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APPENDIX

A Proofs

A.1 Validity of Importance Scores with
Random Component

Following the mnotation by Candés et al
(2018) for Lemma 3.3, denoting W ,upis) =
W (X, X]swap(s), Y) the full vector of feature statis-
tics when swapping features in S, the flip-sign property
can be summarized as: Wyyaps) = €5 © W where
® 1is the element-wise vector multiplication and
es = ljgs — Ljes. As discussed by Candés et al.
(2018), it should be highlighted that the final selection
procedure controls FDR just because of this property.
Now, by directly referring to the proof of Lemma 3.3
by Candés et al. (2018), we observe that it relies on the
flip-sign property just as an equality in distribution.
Therefore, with this exact same proof, we get that the
result still holds when feature statistics W satisfy the
previous equality only in distribution. This allows
us to construct valid feature statistics W based on
random components that are not limited to the
randomness in the data itself. We can therefore also
construct randomized Z statistics, and we prove that
the constraint mentioned earlier only needs to hold in
distribution to end up with W satisfying the flip-sign
condition in distribution.

Proposition A.1. Assume that the following equality
holds in distribution for any subset S C {1,...,d}:

- d -
Z([XaX]swap(S)vy) = Z([Xa X]ay)swap(S)
Then we have the following equality in distribution:

Wswap(S’) i esOW (1)

Proof. Tt suffices to show the result for S = {1}, as the
general case can be decomposed as the concatenation
of swaps of just one coordinate.

W([Xa X]swap(S)a Y) =

_fl(Zl([Xv ):(}swap(S)a Y)a Zl([X’ )g]swap(S% Y))
fQ(ZQ([Xv X}Swap(s)a Y)a ZQ([X7 X]swap(S)vy))

_fd(Zd([Xa X]swap(S)7Y)7Zd([X7 X]swap(S)vy))
[F1(Z1([X, X],Y), Z1(1X, X],Y)
f2(Z2([X’ X}7Y)7Z2([Xa X]>Y))

Il

Il

A.2 Proof of Proposition 3.1: GMM
Knockoff Sampling Procedure

We prove Proposition 3.1, although this exact same
proof applies in the more general setting of the Algo-
rithm 2 in next section.

Proof. We consider the marginal distribution over
(X, X) by summing the full joint distribution over all
possible values of K. We then decompose the joint
distribution along the sampling steps.

l
P(X,X)=> P(X,X,K =k)
k=1
l
=Y Q¥NK(X|X, K = k)P(X,K = k)
k=1

l
=" QXN KX |X, K = k)PXIK(X|K = k)P(K = k)
k=1

l
=" Q¥NIK(X, X|K = k)P(K = k)
k=1

This proves exchangeability as the last line satisfies
exchangeability in (X, X). O

A.3 Comparison of Algorithm 1 and SCIP

The main contribution of our Bayesian network knock-
off sampling method is due to the intractability of SCIP
for a general feature distribution P¥X as mentioned in
3.

Indeed, SCIP sequentially samples for 1 <i < d the
knockoff X; of the ith feature from the conditional
distribution of X; given X_;, ()N(j)j@. That means
that, at each step of the sampling process, for each
sample, one needs to compute the joint distribution
of X, (Xj)j<i and the conditional distribution of X;,
which is not computationally feasible if we assume a

complex model for PX.

Another difference is shown by the following: sup-
pose that we observe variable X for which we want
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to sample a knockoff, and that its distribution is con-
ditioned on a latent variable H. If we assume that
we can construct easily the conjugates QX1 (|x, h)
and QI-X (h|h, z), then Algorithm 1 simplifies into
Algorithm 2.

Algorithm 2: Knockoff Sampling Procedure for a sim-
ple Latent Variable Model

Sample H ~ PHIX(.|X);
Sample H ~ QYI-X(.|H, X);
Sample X ~ QXIXH (.| X H);

We show in this simple setting that (H,X) is not a
knockoff of (H, X'). We write the joint distribution and
decompose it along the sampling steps.

P(HX,H,X)
= QXN (X x, QM (A |H, X)
PHX(H|X)PX(X)
= Q¥ (XX, H)Q X (H|H, X)
PAIX(1X)P¥(X)

To prove exchangeability of (X,X), we have to
marginalize over the hidden states.

PHIX(H|IX)P¥(X)
=" Q¥INH(X|X, H)P"X (H|X)PX (X)
H

=" QFH (XX, ) PXIH (X | i) P (1)
H

Only if we marginalize out the hidden states we get
to an expression where exchangeability is satisfied for
(X, X). Otherwise we don’t, and therefore (H, X) is
not a knockoff of (H,X). In SCIP, all the random
variables sampled are part of the final knockoff sample.

Our procedure also differs from SCIP insofar it is “mod-
ular” in each local conjugate conditional. The choice
of each conjugate conditional is not unique, and poor
choices yield local knockoffs that are too “close” to the
initial sample and decrease the power of the procedure.
The worst option, which is using the feature as its

own knockoff (i.e. Q"MBO)(&;|xyp(iy, 2:) = 6u,=z,)
still gives valid knockoffs, though discards any possi-
bility for that given feature to be selected. But this is
why this procedure is flexible: in cases where a condi-
tional PIMB() has no closed form expression because
of complex dependencies, we can locally choose poor
conjugates and continue the procedure so that we still
obtain valid knockoff samples, which is not possible
when running SCIP directly as one has to sample from a
complex conditional distribution that is predetermined.

We can analyze how the previous examples make use
of this freedom in the choice of the conditional conju-
gate. In the Gaussian mixture case we could choose
QX|X7H()Z'|X, H) =6y_%, in which case our knockoff
for X would be X itself, and the knockoff procedure
would be powerless. In the HMM setting, after sam-
pling the hidden nodes from the posterior given the
observed ones, we could choose to keep those same
nodes as local knockoffs instead of sampling a different
local knockoff. In this case, the final knockoff X we
obtain is different from X. However, one can expect
this choice to produce knockoffs with lower power, as
the knockoff samples will stay “closer” to the true sam-
ples. The intuition is that if we leverage the knowledge
we have about the generative process, we can sample
more powerful knockoffs.

For the Hidden Markov Model, sample:

e H ~ PHIX(|X), we sample the hidden states.
Conditionally on X the distribution of H is that
of a Markov chain.

o H ~ QUHX(|H, X) we sample a new knockoff
Markov chain via SCIP.

o X ~ QXIXH (X H). However, QXX (Z|x, h) is
constructed based on the distribution PXI(z|h).
But because of the structure of the HMM, the ob-
served states are independent conditionally on the
hidden states. If the observed states are univariate
then we can simplify the conjugate conditional and
sample X ~ QXIXH (| X H) = PXIH(|H) (see
comments after Definition 3.1).

Example: Sampling Knockoffs for LDA As an
additional example, we describe how Algorithm 1 works
to generate knockoffs from Latent Dirichlet Allocation
(LDA). We use the same notation for LDA as defined by
Blei et al. (2003): the nth word Wy, in document d is
sampled from a multinomial distribution parametrized
by Bz, , where Zg, corresponds to the topic assign-
ment for Wy,. Topic assignment is sampled from a
multinomial distribution parametrized by 6,4, the dis-
tribution of topics in document d. Finally 6, for each
document is sampled from a Dirichlet distribution with
hyperparameter a.
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1. The first step to build knockoffs is to learn the
parameters «, 8 of the model, which can be done by
variational EM (Blei et al., 2003). Then, we need
to sample the hidden variables Zg,,60; given the
observed ones Wy, : this is an inference problem for
which direct computation is intractable, but we can
approximate that posterior distribution via standard
variational Bayes methods.

2. Next is to sample local knockoffs. This is exactly
analog to one pass of Gibbs sampling over the whole
DAG following a topological ordering, except that
instead of sampling with respect to the conditional
distribution of the node given its Markov blanket,
we sample from the conjugate conditional distri-
bution, conditioning on the appropriate variables
as explained in Algorithm (1). We sample each
04 based on the conjugate conditional distribution.
However, as 64 is Dirichlet, any given coordinate
is determined by the others, so the only possible
choice is to set 83 = 04. Then, as Zg, is univariate,
its conjugate conditional simplifies too so that we
just sample from the local conditional probability,
and so on for Wy,.

A.4 Proof of Theorem 3.2: DAG Knockoff
Sampling Procedure

Proof. The joint probability distribution can be decom-
posed as follows by following the sampling steps:

P(X, X) = P(X) [[Q""MPD (XX (- tyrne s,
=1

X{it1:mynMB(), Xi) (2)

In order to show that (Xo,Xp) is exchangeable, we
want to show that if we marginalize out this joint dis-
tribution with respect to the hidden states (Xg, Xg),
we get an exchangeable distribution.

We first show that, iterating recursively over all the
nodes, and summing over all values of Xy, we obtain
the following expression.

Y P(X,X) =
X

P(X) H QU MBO(X,| X 1imnynmpay, Xi)  (3)
ico

For simplicity, here we consider discrete random vari-
ables, so that marginalizing the joint distribution over
X; means summing over all possible values of X;. Ev-
erything stays valid for continuous random variables,

replacing sums by integrals. Starting from equation
(2), which corresponds to step 1, we do sequentially m
steps to get to (3). Suppose that at step 1 < k < m we
have the following equality where the left-hand term is
the product of the right-hand terms:

Z P(X7X) = P(Xlzk—lan:m)
X
leH, 1<k—1

X HQili’MB(i) (X3l X 10— 1nr B X it 1oy B X))
Sk

% H Qili,MB(i)(Xi\X{l;i—l}ﬂMB(i)’ Xi)
i1

The key element is that, by following the topological
order, at step k the variable X} only appears in the
joint probability P(X7.k—1, Xk:mm) and in the term

QMIEMBWM) (X1 X (1 1y B » X (et 1M B (k) > Xk )

(Notice that, if i < k — 1 corresponds to an observed
node, it has no descendents. Therefore the Markov
blanket of such node is a subset of the nodes with
smaller index/topological ordering). We isolate these
two terms and start by writing down the joint prob-
ability as a conditional probability. By definition of
the Markov blanket, we can simplify the expression of
the conditional probability. Then, we obtain two terms
that are conjugate in the exchangeable sense.

P(X 11, Xim ) QFMB®) (X4 | X (10— 1y i),

X{kt1:m)ynMB(k)» X&)
:Pk‘in(k)(X’“lX{likfl}ﬂMB(kwX{k+1zm}mMB(k))
><-P§)({1:k-—1}a-Xv{lc+1:m})
><lek’MB(k)(Xk|X{1:k71}mMB(k)7X{}€+1:m}ﬁIVIB(k)7Xk)
:Pk‘i\/[B(k)(Xk|X{1:k_1}nMB(k)7X{k-‘rl:m}ﬁMB(k))
XP(X{I:kfl}aX{IH»l:m})

x QEMBRY X X 1k 1yrna B X (et 1o )M B (k) X )

= P(f(lzk, Xk+1;m)Qk‘k’MB(k) (Xk |X{1~:k—1}mMB(k),
X{kt1:mynMB(k), Xk)

We swap in the previous expression the two terms and
we get the following product:
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Z P(X7X) = P(Xl:kkaJrl:m)
X
leH, 1<k—1
X H QU MBW (X | X (1 1ywr By X i tom ) B X
>kl

% H Qi\ivMB(i)(Xi|X{1;i—1}mMB(i)’ Xi)

i€0
i<k—1

x QFIE-MBR) (0, | X {1k 10 B () X (et Lo )M B () X k)

If kK € H, then we sum both sides of the equality over
Xj.. But now, X only appears in the last term, and
summing over it gives 1. If we reach a node with no
descendents, i.e. k € O, then we do not marginalize
out. However we have the following simplification:

QMEMBI) (X | X (k= 13nar B X (kb 1m0 M B(R) X k)

= QMFMBW) (X | X (1 1y B (k) > Xk)

In both cases, we get to the next step in our recursion.
After completing last step, we get to equation (3).
Notice that this expression is exchangeable in X, Xo,
for every assignment of Xy . Indeed, for I € O, we have

that {1:1— 1} N MB(l) = MB(I), so

ZP(X,X) =P(X_)P'™MBO(X)| Xprp0)
Xu

x QUEMBW (X)X 11y By, X1)

X H Qi‘i’MB(i)(Xi|X{1:i—1}ﬂMB(i); Xi)
€0

And (X, Xl) do not appear in the last product term as
two observed nodes cannot be in the Markov blanket
of each other. (X;,X;) only appear in the conjugate
probabilities, therefore the exchangeability in (X, Xl)
holds. Again, as two observed nodes cannot appear
in the Markov blanket of the other, this step can be
repeated for different indices [ € O, hence the exchange-
ability of the expression. This symmetry is at fixed
values of Xp. Therefore, it still holds when we sum
over XH Hence

P(Xo,X0)= Y, P(X,X)
Xu,Xu

satisfies exchangeability. O
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Figure 4: Fitting a t-distribution with a Mixture
of Gaussians We evaluate the empirical FDR when
running the knockoff procedure with a misspecified
model. We generate knockoffs by fitting a Gaussian
mixture in settings where the features are from a mix-
ture of t-distribution, for different degrees of freedom
(DOF).

B Robustness of the Procedure to
Model Misspecification

As explained when first introducing the Model-X knock-
off procedure in Candés et al. (2018), instead of consid-
ering a model for the conditional distribution of Y| X,
all the assumptions are related to modeling X. The
burden of knowledge shifts from Y| X to X. The same
way valid p-values rely on assumptions on Y| X, (para-
metric model, noise distribution, asymptotic regime...),
valid knockoffs rely on assumptions on the distribution
of X: mainly, that we can approximate it very well.

When we generate knockoffs based on a Gaussian mix-
ture model, and more generally a Bayesian network,
we assume that these probabilistic models are good
approximations for Py, and that they can be properly
fitted. This is a very strong assumption, as not only
the model we use to represent X may be incorrect,
but the estimated parameters of the model depend on
the fitting procedure, which sometimes provides only
an approximation to the actual distribution encoded
by the Bayesian network (as when using Variational
Inference). Optimization methods commonly used such
as Expectation-Maximization (EM) can also get stuck
in local minima. However, the knockoff procedure
is remarkably robust when dealing with these issues.
Existing theoretical robustness bounds (Barber et al.,
2018) are based on controlling the KL-divergence of
the model with respect to the true Px. This can help
explain why EM in our method, and hopefully other
fitting procedures, yield knockoffs that are somehow
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Figure 5: Empirical FDR for Experiments With Synthetic Features

valid: these methods minimize the KL-divergence of
the model with respect to the distribution of X.

C Synthetic Data Generation and
FDR Control

As an example, we provide simulations showing the
empirical FDR for a mixture of t-distributions in Fig-
ure 4 (at a fixed target FDR 0.2), as a function of
the number of Gaussian mixtures we use to model the
distribution. The conclusion is that, with enough mix-
tures, the knockoff procedure is able to control FDR,
even though we cannot expect to correctly represent
any t-distribution through a mixture of Gaussians.

To generate a synthetic data set with n samples, d
features, | mixtures and C' different classes, we imple-
mented the following steps:

e We generate random values for the means and
covariance matrices (using scikit-learn positive-
semidefinite matrix generation function) for each
of the [ mixtures and the mixture proportions.

e For each 1 < i < n we sample K; the mixture
assignment for sample 3.

e We sample X = (X;1,...,X;q) from the Gaussian
distribution corresponding to the K;th mixture.

e We define f. : R = R for ¢ € {1,...,C} to be
3rd order polynomial functions over the attributes.
The coefficients of the polynomial functions are
randomly sampled from N(0, 1).

e Fach sample X; is labeled by
argmaxee{1,...,C’} (fC(Xl) + Gic)
€ic ~N(0,0.1) i.i.d.

Y;
where

To generate synthetic labels for a real world data set, we
go through the same procedure, but without generating
the input features. It is crucial to notice that, in these
experiments with real data, it is not possible to verify
that our method controls FDR, given that we can not

obtain new batches of data coming from the same
distribution on which to repeat the procedure to get
an empirical FDR. These experiments are done for the
purpose of power comparison, which remains pertinent
even if we only regenerate the synthetic label.

For the experiments where we repeatedly generated
the synthetic data X, we can verify that our procedure
controls FDR by computing an empirical FDR over sev-
eral runs of the procedure. Figure 5 plots the empirical
FDR vs. the target FDR, whenever X is sampled from
different numbers of mixtures, and for all the methods
we use to compute feature statistics.

D Selected Features for Real Datasets

We work on three real world data sets: (1) 17596 ran-
domly sampled participants from the UK Biobank data
set (Sudlow et al., 2015). Each individual has 284
phenotype features. (2) Bank Marketing (Moro et al.,
2014) Data Set of UCI (Dheeru and Karra Taniskidou,
2017), containing 45211 samples with 10 real-valued
features for a binary classification task of bank tele-
marketing success prediction. (3) Polish bankruptcy
dataset (Zigba et al., 2016) of the UCI repository con-
taining 10503 samples with no missing attribute, each
with 64 real-valued attributes for a binary task of com-
pany bankruptcy prediction.

Disease Prediction With target FDR=0.3, the fol-
lowing features were selected for the task of Malignant
neoplasm of breast with ICD10 code C50:

Duration of walks

Ankle spacing width

Average weekly champagne plus white wine intake
Coffee intake

Number of cigarettes previously smoked daily
Interval between previous point and current one
in numeric path (trail # 1) (related to intelligence
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question results)

Father’s age at death

Longest period of depression

Particulate matter air pollution

Inverse distance to the nearest road
Number of days/week walked +10 minutes
Mean reticulocyte volume

Length of menstrual cycle

Average weekly spirits intake

Bank Marketing Success Prediction With tar-
get FDR=0.3:

age

duration
campaign
pdays
previous
emp.var.rate
cons.price.idx
cons.conf.idx
euribor3m’
nr.employed

Bankruptcy Prediction With target FDR=0.3:

Gross profit (in 3 years) / total assets
Profit on sales / total assets
Retained earnings / total assets
Gross profit / short-term liabilities

E Intuition Behind Drawback of
Permutation Importance Scores

We explain the phenomenon through Figure 6.

(a) A neural network is trained with a dataset with
one feature concatenated with its generated knockoff
feature. The horizontal axis corresponds to the original
and the vertical axis is the knockoff feature. The deci-
sion boundaries of the trained network are displayed.

(b) Applying shuffling to one of the samples in its
original feature will result in an incorrect prediction
and therefore a high importance score for the original
feature.

(c) Although the knockoff feature has no effect on predic-
tion, as applying shuffling results in an off-distribution
fake data point, the predicted label of the fake data
point will be incorrect again as it lies in part of the
input space that the network has not been trained on.
The importance score for both the original and the
knockoff feature will both be high, which will result
in a small feature statistic and therefore prevent that
non-null feature from being selected.

(©

Figure 6: Drawback of Permutation Method for
Importance Score



