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APPENDIX

A SAMPLING MULTIPLE
KNOCKOFFS

A.1 Gaussian Multi-knockoffs

We generalize the knockoff generation procedure to
have x > 2 multi-knockoffs, starting with the Gaus-
sian case. We see that a sufficient condition for
(X',...,X") € R™ to be a multi-knockoff vector -
besides all vectors X? having the same mean p- is
that the joint vector (X%, X*, ..., X*) € R¥*+1) has
a covariance matrix of the form:

by >—-D >-D
>—-D by >—-D
Y =
>-D YX-D ... b
x-+1 blocks

We can easily generalize previous diagonal matrix con-
structions to the multi-knockoff setting. The mathe-
matical formulation of the heuristic behind SDP and
equicorrelated knockoffs -as an objective function in the
convex optimization problem- does not change when
sampling multi-knockoffs, as the correlation between
an original feature and any of its multi-knockoffs is the
same as a consequence of exchangeability. However,
the positive semi-definite constraint that defines the
feasible set changes with . For the entropy knockoffs,
the objective function depends also on k.

Because all three methods solve a similar convex opti-
mization problem, there is no significant difference in
runtime.

Proposition A.1. We generalize the diagonal con-
struction methods SDP, equicorrelated and entropy
when sampling £ > 2 multi-knockoffs from a multi-
variate Gaussian, by the following convex optimization
problems. We recover the formulations for the single
knockoff setting by replacing k = 1.

e SDP Multi-knockojffs For a covariance matriz
Y. whose diagonal entries are equal to one, the
diagonal matriz D(s) = diag(si,...,sq) for con-
structing SDP knockoffs is given by the following
convex optimization problem:

d
minimize Z |1 — s
i=1
£tlys _ D(s) =0

bject t K
suee O{sizo Vie{l,...,d}

e Equicorrelated Multi-knockoffs For a covari-
ance matrix ¥ whose diagonal entries are equal

to one, the diagonal matriz D(s) = sl for con-
structing equicorrelated knockoffs is given by the
following convex optimization problem:

”T“E—Sl(i>0
s>0

The solution of this optimization problem has a
closed form expression: s* = “TH)\mm(Z), where
Amin(2) is the smallest (positive) eigenvalue of X..

e Entropy Multi-knockoffs The diagonal matrix
D(s) = diag(s1,...,S4) for constructing entropy
knockoffs is given by the following convex opti-
mization problem (as s — —logdet(2X — D(s)) is
convex):

maxrimize S subject to {

d
1
argmin — logdet(%ﬂ —D(s)) — /@Zlog(si)
s i=1
sy D(s) =0

subject to r
J {siZO vie{l,...,d)

The entropy knockoff construction method avoids solu-
tions where diagonal terms are extremely close to 0, and
we provide the following lower bound on the diagonal
terms of D:
1 .
(Amin(s)) =2 < jGng,l.?,d} S5

where Amin () is the smallest (positive) eigenvalue of

=15 "D,

For the SDP method and the equicorrelated method,
increasing the number of multi-knockoffs constrains
the feasible set of the convex optimization problem.
However, diagonal terms can always be as close to 0 as
they want, and we empirically observe a slight decrease
in power as we increase k indicating that the added
constraints limit the choice of “good” values for the
diagonal terms.

Proof. The heuristic behind the different construction
methods looks for different optimal solutions to con-
vex optimization problems. Depending on the multi-
knockoff parameter k, we need to adapt two parts
of the convex optimization formulations: the objec-
tive function and the feasible set. Objective functions
in the SDP and equicorrelated constructions remain
unchanged as they do not depend on the number of
multi-knockoffs.

Adapting the Feasible Set We first look at how
the constraints defining the feasible set change as we
go from simple knockoffs to multi-knockoffs. All three
methods (SDP, equicorrelated, entropy) define the fea-
sible set for s = (s1,...,54) € Ri by constraining >,
to be positive definite. We show that this constraint
is equivalent to HT”E — D > 0, which we prove by
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induction. Suppose that at step x > 1, for any posi-
tive definite matrix S, for D positive definite diagonal
matrix,

S S—-D ... S-—
S—D S S
=0
S—-D S—-D ... S
x+1 blocks
1JrFJS—D»O

where we write A = 0 for A symmetric positive definite.
We repeatedly use the characterization of a symmetric
positive definite matrix via its Schur complement. We
have :
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as 3 > 0 and this is a Schur complement
2+ kK

1+ &
Hence the recursive step and we conclude the proof.
We have

C=Y-(X-D)2"Y(X-D)=2D-DE'D~0
given that > > 0 so C' is the Schur complement of :

b ¥-D <0
¥-D b

X-D>0

Objective Function for Entropy Construction
In addition to this, we need to formulate the objective
function for the entropy construction. The entropy of
a multivariate Gaussian has a simple closed formula.

1
H(X X', . X" = 5 log det(2mey)

We rearrange the expression of det(X,) to show that
minimizing — log(det(2meX,;)) is equivalent to minimiz-
ing
logdet(iE D(s —leog Si)

(We showed in the main text that minimizing the en-
tropy in a Gaussian setting is equivalent to minimizing
this log-determinant). In order to do so, it suffices
to show by induction that the following holds for all
k> 1:

k+1

det(X,;) o< det(D)" det(

Y — D)

where the multiplicative constant is a real number
depending only on x. We first show this for k = 1.
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Suppose the result holds for a given x > 1. We use the
notation |A| = det(A). We have:
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Hence the result, Where C is the same as before. We
used the following two formulae to compute determi-
nants of block matrices:

e If A is invertible, then

det < A B > = det(A) det(D — CA™'B)

C D
e If C and D commute and all the blocks are square

A B ) _ det(AD — BC)

matrices, then det ( C D

Lower Bound for Diagonal Terms in Entropy
Construction For the entropy construction, in order
to give a lower bound for the s;, we derive an expression
for the solution of the minimization problem. Without
loss of generality, fix j € {1,...,d} so that we compute
the partial derivative with respect to s;. Denote R(s) =
51y — D(s). Using Jacobi’s formula for the derivative
of a determinant, we get:

d
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s B(s) = —g5; D(s) =
matrix where the only non-zero term equal to one is in
position (kl). Therefore tr (R( )T 1%@@) = —R(s )jj .

27
Setting this expression to 0 we get that the solution of
the convex optimization problem satisfies
1 1 _
55

Now we can write the diagonal term in the in-

verse matrix as a quotient between two determinants:
M; (s )
det(R s)

[R(s)tr (R(s)

(57 = s, R();) (IR

given that

—1I;; where I; is a

R(s)j_j1 =

y where M; (s) is the principal minor

[N N VN

of R(s) when removing the jth row and column. As
both M;(s) and det R(s) can be written as a product
of eigenvalues, the Cauchy interlacing theorem gives
the following lower bound:

)‘min(R(S)) > 2

where A, (R(s)) is the smallest (positive) eigenvalue
of R(s). O

A.2 General Multi-knockoff Sampling Based
on SCIP

We can also generalize to the multi-knockoff setting a
universal (although possibly intractable) knockoff sam-
pling algorithm introduced in Candés et al. (2018): the
Sequential Conditional Independent Pairs (SCIP). Fix
# > 1 the number of multi-knockoffs to sample (so that
SCIP corresponds to k = 1). We iterate for 1 <1i <d
over the features, at each step sampling x knockoffs for
the ith feature, independently one of another, from the
conditional distribution of the original feature given all
the available variables sampled so far. It is important
to notice that, whenever SCIP is tractable due to the
particular structure of a given initial feature distribu-
tion (as for Hidden Markov Models), this generalization
to multi-knockoffs will also be tractable given that in-
creasing the number of multi-knockoffs does not alter
the conditional dependencies between knockoffs and
original features. We formulate this in Algorithm 2 and
prove that the resulting samples satisfy exchangeability.

Algorithm 2: Sequential Conditional Independent
Multi-knockoffs
for 1 <i<ddo
for 1 <k<kdo
Sample XF ~ £(X?|X°
end

Xll::zﬁ—l)

—i

end
1:k
return X}

Proof. We need to prove the following equality in dis-
tribution, using the notations of Definition 3.1:

(X0 X X ap(o) = [XO, X, X

We follow the same proof as in Candés et al. (2018),
where we have the following induction hypothesis:

Induction Hypothesis: After i steps, we have
d 0 1
[X 7X1:i""X’f:i]

[Xov X%:zﬁ ce- X’f:i]swap(a) =
where now o = (0;)1<;<; with arbitrary permutations
o; over {0,...,k}. After the first step the equality
holds for i = 1 given that all X¥ have the same con-

ditional distribution and are independent one of an-
other. Now, if the hypothesis holds at step i — 1,
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then at step ¢ we have that the joint distribution of
[X° X1,,...X",] can be decomposed as a product of
conditional distributions given the sampling procedure
so that we have:

K k 0 1:k
L(X° x!... LX) = [Ti—o E()ii ‘Xfval:i—l)
‘C(Xfi’ Xllzvffl)

Now, by induction hypothesis, the expression in the
denominator satisfies the extended exchangeability for
the i — 1 first dimensions (we marginalize out over X!
which doesn’t matter as at step 7 — 1 the permutations
oj are over j < i—1). And so are the terms in the
numerator, as again we permute only elements among
the first 4 — 1 dimensions. And, because of the condi-
tional independent sampling, the numerator expression
is also exchangeable for the ith dimension. In conclu-
sion, £(X°, X1,;,... X},;) is exchangeable for the first
1 dimensions, hence concluding the proof. O

B PROOFS

B.1 Proof of Lemma 3.1

Proof. Given that the swap(o) operation is the con-
catenation of the action of each permutation o; onto
(XP,...,XF) and that we can write o; as the composi-
tion of transpositions, we see that it is enough to show
the result for a simple transposition of two features
(original or multi-knockoff) corresponding to a null di-
mension. This leads us directly to the proof of Lemma
3.2 in Candés et al. (2018), where the difference is that
we add all the extra multi-knockoffs in the conditioning
set. O

B.2 Proof of Lemma 3.2

Proof. Consider any collection (0;);cw, of permuta-
tions o; on the set {0,...,x}, and for i ¢ Ho, set
o; = () the identity permutation. In order to prove
the result we need to show the following equality in
distribution:

([Uz‘(ﬁi)]lgigd’[@(k)
< ([Hi]lsigda [(Ti(k))OSkSK]1Si§d>

Define TF = Tiai(k) for every i € {1,...,d} and k €
{0,...,k}. Using the notation for the extended swap
this is equivalent to T = T'spap(o)> Where for each null
index i € Hg the ith features of T and its knockoffs have
been permuted according to o; (and the non-null re-
mained at their place). By construction, T'= T(X,Y)
is a function of X and Y which associates to each fea-
ture in X a “score” for its importance (for simplicity
here we will denote by X the whole concatenated vec-
tor of [X?, X' ... X"]). The choice of such function
is restricted so that Tsyap(o) = T(Xswap(o), Y)- By

)0§k§m]1§i§d)

the multi-knockoff exchangeability property, and our
specific choice of ¢ that does not permute non-null
features, we also have (X suap(o), Y) 4 (X,Y). This
in turn implies:
TiT

Also, given that the permutation is done feature-wise,
the feature-wise ordered importance scores remain the
same.

= (k k

(T o<k<nli<i<a = (T

We now prove the equality in distribution (where we

have an abusive notation for representing set probabili-
ties):

Jo<k<rli<i<d

= P([oi(ki)]1<i<d, [(Ti(k))ogkgﬁ]lﬁigd)

The second equality is due to the equality in distribu-
tion between T and T, and the third equality makes use
of the fact that for any ¢ € {1,...,d} the order statis-
tics of (T0,...,TF) and (T?,...,TF) are the same. The
statement about our variables 7; holds because they
are functions of the feature-wise ordered importance
scores. O

B.3 Proof of Proposition 3.3

Proof. The random variables x; allow us to construct
one-bit p-values as in Barber et al. (2015), while the 7;
can be used to determine the ordering in which we sort
those p-values, given that conditionally on (7;)1<i<d,
we have (K;)ien, 1.1.d. uniform over {0,...,k}, inde-
pendent of (k;)i¢s,. We can therefore permute the
dimension indices based on (7;); so that 71 > 7o >

- > 14 > 0, and still define the following random
variables with the desired properties. We expect that
our ordering based on (7;); will tend to place non-nulls
at the beginning. Set for 1 <1i < d:

1
pi = fjl’

The distributional results for (k;);e3, imply that the
null (p;)ien, are also i.i.d., independent of the non-
null (p;)ign, and the (7;)1<i<q and have the following
distribution:

KZZ'ZO
1%7',21

d
In particular, null p; satisfy p; > U([0,1]). Fix a target
FDR level g € (0,1), and a constant ¢ € (0, 1). Follow-
ing Barber et al. (2015), define the Selective SeqStep+
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threshold:

#i<k:p<c}V1T ¢
Then according to Theorem 3 in Barber et al.
(2015), the procedure that selects the features

S ={i <k, p; <c}, controls for FDR at level ¢q. For
the particular choice of ¢ = we have:

N 1 < k:p; 1-—
k‘—max{lgk‘gd, +t#{i<k:p >C}< Cq}

I
Kk+1?
. T+#{i<k:p >
k=max{1<k<d, _#{ =P L < kg
#i<k:pi< 71Vl

d <
" i<k:imi=0yvi -

IN

max{l <k

1<k<d, £
- T U H#liiki =0, >V 1 =4

{ Lylaliik, >1, 7> 7} }
= max L <

Now, instead of maximizing over k indexing a decreas-
ing sequence 7 > --- > T4, one can formulate the
problem as minimizing the threshold 7:

1 1 ;
Ll <i<d:gi>1,1>
T*:min{T>O7’§ R 1<i< 2Lz} }

#{1<i<d:mi=0m>7tv1 — 1

The selection set is then defined as:
S={ie{l,....d}, ki =0,7,>7}

O

We notice that the main role of 7; is to determine
an ordering sequence of the p-values for the Adaptive
SeqStep+ procedure. Any function of the ordered
statistics (Ti(k))ogkg,{ gives valid statistics that can be
used to order the p-values, given that the distributional
restrictions will still be satisfied. A rich literature
covers this topic (Lei and Fithian, 2018; Lei et al.,
2017; Ignatiadis et al., 2016), and could be applied to
multi-knockoff based p-values.

B.4 Intuition for Choice of Kappa and Tau

We illustrate the particular choice of (;) and (7;) from
a geometric point of view. For the single knockoffs,
one can pair the importance statistics of each original
feature and its knockoff (T}, T;) and plot such pairs as
points in a plane Rf_. We then have a geometric view of
the threshold selection. Consider the parallel lines given
by the equations y = x + ¢t and y = x — ¢, partitioning
the plane into 3 sections. The terms #{j : W; < —t}
and #{j : W; >t} in the FDP estimate

L+#{j: W; < -t}
#{jZWth}\/l

FDPry, =

are obtained by counting the number of points (T}, T})
in the section above y = x + ¢ (that is, y > = + ¢) and

below y = x —t (that is, y < x —t). For ¢t = 0, the two
lines collapse and Ri is partitioned by the line y = .

The same setting can happen in higher dimensions,
where we partition the space R? into d cones given
by C; = {z € R%,z; = max; z;}. Our method for
choosing a threshold for multi-knockoffs proceeds as
before: for a given ¢ > 0, we count the number of
points (T2, T}, ..., TF) € R5T! in each translated cone
Ciy={x € Ri,oji >t + max;x; x;} and compare the
counts in Cy; corresponding to the original feature
to the average over those in C;;. We then find the
minimum ¢ subject to some constraint. Reformulating
this gives our variables x; and ;.

C SUPPLEMENT ON
SIMULATIONS

C.1 Comparison Between Distributions of
Diagonal Construction Methods

We run another simulation where we increase the di-
mension of the samples. We plot again the distribution
of the logarithm of the diagonal terms for the three
construction methods in Figure 5. As we increase the
dimension, we observe that the distributions are shifted
towards more negative values, indicating that the diag-
onal coefficients constructed tend to be smaller. This
is particularly the case for the equicorrelated construc-
tion. The SDP construction generates an even higher
proportion of almost-zero diagonal terms as we increase
the dimension. Also, increasing the level of correlation
has also an impact on the distribution of the diagonal
terms similar to what we observe by increasing the
dimension.

Distribution of the log values of the diagonal terms

Entropy knockoff
EQUI knockoff
SDP knockoff

-25 -20 -15 -10 -5 0
Log value of the diagonal term

Figure 5: Comparison Between Diagonal Matrix
Construction Methods - Increased Dimension
to 400
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C.2 Measuring Stability of the Set of
SDP-based Undiscoverable Features
with Jaccard Similarity

For a given correlation matrix, we generate samples
from a centered multivariate Gaussian. Based on the es-
timated correlation matrix from these samples, we run
the SDP construction to get the matrix D, and identify
the set of undiscoverable features. By repeatedly doing
this, we obtain multiple sets of undiscoverable features.
In Figure 6 we plot the averaged Jaccard similarity
over all pairs of such sets, as a function of the sample
size (and repeat the whole procedure 50 times to es-
timate the variance of our results). Even though the
similarity increases with the sample size, it remains
very low. Furthermore, the similarity decreases with
the dimension, so in high-dimensional problems where
d >> N then the SDP construction method is very
unstable, and has a very high proportion of undiscov-
erable features as suggested in Figure 5. Reproducing
findings becomes then very hard in such settings if we
use SDP knockoffs.

=
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o
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o
N
|

o
N]
)

Dimension of feature space : 50

$ Dimension of feature space : 20
Dimension of feature space : 100

o
o

Average pairwise Jaccard Similarity

2000 3000 4000 5000

Sample size

0 1000

Figure 6: Average Pairwise Jaccard Similarity
for Multiple Runs of SDP Method

C.3 Comparing Power Between SDP and
Entropy Knockoffs

We show an extreme example of the drastic improve-
ment in power brought by entropy knockoffs over SDP
knockoffs. We generate a dataset (X,Y) where we
specify the distribution of the feature set such that we
can predict which diagonal coefficients will be set to 0
in the SDP method, and thus construct the response
Y such that the non-null features are undiscoverable.
We choose a particular covariance structure that con-
veniently allows for explicit expressions of the diagonal
terms in each method, though the results apply more
generally as shown in Figure 1.

We sample X ~ N(0,%) as a multivariate centered
Gaussian random variable, where ¥ € R34x3d ig g
covariance matrix defined as a block-diagonal matrix:

A 0 O 0 O

0 A 0 0 O

0 0 A 0 0
Y= .

0O 0 0 ... A O

0 0 O 0 A

d blocks

1 a O

where A = a 1 a for some a > 0.
0 a 1

SDP and entropy methods output a diagonal matrix
D = sI3q such that s € R3¢ is the concatenation d times
the sequence (s1, s2,51) € R?, which corresponds to the
output of the corresponding method on the matrix A.
We can derive an explicit formula for s, so as functions
of a for both the SDP and entropy methods, which
we denote (s7°F (a), s5PF (a)) and (s§™7(a), s§7" (a)).
We plot such curves in Figures 7, which show that for a
wide range of values of a, s5P% (a) is exactly equal to 0,
whereas the diagonal terms of the entropy method stay
always positive. Notice that in this particular setting
the maximal value that a can take is %, otherwise the
convex optimization problem has an empty feasible set.

Comparison of diagonal coefficients for SDP and entropy methods.

1.0 —— s1SDP
—-—-- s2SDP
0.8 —— sl entropy
’ s2 entropy
~
] ™
© 0.6
>
©
c
o
204
o
0.2
004  Nemmeeenl S

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
a value

Figure 7: Comparison of Diagonal Values for
SDP and Entropy Methods For values of a in the

range (3, %) the value s5P7(a) is exactly equal to 0:

the optimization objective favors setting s5°F to 0 in
order to maximize syPF. Entropy knockoffs do not
suffer from this issue.

This phenomenon becomes worse as we increase the
number of simultaneously correlated features, we refer
again to Figures 1 and 5.

We now generate a large number of samples so that
the estimated empirical correlation matrix is very close
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to the real one (so that sample size is not a factor
when comparing SDP and entropy methods). We then
sample a response vector Y such that the non-null
features correspond to the dimensions associated to
the sy diagonal terms (i.e. the non-null features are
given by Ho = {3i+2, 0 <i < (d—1)}). The non-null
features are therefore undiscoverable under the SDP
construction, whereas entropy knockoffs are still able
to select the non-nulls. The results of simulating the
whole procedure are clear: SDP has zero power, and
entropy knockoffs have full power. Of course, this is an
extreme situation designed to accentuate this behavior.
Still, across the multiple simulations done in this paper,
entropy knockoffs consistently had higher power than
SDP knockoffs.

C.4 Generating the Synthetic Response for
the Real Genome Dataset

We collect data from the 1000 Genomes Project (Con-
sortium et al., 2015), and obtain around 2000 individual
samples for 27 distinct segments of chromosome 19 con-
taining an average of 50 SNPs per segment. We filter
out SNPs that are extremely correlated (above 0.95),
and generate for each of those 27 segments a random
subset that will correspond to the causal SNPs. We
then generate the response accordingly and use a lo-
gistic regression to obtain importance scores. For the
top correlation method, we select the top k correlated
features, where k is chosen as the number of rejec-
tions that multi-knockoffs make, so that we have a fair
comparison between methods.

One important caveat that explains why sometimes
the averaged FDP is above the target is that with real
data, it is crucial to accurately estimate the feature
distribution. In these simulations, we approximate
the 0/1/2 matrix of SNPs by a Gaussian distribution,
where we need to estimate the covariance based on
the data. Such inaccurate approximation causes the
average FDP to exceed the target sometimes. However,
the knockoff procedure is robust to mis-estimations
of the feature distribution (Barber et al., 2018), so
that we can expect FDR control at an inflated level.
Our FDR results are therefore satisfactory, and the
comparison is stark with the top correlation method
that catastrophically fails to control FDR.



