Theorem 3. The eigenvalues of VF, g(w*) are
1+ A3

2 )
where A :=1— (17774%, A € Sp(Vou(w*)) and Az

is the complex square oot of A with positive real part*.
Moreover we have the following Taylor approximation,

pt(B,m,A) == (1 = A+ B) (14)

nA
s S CONND)

pe (B A) = g3 +0(8%). (16)

* If A is a negative real number we set A? = iy/—A

M+(ﬁ7”7u)‘) :1_77)‘_6
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Figure 4: Transformation of the eigenvalues by a nega-
tive momentum method for a game introduced in (4) with
d=p=1,A=1a= .4,71=1.555= —.25. Convergence
circles for gradient method are in red, negative momentum
in green, and unit circle in black. Solid convergence circles
are optimized over all step-sizes, while dashed circles are at
a given step-size 1. For a fixed 7, original eigenvalues are in
red and negative momentum eigenvalues are in blue. Their
trajectories as 7 sweeps in [0, 2] are in light colors. Negative
momentum helps as the new convergence circle (green) is
smaller, due to shifting the original eigenvalues (red dots)
towards the origin (right blue dots), while the eigenvalues
due to state augmentation (left blue dots) have smaller mag-
nitude and do not influence the convergence rate. Negative
momentum allows faster convergence (green circle inside
the solid red circle) for a broad range of step-sizes.

When £ is small enough, A is a complex number close to
1. Consequently, p4 is close to the original eigenvalue
for gradient dynamics 1 — 9\, and p_, the eigenvalue
introduced by the state augmentation, is close to 0.
We formalize this intuition by providing the first order
approximation of both eigenvalues.

In Fig. 4, we illustrate the effects of negative momentum
on a game described in (4). Negative momentum shifts
the original eigenvalues (trajectories in light red) by
pushing them to the left towards the origin (trajectories
in light blue).

Since our goal is to minimize the largest magnitude
of the eigenvalues of F), 3 which are computed in
Thm. 3, we want to understand the effect of 5 on
these eigenvalues with potential large magnitude. Let
A € Sp(Vo(w?*)), we define the (squared) magnitude
pxn(B) that we want to optimize,

pan(B) = max {|wi (8,0, M2 [u— (8.0, NP} (17)

We study the local behavior of py , for small 3. The
following theorem shows that a well suited 8 decreases
Px,n» Which corresponds to faster convergence.

Theorem 4. For any A € Sp(Vv(w*)) s.t. R(A) >0,

MIHS(A)I)
EXEZCV AN

— (1A=I50)
Phn(0)>0&nel(N):= (' Teiel

Particularly, we have p)\ g, )(0) = 2R(A)R(1/A) >0
and |Arg(\)| = T = (R(1/X),2R(1/X)) C I(N).

As we have seen previously in Fig. 3 and Thm. 2,
there are only few eigenvalues which slow down the
convergence. Thm. 4 is a local result showing that a
small negative momentum can improve the magnitude
of the limiting eigenvalues in the following cases: when
there is only one limiting eigenvalue A; (since in that
case the optimal step-size is Npest = R(1/A1) € T(\1))
or when there are several limiting eigenvalues A1, ..., Ag
and the intersection I(A1) N...NI(\g) is not empty.
We point out that we do not provide any guarantees on
whether this intersection is empty or not but note that
if the absolute value of the argument of \; is larger
than /4 then by (10), our theorem provides that the
optimal step-size Myest belongs to I(Aq).

Since our result is local, it does not provide any guar-
antees on large negative values of 3. Nevertheless, we
numerically optimized (17) with respect to 8 and 1 and
found that for any non-imaginary fixed eigenvalue A,
the optimal momentum is negative and the associated
optimal step-size is larger than 7(\). Another inter-
esting aspect of negative momentum is that it admits
larger step-sizes (see Fig. 4 and 5).

For a game with purely imaginary eigenvalues, when
InA| < 1, Thm. 3 shows that u (8,7, \) ~ 1—(1+8)n\.
Therefore, at the first order, S only has an impact on
the imaginary part of p,. Consequently p; cannot
be pushed into the unit circle, and the convergence
guarantees of Thm. 1 do not apply. In other words, the
analysis above provides convergence rates for games
without any pure imaginary eigenvalues. It excludes
the purely adversarial bilinear example (o = 0 in Eq. 4)
that is discussed in the next section.

5 BILINEAR SMOOTH GAMES

In this section we analyze the dynamics of a purely
adversarial game described by,

min max 60 Ap+0'b+c'p, AcR>P. (18)

OcR? pERP
The first order stationary condition for this game char-
acterizes the solutions (6%, ¢*) as

Ap*=b and ATO" =c. (19)

If b (resp. ¢) does not belong to the column space of A
(resp. AT), the game (18) admits no equilibrium. In
the following, we assume that an equilibrium does exist
for this game. Consequently, there exist b’ and ¢’ such
that b = Ab and ¢ = AT¢/. Using the translations
0 — 0—c and p — ¢ —b', we can assume without loss
of generality, that p > d, b =0 and ¢ = 0. We provide
upper and lower bounds on the squared distance from
the known equilibrium,

Ar=6: = 073+ llee — @713 (20)
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where (6*,¢*) is the projection of (0, ;) onto the
solution space. We show in §C, Lem. 2 that, for our
methods of interest, this projection has a simple formu-
lation that only depends on the initialization (6g, ).

We aim to understand the difference between the dy-
namics of simultaneous steps and alternating steps.
Practitioners have been widely using the latter instead
of the former when optimizing GANs despite the rich
optimization literature on simultaneous methods.

5.1 Simultaneous gradient descent

We define this class of methods with momentum using
the following formulas,

sim (

01, 06,001, 01-1) = (041, 41,00, 00) (21)

0141 =0, —mAp, + 1(0: — 0:_1)
where T
P41 =Pt +MmA 0+ Ba(pr — pi—1)

In our simple setting, the operator F S‘g‘ is linear. One
way to study the asymptotic properties of the sequence
(0, ¢+) is to compute the eigenvalues of VF“m The
following proposition characterizes these elgenvalues

Proposition 1. The eigenvalues of VF;%” are the
roots of the 4™ order polynomials:

(z—1)*(z—p1)(x—Ba2)+mmAz®, A € Sp(AT A) (22)
Interestingly, these roots only depend on the product
7112 meaning that any re-scaling 71 — ym1, 72 — %7]2
does not change the eigenvalues of VF;‘gl and conse-
quently the asymptotic dynamics of the iterates (0;, ).
The magnitude of the eigenvalues described in (22),
characterizes the asymptotic properties for the iterates
of the simultaneous method (21). We report the maxi-
mum magnitude of these roots for a given A and for a
grid of step-sizes and momentum values in Fig 7. We
observe that they are always larger than 1, which tran-
scribes a diverging behavior. The following theorem
provides an analytical rate of divergence.

Theorem 5. For any ni,m2 > 0 and 1 = P2 = S, the
iterates of the simultaneous methods (21) diverge as,

L [alselaar iy i 520
S
T -n)) - <s<0.

This theorem states that the iterates of the Simulta—
neous method (21) diverge geometrically for g > —1—6
Interestingly, this geometric divergence implies that
even a uniform averaging of the iterates (standard in
game optimization to ensure convergence (Freund et al.,

1999)) cannot alleviate this divergence.

5.2 Alternating gradient descent

Alternating gradient methods take advantage of the
fact that the iterates 6;;1 and 11 are computed
sequentially, to plug the value of 6,1 (instead of 6,
for simultaneous update rule) into the update of @11,

F5(0s, 01,011, 01-1) = (0141, 141,01, 0¢) (23)

0,11 =0, —mAp, + (1(0; — 0:_1)
where T
P41 = @1 + M2 A Oip1 + Balpr —pi—1) .

This slight change between (21) and (23) significantly
shifts the eigenvalues of the Jacobian. We first charac-
terize them with the following proposition.

Proposition 2. The eigenvalues of VF;,% are the roots

of the 4 order polynomials:

(x=1)*(z— 1) (x—B2)+mmaAa®, A € Sp(AT A) (24)
The same way as in (22), these roots only depend on the
product 7172. The only difference is that the monomial
with coefficient 7172\ is of degree 2 in (22) and of
degree 3 in (24). This difference is major since, for well
chosen values of negative momentum, the eigenvalues
described in Prop. 2 lie in the unit disk (see Fig. 7). As
a consequence, the iterates of the alternating method
with no momentum are bounded and do converge if we
add some well chosen negative momentum:

Theorem 6. If we set n <
B2 = 0 then we have

1 _ 1
oAy P1 = —3 and

Apsr €0 (max{},1 - 2mnlyny)  (25)

If we set 1 = 0 and B2 = 0, then there exists M > 1
such that for any m,n2 >0, Ay = Q(Aop).

Our results from this section, namely Thm. 5 and
Thm. 6, are summarized in Fig. 2, and demonstrate
how alternating steps can improve the convergence
properties of the gradient method for bilinear smooth
games. Moreover, combining them with negative mo-
mentum can surprisingly lead to a linearly convergent
method. The conjecture provided in Fig. 2 (divergence
of the alternating method with positive momentum) is
backed-up by the results provided in Fig. 5 and §A.1.

6 EXPERIMENTS AND
DISCUSSION

Min-Max Bilinear Game [Fig. 5| In our first ex-
periments, we showcase the effect of negative momen-
tum in a bilinear min-max optimization setup (4) where
®,0 € R and A = 1. We compare the effect of positive
and negative momentum in both cases of alternating
and simultaneous gradient steps.
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Figure 5: The effect of momentum in a simple min-max bilinear game where the equilibrium is at (0,0). (left-a)
Simultaneous GD with no momentum (left-b) Alternating GD with no momentum. (left-c) Alternating GD with a
momentum of +0.1. (left-d) Alternating GD with a momentum of —0.1. (right) A grid of experiments for alternating
GD with different values of momentum () and step-sizes (): While any positive momentum leads to divergence, small
enough value of negative momentum allows for convergence with large step-sizes. The color in each cell indicates the
normalized distance to the equilibrium after 500k iteration, such that 1.0 corresponds to the initial condition and values
larger (smaller) than 1.0 correspond to divergence (convergence).

Fashion MNIST and CIFAR 10 [Fig. 6] In our
third set of experiments, we use negative momentum
in a GAN setup on CIFAR-10 (Krizhevsky and Hinton,
2009) and Fashion-MNIST (Xiao et al., 2017) with
saturating loss and alternating steps. We use residual
networks for both the generator and the discriminator
with no batch-normalization. Following the same archi-
tecture as Gulrajani et al. (2017), each residual block is
made of two 3 x 3 convolution layers with ReLU activa-
tion function. Up-sampling and down-sampling layers
are respectively used in the generator and discrimina-
tor. We experiment with different values of momentum
on the discriminator and a constant value of 0.5 for the
momentum of the generator. We observe that using
a negative value can generally result in samples with
higher quality and inception scores. Intuitively, using
negative momentum only on the discriminator slows
down the learning process of the discriminator and
allows for better flow of the gradient to the genera-
tor. Note that we provide an additional experiment on
mixture of Gaussians in § A.2.

7 RELATED WORK

Optimization From an optimization point of view,
a lot of work has been done in the context of under-
standing momentum and its variants (Polyak, 1964;
Qian, 1999; Nesterov, 2013; Sutskever et al., 2013).
Some recent studies have emphasized the importance
of momentum tuning in deep learning such as Sutskever
et al. (2013), Kingma and Ba (2015), and Zhang and

Mitliagkas (2017), however, none of them consider us-
ing negative momentum. Among recent work, using
robust control theory, Lessard et al. (2016) study opti-
mization procedures and cover a variety of algorithms
including momentum methods. Their analysis is global
and they establish worst-case bounds for smooth and
strongly-convex functions. Mitliagkas et al. (2016) con-
sidered negative momentum in the context of asyn-
chronous single-objective minimization. They show
that asynchronous-parallel dynamics ‘bleed’ into opti-
mization updates introducing momentum-like behavior
into SGD. They argue that algorithmic momentum and
asynchrony-induced momentum add up to create an
effective ‘total momentum’ value. They conclude that
to attain the optimal (positive) effective momentum
in an asynchronous system, one would have to reduce
algorithmic momentum to small or sometimes negative
values. This differs from our work where we show that
for games the optimal effective momentum may be
negative. Ghadimi et al. (2015) analyze momentum
and provide global convergence properties for functions
with Lipschitz-continuous gradients. However, all the
results mentioned above are restricted to minimization
problems. The purpose of our work is to try to under-
stand how momentum influences game dynamics which
is intrinsically different from minimization dynamics.

GANSs as games A lot of recent work has attempted
to make GAN training easier with new optimization
methods. Daskalakis et al. (2018) extrapolate the next
value of the gradient using previous history and Gidel
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Figure 6: Comparison between negative and positive momentum on GANs with saturating loss on CIFAR-10 (left) and
on Fashion MNIST (right) using a residual network. For each dataset, a grid of different values of momentum () and
step-sizes (1) is provided which describes the discriminator’s settings while a constant momentum of 0.5 and step-size of
10™* is used for the generator. Each cell in CIFAR-10 (or Fashion MNIST) grid contains a single configuration in which its
color (or its content) indicates the inception score (or a single sample) of the model. For CIFAR-10 experiments, yellow is
higher while blue is the lower inception score. Along each row, the best configuration is chosen and more samples from

that configuration are presented on the right side of each grid.

et al. (2018) explore averaging and introduce a variant
of the extra-gradient algorithm.

Balduzzi et al. (2018) develop new methods to under-
stand the dynamics of general games: they decom-
pose second-order dynamics into two components using
Helmholtz decomposition and use the fact that the
optimization of Hamiltonian games is well understood.
It differs from our work since we do not consider any
decomposition of the Jacobian but focus on the manip-
ulation of its eigenvalues. Recently, Liang and Stokes
(2018) provide a unifying theory for smooth two-player
games for non-asymptotic local convergence. They also
provide theory for choosing the right step-size required
for convergence.

From another perspective, Odena et al. (2018) show
that in a GAN setup, the average conditioning of the Ja-
cobian of the generator becomes ill-conditioned during
training. They propose Jacobian clamping to improve
the inception score and Frechet Inception Distance.
Mescheder et al. (2017) provide discussion on how the
eigenvalues of the Jacobian govern the local convergence
properties of GANs. They argue that the presence of
eigenvalues with zero real-part and large imaginary-
part results in oscillatory behavior but do not provide
results on the optimal step-size and on the impact of
momentum. Nagarajan and Kolter (2017) also ana-
lyze the local stability of GANs as an approximated
continuous dynamical system. They show that during
training of a GAN, the eigenvalues of the Jacobian of
the corresponding vector field are pushed away from
one along the real axis.

8 CONCLUSION

In this paper, we show analytically and empirically
that alternating updates with negative momentum is
the only method within our study parameters (Fig.2)
that converges in bilinear smooth games. We study
the effects of using negative values of momentum in a
GAN setup both theoretically and experimentally. We
show that, for a large class of adversarial games, nega-
tive momentum may improve the convergence rate of
gradient-based methods by shifting the eigenvalues of
the Jacobian appropriately into a smaller convergence
disk. We found that, in simple yet intuitive examples,
using negative momentum makes convergence to the
Nash Equilibrium easier. Our experiments support
the use of negative momentum for saturating losses on
mixtures of Gaussians, as well as on other tasks using
CIFAR-10 and fashion MNIST. Altogether, fully stabi-
lizing learning in GANSs requires a deep understanding
of the underlying highly non-linear dynamics. We be-
lieve our work is a step towards a better understanding
of these dynamics. We encourage deep learning re-
searchers and practitioners to include negative values
of momentum in their hyper-parameter search.

We believe that our results explain a decreasing trend
in momentum values used for training GANs in the
past few years reported in Fig. 4. Some of the most
successful papers use zero momentum (Arjovsky et al.,
2017; Gulrajani et al., 2017) for architectures that
would otherwise call for high momentum values in a
non-adversarial setting.
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