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A Detailed assumptions, lemmas, and proofs

A.1 Tools

We begin by stating two general propositions that will be useful. First, we show that a version of Cauchy-Schwartz
can be applied to weighted sums of tensors.

Proposition 1. Tensor array version of Hölder’s inequality. Let w be an array of scalars and let a = (a1, ..., aN )
be an array of tensors, were each an is indexed by i = 1, . . . , DA (i may be a multi-index—e.g., if A is a D ×D
matrix, then i = (j, k), for j, k ∈ [D] and DA = D2). Let p, q ∈ [1,∞] be two numbers such that p−1 + q−1 = 1.
Then

∥∥∥∥∥
1

N
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wnan

∥∥∥∥∥
1
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1
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A

N
‖w‖p ‖a‖q .

In particular, with p = q = 2,

∥∥∥∥∥
1

N
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wnan

∥∥∥∥∥
1

≤
√
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N
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N
.

Proof. The conclusion follows from the ordinary Hölder’s inequality applied term-wise to n and Jensen’s inequality
applied to the indices i.
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(Hölder)
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(Jensen applied to i)

=
1

N
‖w‖pDA

(
1
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N∑
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‖an‖qq

) 1
q

=
1

N
‖w‖pD

1− 1
q
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=
D

1
p

A

N
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Next, we prove a relationship between the term-wise difference between matrices and the difference between their
operator norms. It is well-known that the minimum eigenvalue of a non-singular matrix is continuous in the
entries of the matrix. In the next proposition, we quantify this continuity for the L1 norm.

Proposition 2. Let A and B be two matrices. Let
∥∥A−1

∥∥
op
≤ Cop for some finite Cop, Then

‖A−B‖1 ≤
1

2
C−1
op ⇒

∥∥B−1
∥∥
op
≤ 2Cop.
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Proof. We will use Schott (2016, Theorem 5.20) and the associated discussion, which states the following
general result. Take any matrix norm ‖·‖ that satisfies ‖I‖ = 1, where I is the identity matrix. Then if∥∥A−1

∥∥ ‖A−B‖ < 1, then

∥∥∥A−1 − (A−B)
−1
∥∥∥ ≤

∥∥A−1
∥∥ ‖A−B‖

1− ‖A−1‖ ‖A−B‖
∥∥A−1

∥∥ . (2)

We will apply equation (2) using the operator norm ‖·‖op, for which ‖I‖op = 1. First, note that

∥∥A−1
∥∥
op
‖A−B‖op ≤

∥∥A−1
∥∥
op
‖A−B‖1 (ordering of matrix norms)

≤ 1

2
CopC

−1
op

=
1

2
,

so we can apply equation (2). Then

∥∥B−1
∥∥
op
≤
∥∥B−1 −A−1

∥∥
op

+
∥∥A−1

∥∥
op

(triangle inequality)

≤
∥∥A−1

∥∥
op
‖A−B‖op

1− ‖A−1‖op ‖A−B‖op
∥∥A−1

∥∥
op

+
∥∥A−1

∥∥
op

(Equation 2)

≤
( 1

2

1− 1
2

+ 1

)∥∥A−1
∥∥

≤ 2Cop.

A.2 Lemmas

We now prove some useful consequences of our assumptions. The proof roughly proceeds for all w ∈Wδ by the
following steps:

1. When δ is small we can make
∥∥∥θ̂ (w)− θ̂1

∥∥∥
2

small. (Lemma 2 below.)

2. When
∥∥∥θ − θ̂1

∥∥∥
2

is small, then the derivatives H (θ, w) are close to their optimal value, H
(
θ̂1, 1w

)
. (Lemma

3 and Lemma 4 below.)

3. When the derivatives are close to their optimal values, then H (θ, w) is uniformly non-singular. (Lemma 5
below.)

4. When the derivatives are close to their optimal values and H (θ, w) is uniformly non-singular we can control

the error in θ̂IJ − θ̂ (w) in terms of δ. (Theorem 2 below.)

We begin by showing that the difference between θ̂ (w) and θ̂1 for w ∈Wδ can be made small by making δ from
Condition 1 small.

Lemma 2. Small parameter changes. Under Assumptions 1—3 and Condition 1,

for all w ∈Wδ,
∥∥∥θ̂ (w)− θ̂1

∥∥∥
2
≤ Copδ.

Proof. By a first-order Taylor expansion in θ, for some θ̃ such that
∥∥∥θ̃ − θ̂1

∥∥∥
2
≤
∥∥∥θ̂ (w)− θ̂1

∥∥∥
2
,

G
(
θ̂ (w) , 1w

)
= G

(
θ̂1, 1w

)
+H

(
θ̃, 1w

)(
θ̂ (w)− θ̂1

)
.
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By Assumption 2, H
(
θ̃, 1w

)
is non-singular. A little manipulation, together with the fact that G

(
θ̂ (w) , w

)
=

G
(
θ̂1, 1w

)
= 0 gives

G
(
θ̂ (w) , 1w

)
−G

(
θ̂ (w) , w

)
= H

(
θ̃, 1w

)(
θ̂ (w)− θ̂1

)
⇒

θ̂ (w)− θ̂1 = H
(
θ̃, 1w

)−1 (
G
(
θ̂ (w) , 1w

)
−G

(
θ̂ (w) , w

))
.

Applying Condition 1 and Assumption 2,

∥∥∥θ̂ (w)− θ̂1

∥∥∥
2

=

∥∥∥∥H
(
θ̃, 1w

)−1 (
G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

))∥∥∥∥
2

≤
∥∥∥∥H

(
θ̃, 1w

)−1
∥∥∥∥
op

∥∥∥
(
G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

))∥∥∥
2

≤ sup
θ∈Ωθ

∥∥∥H (θ, 1w)
−1
∥∥∥
op

∥∥∥
(
G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

))∥∥∥
2

≤ Cop
∥∥∥G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

)∥∥∥
2

(Assumption 2)

≤ Cop
∥∥∥G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

)∥∥∥
1

(relation between norms)

≤ Cop sup
θ∈Ωθ

‖G (θ, 1w)−G (θ, w)‖1

≤ Copδ. (Condition 1).

Because we will refer to it repeatedly, we give the set of θ defined in Lemma 2 a name.

Definition 4. For a given δ, define the region around θ̂1 given by Lemma 2 as

BCopδ :=
{
θ :
∥∥∥θ − θ̂1

∥∥∥
2
≤ Copδ

}⋂
Ωθ.

In other words, Lemma 2 states that Condition 1 implies θ̂ (w) ∈ BCopδ when w ∈Wδ.

Next, we show that closeness in θ will mean closeness in H (θ, w).

Lemma 3. Boundedness and continuity. Under Assumptions 1–5 and Condition 1,

for all θ ∈ B∆θ
, sup

w∈W

∥∥∥H (θ, w)−H
(
θ̂1, w

)∥∥∥
1
≤ DCwLh

∥∥∥θ − θ̂1

∥∥∥
2
.

Proof. For θ ∈ B∆θ
,

sup
w∈W

∥∥∥H (θ, w)−H
(
θ̂1, w

)∥∥∥
1

= sup
w∈W

∥∥∥∥∥
1

N

N∑

n=1

wn

(
hn (θ)− hn

(
θ̂1

))∥∥∥∥∥
1

(by definition)

≤ D sup
w∈W

‖w‖2√
N

∥∥∥h (θ)− h
(
θ̂1

)∥∥∥
2√

N
(Proposition 1)

≤ DCw

∥∥∥h (θ)− h
(
θ̂1

)∥∥∥
2√

N
(Assumption 5)

≤ DCwLh
∥∥∥θ − θ̂1

∥∥∥
2

(Assumption 4 and θ ∈ B∆θ
).
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We now combine Lemma 2 and Lemma 3 to show that H (θ, w) is close to its value at the solution H
(
θ̂1, 1w

)
for

sufficiently small δ and for all θ ∈ BCopδ.
Lemma 4. Bounds for difference in parameters. Under Assumptions 1–5 and Condition 1, if δ ≤ ∆θC

−1
op , then

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, 1w

)∥∥∥
1
≤
(
1 +DCwLhCop

)
δ.

Proof. By Lemma 2, δ ≤ ∆θC
−1
op implies that Copδ ≤ ∆θ and so BCopδ ⊆ B∆θ

. Consequently, we can apply
Lemma 3:

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, w

)∥∥∥
1
≤ sup
θ∈B∆θ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, w

)∥∥∥
1

≤ DCwLh
∥∥∥θ − θ̂1

∥∥∥
2

(Lemma 3)

≤ DCwLhCopδ (because θ ∈ BCopδ).

Next, we can use this to write

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, 1w

)∥∥∥
1

= sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H (θ, 1w) +H (θ, 1w)−H
(
θ̂1, 1w

)∥∥∥
1

≤ sup
θ∈BCopδ

sup
w∈Wδ

‖H (θ, w)−H (θ, 1w)‖1 + sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, 1w)−H
(
θ̂1, 1w

)∥∥∥
1

≤ sup
θ∈Ωθ

sup
w∈Wδ

‖H (θ, w)−H (θ, 1w)‖1 + sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, 1w)−H
(
θ̂1, 1w

)∥∥∥
1

≤ δ + sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, 1w)−H
(
θ̂1, 1w

)∥∥∥
1

(Condition 1)

≤ δ +DCwLhCopδ.

The constant that appears multiplying δ at the end of the proof of Lemma 4 will appear often in what follows, so
we give it the special name CIJ in Definition 3.

Note that Lemma 4 places a condition on how small δ must be in order for our regularity conditions to apply.
Lemma 2 will guarantee that θ̂ (w) ∈ BCopδ, but if we are not able to make δ arbitrarily small in Condition 1,
then we are not guaranteed to ensure that BCopδ ⊆ B∆θ

, will not be able to assume Lipschitz continuity, and
none of our results will apply.

Next, using Lemma 4, we can extend the operator bound on H−1
1 from Assumption 2 to H (θ, w)

−1
for all w ∈Wδ,

not only for w = 1w.

Lemma 5. Uniform invertibility of the Hessian. Under Assumptions 1–5 and Condition 1, if δ ≤
min

{
∆θC

−1
op ,

1
2C
−1
IJ C

−1
op

}
, then

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)
−1
∥∥∥
op
≤ 2Cop.

Proof. By Assumption 2,

∥∥∥∥H
(
θ̂1, 1w

)−1
∥∥∥∥
op

≤ Cop. So by Proposition 2, it will suffice to select δ so that

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, 1w

)∥∥∥
1
≤ 1

2
C−1
op . (3)
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When we can apply Lemma 4, we have

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, 1w

)∥∥∥
1
≤ CIJδ.

So H (θ, w) will satisfy equation (3) if we can apply Lemma 4 and if

δ ≤1

2
C−1
op C

−1
IJ .

To apply Lemma 4 we additionally require that δ ≤ ∆θC
−1
op . By taking δ ≤ min

{
∆θC

−1
op ,

1
2C
−1
op C

−1
IJ

}
, we satisfy

equation (3) and the result follows.

At last, the upper bound on δ will be sufficient to control the error terms in our approximation. For compactness,
we give it the name ∆δ in Definition 3.

Finally, we state a result that will allow us to define derivatives of θ̂ (w) with respect to w.

Lemma 6. Inverse function theorem. Under Assumptions 1–5 and Condition 1, and for δ ≤ ∆δ, there exists a

continuous, differentiable function of w, θ̂ (w), such that, for all w ∈W , G
(
θ̂ (w) , w

)
= 0.

Proof. This follows from Lemma 5 and the implicit function theorem.

By definition, θ̂ (1w) = θ̂1.

A.3 Bounding the errors in a Taylor expansion

We are now in a position to use Assumptions 1–5 and Condition 1 to bound the error terms in a first-order Taylor
expansion of θ̂ (w). We begin by simply calculating the derivative dθ̂ (w) /dw.

Proposition 3. For any w ∈W for which H
(
θ̂ (w) , w

)
is invertible, and for any vector a ∈ RN ,

dθ̂ (w)

dwT
|wa = −H

(
θ̂ (w) , w

)−1

G
(
θ̂ (w) , a

)
.

Proof. Because G
(
θ̂ (w) , w

)
= 0 for all w ∈W , by direct calculation,

0 =
d

dwT
G
(
θ̂ (w) , w

)
|wa

=

(
∂G

∂θT
dθ̂

dwT
+

∂G

∂wT

)
|wa

= H
(
θ̂ (w) , w

) dθ̂

dwT
|
w
a+

(
∂

∂wT
1

N

N∑

n=1

wngn (θ)

)
|
w
a

= H
(
θ̂ (w) , w

) dθ̂

dwT
|
w
a+

1

N

N∑

n=1

gn

(
θ̂ (w)

)
a

= H
(
θ̂ (w) , w

) dθ̂

dwT
|wa+G

(
θ̂ (w) , a

)
.

Because H
(
θ̂ (w) , w

)
is invertible by assumption, the result follows.

Definition 5. Define

θ̂IJ (w) := θ̂1 +
dθ̂ (w)

dwT
|1w (w − 1w)

= θ̂1 −H−1
1 G

(
θ̂1, w

)
. (because G

(
θ̂1, 1w

)
= 0)
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θ̂IJ (w) in Definition 5 is the first term in a Taylor series expansion of θ̂ (w) as a function of w. We want to bound

the error, θ̂IJ (w)− θ̂ (w).

Theorem 2. Under Assumptions 1–5 and Condition 1, when δ ≤ ∆δ,

sup
w∈Wδ

∥∥∥θ̂IJ (w)− θ̂ (w)
∥∥∥

2
≤ 2C2

opCIJδ
2.

Proof. By a one-term Taylor series expansion of G
(
θ̂ (w) , w

)
= 0 in θ around θ̂1, we have, for some θ̃ such that∥∥∥θ̃ − θ̂1

∥∥∥
2
≤
∥∥∥θ̂ (w)− θ̂1

∥∥∥
2
,

0 = G
(
θ̂ (w) , w

)
= G

(
θ̂1, w

)
+H

(
θ̃, w

)(
θ̂ (w)− θ̂1

)
.

Because δ ∈ Wδ, Lemma 2 implies that θ̂ (w) ∈ BCopδ. Because
∥∥∥θ̃ − θ̂1

∥∥∥
2
≤
∥∥∥θ̂ (w)− θ̂1

∥∥∥
2
, θ̃ ∈ BCopδ as well.

Because θ̃ ∈ BCopδ, Lemma 5 implies that H
(
θ̃, w

)
is invertible, so we can solve for θ̂ (w)− θ̂1.

θ̂ (w)− θ̂1 = −H
(
θ̃, w

)−1

G
(
θ̂1, w

)

=

(
−H

(
θ̃, w

)−1

+H
(
θ̂1, 1w

)−1

−H
(
θ̂1, 1w

)−1
)
G
(
θ̂1, w

)

=

(
H
(
θ̂1, 1w

)−1

−H
(
θ̃, w

)−1
)
G
(
θ̂1, w

)
+ θ̂IJ (w)− θ̂1.

Eliminating θ̂1 and taking the supremum of both sides we have that

sup
w∈Wδ

∥∥∥θ̂IJ (w)− θ̂ (w)
∥∥∥

2

= sup
w∈Wδ

∥∥∥∥
(
H
(
θ̂1, 1w

)−1

−H
(
θ̃, w

)−1
)
G
(
θ̂1, w

)∥∥∥∥
2

= sup
w∈Wδ

∥∥∥∥H
(
θ̃, w

)−1 (
H
(
θ̃, w

)
−H

(
θ̂1, 1w

))
H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

≤ 2Cop sup
w∈Wδ

∥∥∥∥
(
H
(
θ̃, w

)
−H

(
θ̂1, 1w

))
H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

(Lemma 5)

≤ 2Cop sup
w∈Wδ

∥∥∥H
(
θ̃, w

)
−H

(
θ̂1, 1w

)∥∥∥
op

∥∥∥∥H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

≤ 2Cop sup
w∈Wδ

∥∥∥H
(
θ̃, w

)
−H

(
θ̂1, 1w

)∥∥∥
2

∥∥∥∥H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

(ordering of matrix norms)

≤ 2CopCIJδ sup
w∈Wδ

∥∥∥∥H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

(Lemma 4)

≤ 2C2
opCIJδ sup

w∈Wδ

∥∥∥G
(
θ̂1, w

)∥∥∥
2

(Assumption 2)

= 2C2
opCIJδ sup

w∈Wδ

∥∥∥G
(
θ̂1, w

)
−G

(
θ̂1, 1w

)∥∥∥
2

(because G
(
θ̂1, 1w

)
= 0)

≤ 2C2
opCIJδ

2 (Condition 1).

A.4 Use cases

First, let us state a simple condition under which Assumptions 1–4 hold. It will help to have a lemma for the
Lipschitz continuity.
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Lemma 7. Derivative Cauchy Schwartz. Let a (θ) = (a1 (θ) , ..., aN (θ)) be an array of tensors with multi-index

i ∈ [DA], and let ∂a(θ)
∂θ =

(
∂
∂θa1 (θ) , ..., ∂∂θaN (θ)

)
be an array of tensors of size D ×DA. Then

∥∥∥∥
∂

∂θ
‖a (θ)‖2

∥∥∥∥
2

≤ DA

∥∥∥∥
∂a

∂θ

∥∥∥∥
2

.

Proof. By direct calculation,

∥∥∥∥
∂

∂θ
‖a (θ)‖22

∥∥∥∥
2

2

=

D∑

r=1

(
∂

∂θr

N∑

n=1

DA∑

i=1

an,i (θ)
2

)2

=

D∑

r=1

(
N∑

n=1

DA∑

i=1

2an,i (θ)
∂an,i (θ)

∂θr

)2

≤
D∑

r=1


2

DA∑

i=1

(
N∑

n=1

an,i (θ)
2

) 1
2
(

N∑

n=1

(
∂an,i (θ)

∂θr

)2
) 1

2




2

≤
D∑

r=1


2D2

A

(
1

DA

DA∑

i=1

N∑

n=1

an,i (θ)
2

) 1
2
(

1

DA

N∑

n=1

(
∂an,i (θ)

∂θr

)2
) 1

2




2

= 4D2
A ‖a‖22

D∑

r=1

∥∥∥∥
∂a

∂θr

∥∥∥∥
2

2

= 4D2
A ‖a‖22

∥∥∥∥
∂a

∂θ

∥∥∥∥
2

2

.

By the chain rule,

∥∥∥∥
∂

∂θ
‖a (θ)‖2

∥∥∥∥
2

2

=
1

4 ‖a (θ)‖22

∥∥∥∥
∂

∂θ
‖a (θ)‖22

∥∥∥∥
2

2

≤ D2
A

∥∥∥∥
∂a

∂θ

∥∥∥∥
2

2

.

Lemma 8. Let a (θ) ∈ RD×D be a continuously differentiable random matrix with a D×D×D derivative tensor.
(Note that the function, not θ, is random. For example, E [a (θ)] is still a function of θ.) Suppose that E [‖a (θ)‖2]
is finite for all θ ∈ Ωθ. Then, for all θ1, θ2 ∈ Ωθ,

|E [‖a (θ1)‖2]− E [‖a (θ2)‖2]| ≤

√√√√E

[
sup
θ∈Ωθ

∥∥∥∥
∂a (θ)

∂θ

∥∥∥∥
2

2

]
‖θ1 − θ2‖2 .
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Proof. For any tensor a with multi-index i,

∥∥∥∥
∂

∂θ
‖a‖22

∥∥∥∥
2

2

=

D∑

r=1

(
∂

∂θr
‖a‖22

)2

=

D∑

r=1

(
∂

∂θr

DA∑

i=1

a2
i

)2

=

D∑

r=1

(
2

DA∑

i=1

ai
∂ai
∂θr

)2

≤ 4

D∑

r=1

DA∑

i=1

a2
i

DA∑

i=1

(
∂ai
∂θr

)2

(Cauchy-Schwartz)

= 4

DA∑

i=1

a2
i

D∑

r=1

DA∑

i=1

(
∂ai
∂θr

)2

= 4 ‖a‖22
∥∥∥∥
∂a

∂θ

∥∥∥∥
2

2

.

Consequently,

∥∥∥∥
∂

∂θ
‖a (θ)‖2

∥∥∥∥
2

2

=

∥∥∥∥
1

2 ‖a (θ)‖2
∂

∂θ
‖a (θ)‖22

∥∥∥∥
2

2

=
1

4 ‖a (θ)‖22

∥∥∥∥
∂

∂θ
‖a (θ)‖22

∥∥∥∥
2

2

≤ 4 ‖a (θ)‖22
4 ‖a (θ)‖22

∥∥∥∥
∂

∂θ
a (θ)

∥∥∥∥
2

2

=

∥∥∥∥
∂a (θ)

∂θ

∥∥∥∥
2

2

.

So for any θ1, θ2 ∈ Ωθ,

|E [‖a (θ1)‖2]− E [‖a (θ2)‖2]| ≤ E [|‖a (θ1)‖2 − ‖a (θ2)‖2|]

≤ E
[(

sup
θ∈Ωθ

∥∥∥∥
∂

∂θ
‖a (θ)‖2

∥∥∥∥
2

)]
‖θ1 − θ2‖2 (θ is not random)

≤ E
[(

sup
θ∈Ωθ

∥∥∥∥
∂a (θ)

∂θ

∥∥∥∥
2

)]
‖θ1 − θ2‖2

≤

√√√√E

[
sup
θ∈Ωθ

∥∥∥∥
∂a (θ)

∂θ

∥∥∥∥
2

2

]
‖θ1 − θ2‖2 .

The result follows. Note that the bound still holds (though vacuously) if E
[
supθ∈Ωθ

∥∥∥∂a(θ)
∂θ

∥∥∥
2

2

]
is infinite.

Proposition 4. Let Ωθ be a compact set. Let gn (θ) be twice continuously differentiable IID random functions.
Define

hn (θ) :=
∂gn (θ)

∂θ

rn (θ) :=
∂2gn (θ)

∂θ∂θ
,

where rn (θ) is a D ×D ×D tensor. Assume that
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1a) E
[
supθ∈Ωθ

‖gn (θ)‖22
]
<∞;

1b) E
[
supθ∈Ωθ

‖hn (θ)‖22
]
<∞;

1c) E
[
supθ∈Ωθ

‖rn (θ)‖22
]
<∞;

2) E [hn (θ)] is non-singular for all θ ∈ Ωθ;

3) We can exchange expectation and differentiation.

Then limN→∞ P (Assumptions 1–4 hold) = 1.

Proof. The proof follows from Theorems 9.1 and 9.2 of Keener (2011). We will first show that the expected values
of the needed functions satisfy Assumptions 1–4 , and then that the sample versions converge uniformly.

By Jensen’s inequality,

E
[

sup
θ∈Ωθ

‖gn (θ)‖2
]

= E

[√
sup
θ∈Ωθ

‖gn (θ)‖22

]
≤
√
E
[

sup
θ∈Ωθ

‖gn (θ)‖22
]
.

Also, for the ith component of gn (θ)

E
[

sup
θ∈Ωθ

|gn,i (θ)|
]
≤ E

[
sup
θ∈Ωθ

‖gn (θ)‖∞
]
≤ E

[
sup
θ∈Ωθ

‖gn (θ)‖2
]
.

By Theorem 9.1 of Keener (2011), E
[
‖gn (θ)‖22

]
, E [‖gn (θ)‖2], and E [gn (θ)] are continuous functions of θ, and

because Ωθ is compact, they are each bounded. Similar reasoning applies to hn (θ) and rn (θ). Consequently we
can define

sup
θ∈Ωθ

E
[
‖gn (θ)‖22

]
=: Q2

g <∞

sup
θ∈Ωθ

E
[
‖hn (θ)‖22

]
=: Q2

h <∞.

Below, these constants will be used to satisfy Assumption 1 and Assumption 3 with high probability.

Because Ωθ is compact, E [hn (θ)] is continuous, E [hn (θ)] is non-singular, and the operator norm is a continuous
function of E [hn (θ)], we can also define

sup
θ∈Ωθ

∥∥∥E [hn (θ)]
−1
∥∥∥
op

=: Qop <∞.

Below, this constant be used to satisfy Assumption 2 with high probability.

Finally, we turn to the Lipschitz condition. Lemma 8 implies that

|E [‖hn (θ1)‖2]− E [‖hn (θ2)‖2]| ≤
√

E
[

sup
θ∈Ωθ

‖rn (θ)‖22
]
‖θ1 − θ2‖2 .

Define

Λh =

√
E
[

sup
θ∈Ωθ

‖rn (θ)‖22
]
,

so that we have shown that E [‖hn (θ)‖2] is Lipschitz in Ωθ with constant Λh, which is finite by assumption.

We have now shown, essentially, that the expected versions of the quantities we wish to control satisfy Assumptions
1–4 with N = 1. We now need to show that the sample versions satisfy Assumptions 1–4 with high probability,
which will follow from the fact that the sample versions converge uniformly to their expectations by Theorem 9.2
of Keener (2011).
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First, observe that Assumption 1 holds with probability one by assumption. For the remaining assumption choose
an ε > 0, and define

Cg :=
√
Q2
g + ε

Ch :=
√
Q2
h + ε

Cop := 2Qop

Lh :=
√
D4Λ2

h + ε.

By Keener (2011) Theorem 9.2,

sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22 − E
[
‖gn (θ)‖22

]∣∣∣∣∣
p−−−−→

N→∞
0.

Because

sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22

∣∣∣∣∣ > Q2
g + ε ≥ sup

θ∈Ωθ

E
[
‖gn (θ)‖22

]
+ ε⇒

sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22 − E
[
‖gn (θ)‖22

]∣∣∣∣∣ > ε,

we have

P

(
sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22

∣∣∣∣∣ ≥ Q
2
g + ε

)
≤

P

(
sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22 − E
[
‖gn (θ)‖22

]∣∣∣∣∣ ≤ ε
)
,

so

P

(
sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22

∣∣∣∣∣ ≥ C
2
g

)
−−−−→
N→∞

0.

An analogous argument holds for 1
N ‖hn (θ)‖22. Consequently, P (Assumption 3 holds) −−−−→

N→∞
1.

We now consider Assumption 2. Again, by Keener (2011) Theorem 9.2 applied to each element of the matrix
hn (θ), using a union bound over each of the D2 entries,

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

hn (θ)− E [hn (θ)]

∥∥∥∥∥
1

p−−−−→
N→∞

0.

By the converse of Proposition 2, because
∥∥∥E [hn (θ)]

−1
∥∥∥
op
≤ Qop,

∥∥∥∥∥∥

(
1

N

N∑

n=1

hn (θ)

)−1
∥∥∥∥∥∥
op

> 2Qop = Cop ⇒

∥∥∥∥∥
1

N

N∑

n=1

hn (θ)− E [hn (θ)]

∥∥∥∥∥
1

>
1

2
Q−1
op .
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Consequently,

P



∥∥∥∥∥∥

(
1

N

N∑

n=1

hn (θ)

)−1
∥∥∥∥∥∥
op

≥ Cop


 ≤

P

(∥∥∥∥∥
1

N

N∑

n=1

hn (θ)− E [hn (θ)]

∥∥∥∥∥
1

)
p−−−−→

N→∞
0,

and P (Assumption 2 holds) −−−−→
N→∞

1.

Finally, applying Lemma 8 to 1√
N
‖h (θ2)‖2,

∣∣∣∣
1√
N
‖h (θ1)‖2 −

1√
N
‖h (θ2)‖2

∣∣∣∣ ≤ sup
θ∈Ωθ

∥∥∥∥
∂

∂θ

1√
N
‖h (θ)‖2

∥∥∥∥
2

‖θ1 − θ2‖2

≤ D2

√
N

sup
θ∈Ωθ

‖r (θ)‖2 ‖θ1 − θ2‖2

= D2

√
sup
θ∈Ωθ

1

N
‖r (θ)‖22 ‖θ1 − θ2‖2 .

Consequently,

∣∣∣∣
1√
N
‖h (θ1)‖2 −

1√
N
‖h (θ2)‖2

∣∣∣∣ ≥ Lh ‖θ1 − θ2‖2 ⇒

D2

√
sup
θ∈Ωθ

1

N
‖r (θ)‖22 ≥ Lh ⇒

sup
θ∈Ωθ

1

N
‖r (θ)‖22 − sup

θ∈Ωθ

E
[
‖rn (θ)‖22

]
≥ L2

h

D4
− sup
θ∈Ωθ

E
[
‖rn (θ)‖22

]
⇒

sup
θ∈Ωθ

∣∣∣∣
1

N
‖r (θ)‖22 − E

[
‖rn (θ)‖22

]∣∣∣∣ ≥
L2
h

D4
− Λ2

h = ε.

However, again by Keener (2011) Theorem 9.2,

sup
θ∈Ωθ

∣∣∣∣
1

N
‖r (θ)‖22 − E

[
‖rn (θ)‖22

]∣∣∣∣
p−−−−→

N→∞
0,

so P (Assumption 4 holds) −−−−→
N→∞

1.

B Genomics Experiments Details

We demonstrate the Python and R code used to run and analyze the experiments on the genomics data in a
sequence of Jupyter notebooks. The output of these notebooks are included below, though they are best viewed
in their original notebook form. The notebooks, as well as scripts and instructions for reproducing our analysis in
its entirety, can be found in the git repository rgiordan/AISTATS2019SwissArmyIJ.

https://github.com/rgiordan/AISTATS2019SwissArmyIJ


fit_model_and_save

February 21, 2019

1 Genomics experiment details.

We demonstrate the infinitesimal jackknife on a publicly available data set of mice gene expression
in Shoemaker et al. [2015].

Mice were infected with influenza virus, and gene expression was assessed several times after
infection, so the observed data consists of expression levels ygt for genes g = 1, ..., ng and time
points t = 1, ..., nt, where in this case ng = 1000 and nt = 42.

This notebook contains the first of three steps in the analysis. In this notebook, we will first load
the data and define a basis with a hyperparameter we wish to select with cross validation. We then
describe the two stages of our analysis: a regression stage and a clustering stage. We then save the
data for further analysis by the notebooks load_and_refit and calculate_prediction_error.

This notebook assumes you have already followed the instructions in README.md to install the
necessary packages and create the dataset.

2 Step 1: Initial fit.

In [1]: import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

import inspect

import os

import sys

import time

np.random.seed(3452453) # nothing special about this seed (we hope)!

In [2]: from aistats2019_ij_paper import regression_mixture_lib as rm_lib

from aistats2019_ij_paper import regression_lib as reg_lib

from aistats2019_ij_paper import sensitivity_lib as sens_lib

from aistats2019_ij_paper import spline_bases_lib

from aistats2019_ij_paper import transform_regression_lib as trans_reg_lib

from aistats2019_ij_paper import loading_data_utils

from aistats2019_ij_paper import saving_gmm_utils

from aistats2019_ij_paper import mse_utils

import plot_utils_lib

1
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2.1 The first stage: Regression

2.1.1 Load data

In [3]: # Set bnp_data_repo to be the location of a clone of the repo

# https://github.com/NelleV/genomic_time_series_bnp

bnp_data_repo = '../../genomic_time_series_bnp'

y_train, y_test, train_indx, timepoints = loading_data_utils.load_genomics_data(

bnp_data_repo,

split_test_train = True,

train_indx_file = '../fits/train_indx.npy')

Loading data from: ../../genomic_time_series_bnp/data/shoemaker2015reprocessed

In [4]: n_train = np.shape(y_train)[0]

print('number of genes in training set: \n', n_train)

n_test = np.shape(y_test)[0]

print('number of genes in test set: \n', n_test)

n_genes = n_train + n_test

test_indx = np.setdiff1d(np.arange(n_genes), train_indx)

gene_indx = np.concatenate((train_indx, test_indx))

number of genes in training set:

700

number of genes in test set:

300

Each gene yg has 42 observations. Observations are made at 14 timepoints, with 3 replicates at
each timepoints.

In [5]: n_t = len(timepoints)

n_t_unique = len(np.unique(timepoints))

print('timepoints: \n ', timepoints, '\n')

print('Distinct timepoints: \n', np.sort(np.unique(timepoints)), '\n')

print('Number of distinct timepoints:', n_t_unique)

timepoints:

[0, 0, 0, 3, 3, 3, 6, 6, 6, 9, 9, 9, 12, 12, 12, 18, 18, 18, 24, 24, 24, 30, 30, 30, 36, 36, 36, 48, 48, 48, 60, 60, 60, 72, 72, 72, 120, 120, 120, 168, 168, 168]

Distinct timepoints:

[ 0 3 6 9 12 18 24 30 36 48 60 72 120 168]

Number of distinct timepoints: 14

2
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Here is the raw data for a few randomly chosen genes.

In [6]: f, axarr = plt.subplots(2, 3, figsize=(15,8))

gene_indx = np.sort(np.random.choice(n_train, 6))

for i in range(6):

n = gene_indx[i]

this_plot = axarr[int(np.floor(i / 3)), i % 3]

this_plot.plot(timepoints, y_train[n, :].T, '+', color = 'blue');

this_plot.set_ylabel('gene expression')

this_plot.set_xlabel('time')

this_plot.set_title('gene number {}'.format(n))

f.tight_layout()

2.1.2 Define regressors

We model the time course using cubic B-splines. Let α be the degrees of freedom of the B-splines,
and this is the parameter we seek to choose using cross-validation.

For a given degrees of freedom, the B-spline basis is given by an nt × nx matrix Xd f , where the
each column of Xd f is a B-spline basis vector evaluated at the nt timepoints. Note that nx increases
with increasing degrees of freedom.

Note that we only use B-splines to smooth the first 11 timepoints. For the last three timepoints,
t = 72, 120, 168, we use indicator functions on each timepoint as three extra basis vectors. In other
words, we append to the regressor matrix three columns, where each column is 1 if t = 72, 120,
or 168, respectively, and 0 otherwise. We do this to avoid numerical issues in the matrix XTX.
Because the later timepoints are more spread out, the B-spline basis are close to zero at the later
timepoints, leading to matrices close to being singular.
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In [7]: # Simulate passing arguments in on the command line so that the notebook

# looks more like those in ``cluster_scripts``.

class Args():

def __init__(self):

pass

args = Args()

args.df = 7

args.degree = 3

args.num_components = 10

In [8]: regressors = spline_bases_lib.get_genomics_spline_basis(

timepoints, df=args.df, degree=3)

regs = reg_lib.Regressions(y_train, regressors)

We plot the B-spline matrix for several degrees of freedom below:

In [9]: f, axarr = plt.subplots(2, 3, figsize=(15,8))

i = 0

for df in [4, 5, 6, 7, 8, 9]:

_regressors = spline_bases_lib.get_genomics_spline_basis(

timepoints, exclude_num=3, df=df)

this_plot = axarr[int(np.floor(i / 3)), i % 3]

this_plot.plot(timepoints, _regressors);

this_plot.set_xlabel('time')

this_plot.set_ylabel('B-spline value')

this_plot.set_title('B-spliine basis when df = {}'.format(df))

i += 1

f.tight_layout()
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We display the regressor matrix below.

In [10]: plt.matshow(regs.x.T)

plt.ylabel('basis')

plt.xlabel('timepoint and replicate')

plt.title('The (transposed) regressor matrix when df = {}\n'.format(args.df));

With the regressor X defined above, for each gene g we model P
(

yg|βg, σ2
g

)
=

N
(

yg|Xβg, σ2
g

)
. In the second stage, we will want to cluster βg taking into account its uncer-

tainty on each gene. To do this, we wish to estimate the posterior mean E[βg|yg] and covariance
Cov(βg|yg) with flat priors for both βg and σ2

g .
For each gene, we estimate the posterior with a mean field variational Bayes (MFVB) approxi-

mation q
(

σ2
g , βg; η̂g

)
to the posterior P

(
βg, σ2

g |yg

)
.

In particular, we take q
(

σ2
g , βg; η̂g

)
= q∗

(
σ2

g

)
q∗ (βg

)
, where q∗

(
σ2

g

)
is a dirac delta function,

and we optimize over its a location parameter; q∗ (βg
)

is a Gaussian density and we optimize over
its mean and covariance.
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The optimal variational approximation has a closed form that is formally identical to the stan-
dard frequentist mean and covariance estimate for linear regression. Explicitly, the optimal varia-
tional distribution is,

q∗(βg) = N
(

βg

∣∣∣ (XTX)−1XTyg, τ̂g(XTX)−1
)

q∗(σ2
g) = δ{σ2

g = τ̂g}

where τ̂g = 1
nt−nx

∥yg − X(XTX)−1XTyg∥2
2.

The advantage of the MVFB construction is that η̂g for g = 1, ..., ng satisfies set of ng indepen-
dent M-estimation objectives, allowing us to apply our infinitesimal jackknife results. Specifically,
defining θreg :=

(
η1, ..., ηng

)
, we wish to minimize

Freg
(
θreg, α

)
=

ng

∑
g=1

KL
(

q
(

σ2
g , βg; ηg

)
||P
(

βg, σ2
g |yg

))

= −
ng

∑
g=1

Eq

[
log P

(
βg, σ2

g |yg

)]
+ Eq

[
log q

(
βg, σ2

g |ηg

)]

:=
ng

∑
g=1

Freg,g
(
ηg, α

)
.

Our M-estimator, then, is

∂Freg
(
θreg, α

)

∂θreg
= 0.

The class regs can calculate the optimal variational parameters for each gene. In particular, the
variational parameters ηg consist of a variational mean and covariance for βg, as well as a location
estimate for σ2

g .

In [11]: reg_time = time.time()

opt_reg_params = regs.get_optimal_regression_params()

reg_time = time.time() - reg_time

print('Regression time: {} seconds'.format(reg_time))

Regression time: 0.029132366180419922 seconds

Here are what some of the fits look like. Each regression produces a prediction ŷg := XEq
[
βg
]
,

plotted with the heavy red line above. The light red are predictions when βg is drawn from q∗(βg);
the spread of the light red is intended to give a sense of the covariance of βg.

In [12]: f, axarr = plt.subplots(2, 3, figsize=(15,8))

for i in range(6):

n = gene_indx[i]

this_plot = axarr[int(np.floor(i / 3)), i % 3]

plot_utils_lib.PlotRegressionLine(

timepoints, regs, opt_reg_params, n, this_plot=this_plot)

f.tight_layout()
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We also define and save data for the test regressions, which we will use later to evaluate out-
of-sample performance. The training regressions will be saved below with the rest of the fit.

In [13]: regs_test = reg_lib.Regressions(y_test, regressors)

test_regression_outfile = '../fits/test_regressions.json'

with open(test_regression_outfile, 'w') as outfile:

outfile.write(regs_test.to_json())

2.2 The second stage: fit a mixture model.

2.2.1 Transform the parameters before clustering

We are interested in the pattern of gene expression, not the absolute level, so we wish to cluster
ŷg − ¯̂yg, where ¯̂yg is the average over time points. Noting that the nt × nt matrix Covq

(
ŷg − ¯̂yg

)
is

rank-deficient because we have subtracted the mean, the final step is to rotate ŷg − ¯̂yg into a basis
where the zero eigenvector is a principle axis and then drop that component.

Call these transformed regression coefficients γg and observe that Covq
(
γg
)

has a closed form
and is full-rank. It is these γgs that we will cluster in the second stage.

We briefly note that the re-centering operation could have been equivalently achieved by mak-
ing a constant one of the regressors. We chose this implementation because it also allows the
user to cluster more complex, non-linear transformations of the regression coefficients, though we
leave this extension for future work.

We note that the transformations described in this section are done automatically in the GMM

class. We are only calculating these transformations here for exposition.

In [14]: # Get the matrix that does the transformation.

transform_mat, unrotate_transform_mat = \

trans_reg_lib.get_reversible_predict_and_demean_matrix(regs.x)

trans_obs_dim = transform_mat.shape[0]
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If T is the matrix that effects the transformation, then

Eq[γg] = TEq[βg]

Covq(γq) = TCovq(βg)TT

The transformed parameters are also regression parameters, just in a different space.

In [15]: # Apply the transformation

transformed_reg_params = \

trans_reg_lib.multiply_regression_by_matrix(

opt_reg_params, transform_mat)

We now visualize the transformed coefficients and their uncertainty.

In [16]: f, axarr = plt.subplots(2, 3, figsize=(15,8))

transformed_beta = transformed_reg_params['beta_mean']

transformed_beta_info = transformed_reg_params['beta_info']

for i in range(6):

n = gene_indx[i]

this_plot = axarr[int(np.floor(i / 3)), i % 3]

this_plot.plot(transformed_beta[n, :], color = 'red');

this_plot.set_ylabel('transformed coefficient')

this_plot.set_xlabel('index')

this_plot.set_title('gene number {}'.format(n))

# draw from the variational distribution, to plot uncertainties

for j in range(30):

transformed_beta_draw = np.random.multivariate_normal(

transformed_beta[n, :], \

np.linalg.inv(transformed_beta_info[n]))

axarr[int(np.floor(i / 3)), i % 3].plot(transformed_beta_draw,

color = 'red', alpha = 0.08);

f.tight_layout()
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The heavy red lines are the means of the transformed regression coefficients; shaded lines are
draws from the variational distribution.

It is these transformed coefficients, γg, that we cluster in the second stage.

2.2.2 Estimate an optimal clustering.

We now define a clustering problem for the γg. Let nk be the number of clusters, and µ1, ..., µnk be
the cluster centers. Also let zgkbe the binary indicator for the gth gene belonging to cluster k. We
then define the following generative model

P (π) = Dirichlet (ω)

P (µk) = N (µk|0, Σ0) for k = 1, ..., nk

P
(
zgk = 1|πk

)
= πk for k = 1, ..., nk; n = 1, ..., ng

P
(
γg|zgk = 1, µk, ηg

)
= N

(
γg|µk, Covq

(
γg
)
+ ϵInt−1

)
for k = 1, ..., nk; n = 1, ..., ng.

where ϵ is a small regularization parameter, which helped our optimization produce more
stable results.

We will estimate the clustering using the maximum a posteriori (MAP) estimator of θclust :=
(µ, π). This defines an optimization objective that we seek to minimize:

Fclust
(
θclust, θreg

)
= −

ng

∑
g=1

Eq∗
z

{
log P

(
γg|ηg, µ, π, zg

)
− log P(zg|π)

}
− log P (µ) − log P (π)

which, for every value of θreg, we expect to satisfy

∂Fclust
(
θclust, θreg

)

∂θclust
= 0.
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Note that θclust involves only the ‘’global” parameters µ and π. We did take a variational
distribution for the zgks, represented by independent Bernoulli distribution, but the optimal q∗

z
can be written as a function of µ and π. Hence, our optimization objective only involves these
global parameters.

In [17]: # Define prior parameters.

num_components = args.num_components

epsilon = 0.1

loc_prior_info_scalar = 1e-5

trans_obs_dim = regs.x.shape[1] - 1

prior_params = \

rm_lib.get_base_prior_params(trans_obs_dim, num_components)

prior_params['probs_alpha'][:] = 1

prior_params['centroid_prior_info'] = loc_prior_info_scalar * np.eye(trans_obs_dim)

In [18]: gmm = rm_lib.GMM(args.num_components,

prior_params, regs, opt_reg_params,

inflate_coef_cov=None,

cov_regularization=epsilon)

In our experiment, the number of clusters nk was chosen to be 10. We set ω to be the ones
vector of length nk. The prior info for the cluster centers Σ0 is 1e-05×I. ϵ was set to be 0.1.

Let us examine the optimization objective. First, we’ll inspect the likelihood terms. What
follows is the likelihood given that gene g belongs to cluster k.

In [19]: print(inspect.getsource(rm_lib.get_log_lik_nk))

def get_log_lik_nk(centroids, probs, x, x_infos):

loc_log_lik = \

-0.5 * (-2 * np.einsum('ni,kj,nij->nk', x, centroids, x_infos) +

np.einsum('ki,kj,nij->nk', centroids, centroids, x_infos))

log_probs = np.log(probs[0, :])

log_lik_by_nk = loc_log_lik + log_probs.T

return log_lik_by_nk

We can then optimize for q∗
z , which can be parametrized by its mean Eq∗

z [z]. We note that this
update has a closed form given θclust, so there is no need to solve an optimization problem to find
q∗

z (z). We additionally note that we do not use the EM algorithm, which we found to have exhibit
extremely poor convergence rates. Rather, we set q∗

z (z) to its optimal value given θclust and return
the objective as a function of θclust alone, allowing the use of more general and higher-quality
optimization routines.

In [20]: print(inspect.getsource(rm_lib.get_e_z))
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def get_e_z(log_lik_by_nk):

log_const = paragami.simplex_patterns.logsumexp(log_lik_by_nk, axis=1)

e_z = np.exp(log_lik_by_nk - log_const)

return e_z

With the optimal parameters for znk, we combine the likelihood term with the prior and en-
tropy terms.

In [21]: print(inspect.getsource(rm_lib.wrap_get_loglik_terms))

print(inspect.getsource(rm_lib.wrap_get_kl))

def wrap_get_loglik_terms(gmm_params, transformed_reg_params):

log_lik_by_nk = get_log_lik_nk(

centroids=gmm_params['centroids'],

probs=gmm_params['probs'],

x=transformed_reg_params['beta_mean'],

x_infos=transformed_reg_params['beta_info'])

e_z = get_e_z(log_lik_by_nk)

return log_lik_by_nk, e_z

def wrap_get_kl(gmm_params, transformed_reg_params, prior_params):

log_lik_by_nk, e_z = \

wrap_get_loglik_terms(gmm_params, transformed_reg_params)

log_prior = get_log_prior(

gmm_params['centroids'], gmm_params['probs'], prior_params)

return get_kl(log_lik_by_nk, e_z, log_prior)

This objective function is wrapped in the GMM class method get_params_kl.

In [22]: print(inspect.getsource(gmm.get_params_kl))

def get_params_kl(self, gmm_params):

"""Get the optimization objective as a function of the mixture

parameters.

"""

return wrap_get_kl(

gmm_params, self.transformed_reg_params, self.prior_params)

2.2.3 Optimization

For optimization we make extensive use of the autograd library for automatic differentiation and
the paragami library for parameter packing and sparse Hessians. These packages’ details are
beyond the scope of the current notebook.
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First, we do a k-means initialization.

In [23]: print('Running k-means init.')

init_gmm_params = \

rm_lib.kmeans_init(gmm.transformed_reg_params,

gmm.num_components, 50)

print('Done.')

init_x = gmm.gmm_params_pattern.flatten(init_gmm_params, free=True)

Running k-means init.

Done.

We note that the match between “exact” cross-validation (removing time points and re-
optimizing) and the IJ was considerably improved by using a high-quality second-order optimiza-
tion method. In particular, for these experiments, we employed the Newton conjugate-gradient
trust region method (Chapter 7.1 of Wright et al [1999]) as implemented by the method trust-ncg

in scipy.optimize, preconditioned by the Cholesky decomposition of an inverse Hessian calcu-
lated at an initial approximate optimum.

We found that first-order or quasi-Newton methods (such as BFGS) often got stuck or termi-
nated at points with fairly large gradients. At such points our method does not apply in theory
nor, we found, very well in practice.

The inverse Hessian used for the preconditioner was with respect to the clustering parameters
only and so could be calculated quickly, in contrast to the H1 matrix used for the IJ, which includes
the regression parameters as well.

First, run with a low tolerance to get a point at which to evaluate an initial preconditioner.

In [24]: gmm.conditioned_obj.reset() # Reset the logging and iteration count.

gmm.conditioned_obj.set_print_every(1)

opt_time = time.time()

gmm_opt, init_x2 = gmm.optimize(init_x, gtol=1e-2)

opt_time = time.time() - opt_time

Iter 0: f = -159.11834165

Iter 1: f = -159.67926278

Iter 2: f = -159.97782885

Iter 3: f = -160.15878320

Iter 4: f = -159.59447036

Iter 5: f = -160.19209687

Iter 6: f = -160.27259154

Iter 7: f = -160.29486553

Iter 8: f = -160.33460656

Iter 9: f = -160.34154288

Iter 10: f = -160.32382096

Iter 11: f = -160.34447865

Iter 12: f = -160.34634639

Iter 13: f = -160.34692896
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Next, set the preconditioner using the square root inverse Hessian at the point init_x2.

In [25]: tic = time.time()

h_cond = gmm.update_preconditioner(init_x2)

opt_time += time.time() - tic

The method optimize_fully repeats this process of optimizing and re-calculating the precon-
ditioner until the optimal point does not change.

In [26]: gmm.conditioned_obj.reset()

tic = time.time()

gmm_opt, gmm_opt_x = gmm.optimize_fully(

init_x2, verbose=True)

opt_time += time.time() - tic

print('Optimization time: {} seconds'.format(opt_time))

Preconditioned iteration 1

Running preconditioned optimization.

Iter 0: f = -160.34692896

Iter 1: f = -160.34694250

Iter 2: f = -160.34694250

Preconditioned iteration 2

Getting Hessian and preconditioner.

Running preconditioned optimization.

Iter 3: f = -160.34694250

Iter 4: f = -160.34694250

Converged.

Optimization time: 8.438910484313965 seconds

paragami patterns allow conversion between unconstrained vectors and dictionaries of pa-
rameter values. After “folding” the optimal gmm_opt_x, opt_gmm_params contains a dictionary of
optimal cluster centroids and cluster probabilities.

In [27]: opt_gmm_params = gmm.gmm_params_pattern.fold(gmm_opt_x, free=True)

print(opt_gmm_params.keys())

print(np.sort(opt_gmm_params['probs']))

odict_keys(['centroids', 'probs'])

[[0.01567608 0.04016882 0.06955236 0.07427946 0.09373695 0.0947442

0.09653288 0.12626624 0.15739176 0.23165127]]

Each gene’s regression line has an inferred cluster membership given by Eq∗
z [zg], and an ex-

pected posterior centroid given by ∑k Eq∗
z [zgk]µk. This expected posterior centroid can be un-

transformed to give a prediction for the observation.
It is the difference between this prediction line — which is a function of the clustering — and

the actual data that we consider to be the “error” of the model.
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In [28]: gmm_pred = mse_utils.get_predictions(gmm, opt_gmm_params, opt_reg_params)

f, axarr = plt.subplots(2, 3, figsize=(15,8))

for i in range(6):

n = gene_indx[i]

this_plot = axarr[int(np.floor(i / 3)), i % 3]

plot_utils_lib.PlotRegressionLine(

timepoints, regs, opt_reg_params, n, this_plot=this_plot)

plot_utils_lib.PlotPredictionLine(

timepoints, regs, gmm_pred, n, this_plot=this_plot)

f.tight_layout()

2.2.4 Calculating H1 for the IJ

We seek to choose the degrees of freedom α for the B-splines using cross-validation. We leave out
one or more timepoints, and fit using only the remaining timepoints. We then estimate the test
error by predicting the value of the genes at the held out timepoints.

To do this, we define time weights wt by observing that, for each g, the term
Eq

[
log P

(
βg, σ2

g |yg

)]
decomposes into a sum over time points:

Freg,g
(
ηg, α, w

)
:= −

nt

∑
t=1

wt

(
−1

2
σ−2

g
(
yg,t −

(
Xβg

)
t

)2 − 1
2

log σ2
g

)
+ Eq

[
log q

(
βg, σ2

g |ηg

)]
.

We naturally define Freg
(
θreg, α, w

)
:= ∑

ng
g=1 Freg,g

(
ηg, α, w

)
.
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By defining θ =
(
θclust, θreg

)
, we then have an M-estimator

G (θ, w, α) :=




∂Freg(θreg,w,α)
∂θreg

∂Fclust(θclust,θreg)
∂θclust


 = 0.

We can then apply the IJ to approximate the leaving out of various timepoints.
Note that what we call the “Hessian” for this two-step procedure is not really a Hessian, as it

is not symmetric. More precisely, it is the Jacobian of G, or what we defined as H1 in the text.
Calculating H1 is the most time-consuming part of the infinitesimal jackknife, since the H1

matrix is quite large (though sparse). However, once H1 is computed, calculating each θI J(w) is
extremely fast.

H1 can be computed in blocks:

H1 =

(
∇2

θreg
Freg 0

∇θreg∇θclust Fclust ∇2
θclust

Fclust

)

The code refers to ∇2
θclust

Fclust as the “GMM Hessian”. It refers to ∇θreg∇θclust Fclust as the “cross
Hessian”. And it refers to ∇2

θreg
Freg as the “regression Hessian”, which itself is block diagonal,

with each block an observation. Due to details of the implementation of block sparse Hessians
using forward mode automatic differnetiation in the class vittles.SparseBlockHessian, the code
below confusingly refers to each regression parameter as a “block”.

When the FitDerivatives class is initialized, it calculates these blocks separately and stacks
them into the attribute full_hess, which is a sparse matrix representing H1.

In [29]: # Even though $H_1$ is not a Hessian, by force of habit we call the time to

# compute it ``hess_time``.

hess_time = time.time()

fit_derivs = sens_lib.FitDerivatives(

opt_gmm_params, opt_reg_params,

gmm.gmm_params_pattern, regs.reg_params_pattern,

gmm=gmm, regs=regs,

print_every=10)

hess_time = time.time() - hess_time

print('Total hessian time: {} seconds'.format(hess_time))

Initializing FitDerivatives.

Getting t Jacobian.

Getting full Hessian.

Getting GMM Hessian...

GMM Hessian time: 2.1917014122009277

Getting cross Hessian...

Cross Hessian time: 34.25235605239868

Getting regression Hessian...

Block index 0 of 66.

Block index 10 of 66.

Block index 20 of 66.

Block index 30 of 66.
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Block index 40 of 66.

Block index 50 of 66.

Block index 60 of 66.

Done differentiating.

Regression Hessian time: 121.74362897872925

Done with full Hessian.

Total hessian time: 169.59288716316223 seconds

2.2.5 Save results as a compressed file.

The results, including H1, are now saved. To calculate the exact CV, these results (including the
preconditioner) will be loaded and the model will be refit with timepoints left out. To calculate
the IJ, the same results will be loaded and H1 will be used to calculate the IJ.

In [30]: extra_metadata = dict()

extra_metadata['opt_time'] = opt_time

extra_metadata['reg_time'] = reg_time

extra_metadata['hess_time'] = hess_time

extra_metadata['df'] = args.df

extra_metadata['degree'] = args.degree

npz_outfile = '../fits/initial_fit.npz'

saving_gmm_utils.save_initial_optimum(

npz_outfile,

gmm=gmm,

regs=regs,

timepoints=timepoints,

fit_derivs=fit_derivs,

extra_metadata=extra_metadata)

2.2.6 Bibliography

J. E. Shoemaker, S. Fukuyama, A. J. Eisfeld, D. Zhao, E. Kawakami, S. Sakabe, T. Maemura, T.
Gorai, H. Katsura, Y. Muramoto, S. Watanabe, T. Watanabe, K. Fuji, Y. Matsuoka, H. Kitano, and Y.
Kawaoka. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation. PLoS
Pathogens, 11(6):1–25, 2015

S. Wright and J. Nocedal. Numerical optimization. Springer Science, 35(67-68):7, 1999.

16

Ryan Giordano, Will Stephenson, Runjing Liu, Michael I. Jordan, Tamara Broderick



load_and_refit

February 21, 2019

1 Step 2: Refit.

In this notebook, we calculate the parameters used for exact CV by refitting the model initially fit
in step one, the notebook fit_model_and_save.

For expository purposes this notebook calculates the refit for only one weight vector. To com-
pute exact CV, one would perform the corresponding computation for all leave-k-out weight vec-
tors.

In [1]: from copy import deepcopy

import inspect

import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

import sys

import time

np.random.seed(3452453)

import paragami

from aistats2019_ij_paper import regression_mixture_lib as rm_lib

from aistats2019_ij_paper import saving_gmm_utils

from aistats2019_ij_paper import mse_utils

import plot_utils_lib

In [2]: # Load the initial fit.

# This file was produced by the notebook ``fit_model_and_save``.

initial_fit_infile = '../fits/initial_fit.npz'

full_fit, gmm, regs, metadata = \

saving_gmm_utils.load_initial_optimum(initial_fit_infile)

timepoints = metadata['timepoints']

Initializing FitDerivatives.

Using provided t_jac.

Using provided full_hess.
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First, choose some timepoints to leave out.

In [3]: # Simulate passing arguments in on the command line.

class Args():

def __init__(self):

pass

args = Args()

args.num_times = 1

args.which_comb = 1

args.max_num_timepoints = 7

The number of points left out (that is, k) is given by num_times, which is 1. The largest time-
point we leave out is given by max_num_timepoints, which is 7. Because later timepoints are not
affected by the smoothing, there is no reason to leave them out.

There are a certain number of ways to leave k out of 7 timepoints, and which_comb chooses
one of them in the order given by the function itertools.combinations. Of course, when k = 1,
which_comb simply chooses which timepoint to leave out. mse_utils.get_indexed_combination
maps which_comb to particular timepoints in a consistent way.

Full exact CV would run this script for all 7 choose k values of which_comb.
Because we have repeated measurements at each timepoint, leaving out a single timepoint will

correspond to leaving out multiple row of the observation matrix. Those rows are determined
by mse_utils.get_time_weight, which also returns a weight vector setting these observations’
weights to zero.

In [4]: lo_inds = mse_utils.get_indexed_combination(

num_times=args.num_times, which_comb=args.which_comb,

max_num_timepoints=args.max_num_timepoints)

new_time_w, full_lo_inds = mse_utils.get_time_weight(lo_inds, timepoints)

print('Left out timepoint: {}'.format(lo_inds))

print('Left out observations: {}'.format(full_lo_inds))

print('Leave-k-out weights: {}'.format(new_time_w))

Left out timepoint: [1]

Left out observations: [3 4 5]

Leave-k-out weights: [1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1]

We now re-optimize with the new weights.
Note that we could either start the optimization at the initial optimum (a “warm start”) or do

a fresh start from k-means. A fresh start is more time consuming but a more stringent test for the
accuracy of the IJ. We calculate both, but report results from the fresh start in the paper. In the
notebook examine_and_save_results, you can choose to examine either set of results.

Here, for consistency with the paper, we re-initialize with k-means.

In [5]: regs.time_w = deepcopy(new_time_w)

reg_params_w = regs.get_optimal_regression_params()
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gmm.set_regression_params(reg_params_w)

init_gmm_params = \

rm_lib.kmeans_init(gmm.transformed_reg_params,

gmm.num_components, 50)

init_x = gmm.gmm_params_pattern.flatten(init_gmm_params, free=True)

opt_time = time.time()

gmm_opt, init_x2 = gmm.optimize(init_x, gtol=1e-2)

print('\tUpdating preconditioner...')

kl_hess = gmm.update_preconditioner(init_x2)

print('\tRunning preconditioned optimization...')

gmm.conditioned_obj.reset()

reopt, gmm_params_free_w = gmm.optimize_fully(init_x2, verbose=True)

print(gmm_opt.message)

opt_time = time.time() - opt_time

print('Refit time: {} seconds'.format(opt_time))

Iter 0: f = -153.38003431

Iter 1: f = -152.49438715

Iter 2: f = -153.69147895

Iter 3: f = -153.83779915

Iter 4: f = -154.02397812

Iter 5: f = -153.41393391

Iter 6: f = -154.10396420

Iter 7: f = -154.14366282

Iter 8: f = -154.14261201

Iter 9: f = -154.16417745

Iter 10: f = -154.18307547

Iter 11: f = -154.20711481

Iter 12: f = -154.22118064

Iter 13: f = -154.27402715

Iter 14: f = -154.28739474

Iter 15: f = -154.33849929

Iter 16: f = -154.03580241

Iter 17: f = -154.35421130

Iter 18: f = -154.36910489

Iter 19: f = -154.36872458

Iter 20: f = -154.37238982

Iter 21: f = -154.37722095

Iter 22: f = -154.38186985

Iter 23: f = -154.38410992

Updating preconditioner...

Running preconditioned optimization...

Preconditioned iteration 1
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Running preconditioned optimization.

Iter 0: f = -154.38410992

Iter 1: f = -154.38423176

Iter 2: f = -154.38584092

Iter 3: f = -154.21889674

Iter 4: f = -154.42200228

Iter 5: f = -154.39603234

Iter 6: f = -154.39957947

Iter 7: f = -154.41374585

Iter 8: f = -154.43397491

Iter 9: f = -154.43484046

Iter 10: f = -154.43484816

Iter 11: f = -154.43484816

Preconditioned iteration 2

Getting Hessian and preconditioner.

Running preconditioned optimization.

Iter 12: f = -154.43484816

Iter 13: f = -154.43484816

Converged.

Optimization terminated successfully.

Refit time: 14.35115647315979 seconds

We now save the results.

In [6]: gmm_params_w = \

full_fit.comb_params_pattern['mix'].fold(

gmm_params_free_w, free=True)

refit_comb_params = {

'mix': gmm_params_w,

'reg': reg_params_w }

refit_comb_params_free = \

full_fit.comb_params_pattern.flatten(refit_comb_params, free=True)

In [7]: save_filename = \

'../fits/refit__num_times{}__which_comb{}.npz'.format(

args.num_times, args.which_comb)

print('Saving to {}'.format(save_filename))

saving_gmm_utils.save_refit(

outfile=save_filename,

comb_params_free=refit_comb_params_free,

comb_params_pattern=full_fit.comb_params_pattern,

initial_fit_infile=initial_fit_infile,

time_w=new_time_w,

lo_inds=lo_inds,

full_lo_inds=full_lo_inds)

Saving to ../fits/refit__num_times1__which_comb1.npz
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calculate_prediction_errors

February 21, 2019

1 Step 3: Calculate the IJ and prediction errors.

In this notebook, for a single weight vector, we calculate the IJ itself as well as the prediction
errors for exact CV and IJ. This notebook uses the output of the notebooks load_and_refit and
fit_model_and_save.

In [1]: import numpy as np

import paragami

import vittles

import scipy as sp

from scipy import sparse

import time

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

np.random.seed(3452453)

from aistats2019_ij_paper import regression_lib as reg_lib

from aistats2019_ij_paper import sensitivity_lib as sens_lib

from aistats2019_ij_paper import saving_gmm_utils

from aistats2019_ij_paper import mse_utils

import plot_utils_lib

In [2]: # Simulate passing arguments in on the command line.

class Args():

def __init__(self):

pass

args = Args()

args.num_times = 1

args.which_comb = 1

args.max_num_timepoints = 7
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In [3]: ###############################

# Load the original fit.

print('Loading original fit.')

initial_fit_infile = '../fits/initial_fit.npz'

full_fit, gmm, regs, initial_metadata = \

saving_gmm_utils.load_initial_optimum(initial_fit_infile)

opt_comb_params = full_fit.get_comb_params()

Loading original fit.

Initializing FitDerivatives.

Using provided t_jac.

Using provided full_hess.

In [4]: ###############################

# Load the test data

test_regression_infile = '../fits/test_regressions.json'

with open(test_regression_infile) as infile:

regs_test = reg_lib.Regressions.from_json(infile.read())

##########################################

# Load a refit as specfified by ``args``.

refit_filename = \

'../fits/refit__num_times{}__which_comb{}.npz'.format(

args.num_times, args.which_comb)

comb_params_free_refit, comb_params_pattern_refit, refit_metadata = \

saving_gmm_utils.load_refit(refit_filename)

time_w = refit_metadata['time_w']

lo_inds = refit_metadata['lo_inds']

full_lo_inds = refit_metadata['full_lo_inds']

assert(comb_params_pattern_refit == full_fit.comb_params_pattern)

comb_params_refit = comb_params_pattern_refit.fold(

comb_params_free_refit, free=True)

time_w = refit_metadata['time_w']

lo_inds = refit_metadata['lo_inds']

full_lo_inds = refit_metadata['full_lo_inds']

The objects named comb_params refer to both the regression and clustering parameters. The
name free refers to the unconstrained flat value for the parameters as calculated by paragami.

In [5]: print('Regression pattern: ',

comb_params_pattern_refit['reg'])
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print('Clustering pattern: ',

comb_params_pattern_refit['mix'])

Regression pattern: OrderedDict:

[beta_mean] = NumericArrayPattern (700, 10) (lb=-inf, ub=inf)

[beta_info] = PatternArray (700,) of PDMatrix 10x10 (diag_lb = 0.0)

[y_info] = NumericArrayPattern (700,) (lb=0.0, ub=inf)

Clustering pattern: OrderedDict:

[centroids] = NumericArrayPattern (10, 9) (lb=-inf, ub=inf)

[probs] = SimplexArrayPattern (1,) of 10-d simplices

1.0.1 Calculate the infinitesimal jackknife.

The vittles package makes it easy to calculate linear approximations to the sensitiv-
ity of M-estimators to hyperparameters, of which the IJ is a special case. Here, the
HyperparameterSensitivityLinearApproximation uses the sparse value of H1 calculated earlier.

Note that H1 is factorized during the initialization of weight_sens, and that it takes relatively
little time.

In [6]: # Note that if you don't cast the jacobian to a numpy array from

# a numpy matrix, the output is a 2d-array, causing confusion later.

weight_sens = vittles.HyperparameterSensitivityLinearApproximation(

objective_fun=lambda: 0,

opt_par_value=full_fit.comb_params_free,

hyper_par_value=regs.time_w,

hessian_at_opt=sp.sparse.csc_matrix(full_fit.full_hess),

cross_hess_at_opt=np.array(full_fit.t_jac.todense()))

We now use the weight_sens object to approximate the “free” value of the combined param-
eters at time_w. The IJ operates in unconstrained space, so we use paragami to fold the uncon-
strained vector back into a dictionary of parameters.

In [7]: # Get the infinitesimal jackknife for the refit weight vector.

lr_time = time.time()

comb_params_free_lin = \

weight_sens.predict_opt_par_from_hyper_par(time_w)

lr_time = time.time() - lr_time

print('Infinitesimal jackknife time: {}'.format(lr_time))

comb_params_lin = full_fit.comb_params_pattern.fold(comb_params_free_lin, free=True)

Infinitesimal jackknife time: 0.0011603832244873047

1.0.2 Calculate various prediction errors.

Recall that the prediction error is the difference between the data and the posterior expected clus-
ter centroid for a particular gene. Let us consider the original optimal clustering parameters,
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opt_comb_params['mix']. To get the test set error on gene g for these parameters, we need to do
the following steps:

1. Run the regression for gene g in the test set
2. Classify the regression, calculating Eq∗

z [zg]. This is a function of the clustering parameters
and the regression line for gene g.

3. Calculate the expected posterior cluster centroid for gene g, which is µ∗
g = ∑k Eq∗

z [zgk]µk.
4. Because the transformation discards the mean information, compare the de-meaned data to

the estimated centroid: errorgt =
(

ygt − 1
T ∑T

t′=1 ygt′
)

− µ∗
gt.

Note that step one could re-run the regression either with the original weights or the new
weights. We found that this decision does not matter qualitatively. Here and in the paper, we
simply classify the original regression, but the notebook examine_and_save_results can produce
results for oth the original and re-weighted regressions.

We will examine prediction error on the time points that are left out, that is, for observations
in full_lo_inds.

In [8]: print('Calculating prediction error.')

# Get the training set error on the full data.

train_error = mse_utils.get_lo_err_folded(

opt_comb_params,

keep_inds=full_lo_inds,

mse_regs=regs,

mse_reg_params=opt_comb_params['reg'],

gmm=gmm)

############

# Original fit.

# Get the optimal test set regressions.

reg_params_test = regs_test.get_optimal_regression_params()

# Get the test error for the original fit.

orig_test_error = mse_utils.get_lo_err_folded(

opt_comb_params,

keep_inds=full_lo_inds,

mse_regs=regs_test,

mse_reg_params=reg_params_test,

gmm=gmm)

orig_pred = mse_utils.get_predictions(

gmm, opt_comb_params['mix'], reg_params_test)

# Get the test error for the CV refit.

cv_error = mse_utils.get_lo_err_folded(

comb_params_refit,

keep_inds=full_lo_inds,
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mse_regs=regs_test,

mse_reg_params=reg_params_test,

gmm=gmm)

cv_pred = mse_utils.get_predictions(

gmm, comb_params_refit['mix'], reg_params_test)

# Get the test error for the IJ approximation.

ij_error = mse_utils.get_lo_err_folded(

comb_params_lin,

keep_inds=full_lo_inds,

mse_regs=regs_test,

mse_reg_params=reg_params_test,

gmm=gmm)

ij_pred = mse_utils.get_predictions(

gmm, comb_params_lin['mix'], reg_params_test)

Calculating prediction error.

1.0.3 Selected results.

We now make a cursory comparison of the results. For a more detailed analysis, including the
results that went into the paper, see the notebook examine_and_save_results.

In [9]: cv_excess_error = cv_error - orig_test_error

ij_excess_error = ij_error - orig_test_error

def GetColDf(col):

return pd.DataFrame(

{'cv_error': cv_error[:, col],

'cv_excess': cv_excess_error[:, col],

'ij_error': ij_error[:, col],

'ij_excess': ij_excess_error[:, col],

'col': col})

result = pd.concat([ GetColDf(col) for col in range(len(full_lo_inds)) ])

If we simply look at the point-by-point error, CV and IJ are highly correlated.

In [10]: sns.jointplot(x='cv_error', y='ij_error', data=result);
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However, this is because the error in each point is dominated by the error at the original op-
timum. To meaningfully compare the IJ to CV, we should compare the difference between the
IJ and CV error and the error at the original optimum. The distribution of these “difference-in-
difference” errors is shown in the next plot.

Some clear outliers can be seen. However, note that, in this case, overplotting makes IJ looks
worse than it is – in the histograms you can see that most differences are very small.

In [11]: sns.jointplot(x='cv_excess', y='ij_excess', data=result);
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As you might expect from a linear approximation, the IJ does the worst when the predicted
change for CV is large.

In [12]: misfit = np.max(np.abs(cv_excess_error - ij_excess_error), axis=1)

abs_cv_excess_error = np.max(np.abs(cv_excess_error), axis=1)

sns.jointplot(abs_cv_excess_error, misfit)

Out[12]: <seaborn.axisgrid.JointGrid at 0x7f3f74fe1908>
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Finally, we visualize some of the genes where IJ badly misestimates the CV error. Clearly,
in these cases, re-fitting with the left-out points (shown with large dots) produced large changes
that the IJ did not capture. In general, it appears that the IJ errs relative to CV by not moving far
enough from the original optimum.

Despite the poor fit on these extreme genes, we stress that most genes exhibited small
changes in both CV and IJ. For these genes, IJ performs well enough to capture salient aspects
of the estimated out-of-sample error. For more detailed analysis of this point, see the notebook
examine_and_save_results.

In [13]: timepoints = initial_metadata['timepoints']

timepoints_stretch = np.sqrt(timepoints)

def PlotGenePredictions(gene_ind):

_, figs = plt.subplots(1, 3, figsize=(15,6))
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for i in range(3):

np.random.seed(42)

plot_utils_lib.PlotRegressionLine(

timepoints_stretch, regs_test, reg_params_test, gene_ind, this_plot=figs[i])

figs[i].plot(timepoints_stretch[full_lo_inds],

regs_test.y[gene_ind, full_lo_inds], 'o', markersize=10)

plot_utils_lib.PlotPredictionLine(

timepoints_stretch, regs_test, orig_pred, gene_ind, this_plot=figs[0])

figs[0].set_title('Gene {} original fit'.format(gene_ind))

plot_utils_lib.PlotPredictionLine(

timepoints_stretch, regs_test, ij_pred, gene_ind, this_plot=figs[1])

figs[1].set_title('Gene {} IJ fit'.format(gene_ind))

plot_utils_lib.PlotPredictionLine(

timepoints_stretch, regs_test, cv_pred, gene_ind, this_plot=figs[2])

figs[2].set_title('Gene {} CV fit'.format(gene_ind))

In [14]: worst_fits = np.argsort(-1 * misfit)

for gene in worst_fits[0:5]:

PlotGenePredictions(gene)
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examine_and_save_results

February 21, 2019

1 Detailed analysis of results.

This notebook loads the output of the scripts in the directory cluster_scripts (particularly, the
final script, run_slurm_pred_error.py). It produces the Rdata file that is used for the graphs in
the paper as well as a number of supplemental analyses.

In [1]: library(tidyverse)

library(gridExtra)

library(repr) # For setting plot sizes

source("load_python_data_lib.R")

py_main <- InitializePython()

Attaching packages tidyverse 1.2.1

ggplot2 3.1.0 purrr 0.2.5

tibble 1.4.2 dplyr 0.7.8

tidyr 0.8.1 stringr 1.3.1

readr 1.1.1 forcats 0.3.0

Conflicts tidyverse_conflicts()

dplyr::filter() masks stats::filter()

dplyr::lag() masks stats::lag()

Attaching package: gridExtra

The following object is masked from package:dplyr:

combine

Attaching package: reshape2

The following object is masked from package:tidyr:

smiths

In [2]: # Choose the initialization method.

init_method <- "kmeans" # This is the choice for the paper.
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#init_method <- "warm"

# Choose whether or not to re-run the regressions before calculating test error.

use_rereg <- FALSE # This is the choice for the paper.

#use_rereg <- TRUE

# This is the file that is used in the paper's knitr.

save_dir <- "../../fits"

save_filename <- sprintf("paper_results_init_%s_rereg_%s.Rdata", init_method, use_rereg)

1.0.1 Load the saved data for all dfs and k

In [3]: dfs <- list()

metadata_dfs <- list()

for (lo_num_times in 1:3) {

cat("lo_num_times ", lo_num_times)

for (df in 4:8) {

cat(".")

load_res <- LoadPredictionError(df, lo_num_times, init_method)

this_refit_err_df <- load_res$refit_err_df

this_metadata_df <- load_res$metadata_df

this_refit_err_melt <- MeltErrorColumns(this_refit_err_df)

dfs[[length(dfs) + 1]] <- this_refit_err_melt

metadata_dfs[[length(metadata_dfs) + 1]] <- this_metadata_df

}

cat("\n")

}

cat("Done.\n")

refit_err_melt <- do.call(bind_rows, dfs)

metadata_df <- do.call(bind_rows, metadata_dfs)

lo_num_times 1...

lo_num_times 2...

lo_num_times 3...

Done.

1.0.2 Metadata (timing, parameter dimensions)

Make a tidy dataframe with the metadata. The parameter length, Hessian time, and initial op-
timization time are all reported in the text of the paper. Their values will be derived from this
dataframe in knitr.

In [4]: metadata_df <-

metadata_df %>%

mutate(lr_hess_time=total_lr_time + initial_hess_time,

avg_lr_time=total_lr_time / num_comb,

avg_refit_time=total_refit_time / num_comb,

2

Ryan Giordano, Will Stephenson, Runjing Liu, Michael I. Jordan, Tamara Broderick



param_length=gmm_param_length + reg_param_length)

print(names(metadata_df))

select(metadata_df, df, param_length) %>%

group_by(df) %>%

summarize(param_length=unique(param_length))

select(metadata_df, df, initial_hess_time, initial_opt_time) %>%

group_by(df) %>%

summarize(initial_hess_time=median(initial_hess_time),

initial_opt_time=median(initial_opt_time))

round(median(metadata_df$initial_opt_time), digits=-1)

[1] "num_comb" "total_lr_time" "total_refit_time"

[4] "initial_opt_time" "initial_reg_time" "initial_hess_time"

[7] "gmm_param_length" "reg_param_length" "df"

[10] "lo_num_times" "init_method" "lr_hess_time"

[13] "avg_lr_time" "avg_refit_time" "param_length"

df param_length
4 25325
5 31643
6 38661
7 46379
8 54797

df initial_hess_time initial_opt_time
4 275.7295 31.44656
5 295.0325 41.84182
6 359.6855 35.11145
7 478.7345 50.88843
8 584.4987 77.02919

40
Make a dataframe for the timing plot from the metadata.

In [5]: metadata_graph_df <-

metadata_df %>%

select(df, lo_num_times, total_refit_time, lr_hess_time, initial_opt_time) %>%

melt(id.vars=c("lo_num_times", "df"))

head(metadata_graph_df)

lo_num_times df variable value
1 4 total_refit_time 338.1638
1 5 total_refit_time 391.6006
1 6 total_refit_time 423.8322
1 7 total_refit_time 632.2635
1 8 total_refit_time 599.0894
2 4 total_refit_time 1123.7316
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In [6]: ggplot(metadata_graph_df) +

geom_bar(aes(x=lo_num_times, y=value, fill=variable, group=variable),

stat="identity", position=position_dodge()) +

facet_grid( ~ df)

1.0.3 Calculate prediction errors

Make summaries of prediction error for various methods and datasets.

In [7]: # In-sample IJ error.

lr_df <-

refit_err_melt %>%

filter(rereg==use_rereg, method=="lin", test==FALSE, measure=="err") %>%
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rename(error=value) %>%

mutate(output="lin_in_sample")

# In-sample CV error.

cv_df <-

refit_err_melt %>%

filter(rereg==use_rereg, method=="ref", test==FALSE, measure=="err") %>%

rename(error=value) %>%

mutate(output="cv_in_sample")

# In-sample training error (no points left out).

train_df <-

refit_err_melt %>%

filter(rereg==use_rereg, method=="ref", test==FALSE, measure=="train_err") %>%

rename(error=value) %>%

mutate(output="train_error")

# Out-of-sample test error.

test_df <-

refit_err_melt %>%

filter(rereg==use_rereg, method=="ref", test==TRUE, measure=="train_err") %>%

rename(error=value) %>%

mutate(output="test_error")

refit_for_df_choice <- bind_rows(

lr_df, cv_df, test_df, train_df)

In [8]: head(refit_for_df_choice)

test method comb rereg gene df lo_num_times time measure error output
FALSE lin 0 FALSE 0 4 1 0 err 1.0088933 lin_in_sample
FALSE lin 0 FALSE 1 4 1 0 err 0.1243607 lin_in_sample
FALSE lin 0 FALSE 2 4 1 0 err -0.4340983 lin_in_sample
FALSE lin 0 FALSE 3 4 1 0 err -0.2203431 lin_in_sample
FALSE lin 0 FALSE 4 4 1 0 err 1.9032786 lin_in_sample
FALSE lin 0 FALSE 5 4 1 0 err -0.2876837 lin_in_sample

Make a tidy dataframe for choosing df. The graph in the paper will be based on this dataframe.
Note that most of the signal for choosing df is already in the training data error. However,

there is an uptick in error in both CV and IJ for df=8 which is not captured by the training data
error.

In [9]: refit_err_summary <-

refit_for_df_choice %>%

group_by(output, df, lo_num_times) %>%

mutate(esize=abs(error)) %>%

summarize(med=median(esize),

mean=mean(esize),

n_obs=n(),

se=sd(esize) / sqrt(n_obs),
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qlow=quantile(esize, 0.25),

qhigh=quantile(esize, 0.75))

ggplot(refit_err_summary) +

geom_line(aes(x=df, y=mean, group=output, color=output)) +

geom_errorbar(aes(x=df, ymin=mean - 2 * se, ymax=mean + 2 * se,

group=output, color=output)) +

facet_grid(~ lo_num_times) +

ggtitle(sprintf("%d times left out", lo_num_times))

1.0.4 Gene-by-gene accuracy measures.

In [10]: refit_err_plot <-

refit_err_melt %>%

6

Ryan Giordano, Will Stephenson, Runjing Liu, Michael I. Jordan, Tamara Broderick



filter(rereg==use_rereg) %>%

dcast(df + lo_num_times + test + comb + rereg + gene + time ~ method + measure,

value.var=c("value"))

We now look at the correlation between the CV and IJ prediction errors across genes. For each
df and k, there are a number of different combinations of left-out points. We report the median,
min, and max correlation coefficients across these combinations of left-out points.

First, we show the correlation between the raw prediction errors. Although the correlation
is quite high, this is because the training error at the original optimum is the principle source of
variation in the errors across genes, and this quantity is common to both CV and IJ.

In [11]: err_corr <- refit_err_plot %>%

filter(test==FALSE, rereg==use_rereg) %>%

group_by(df, lo_num_times, comb) %>%

summarize(r=cor(lin_err, ref_err)) %>%

group_by(df, lo_num_times) %>%

summarize(med_r=median(r), min_r=min(r), max_r=max(r))

print("Correlation between error: ")

print(err_corr)

[1] "Correlation between error: "

# A tibble: 15 x 5

# Groups: df [?]

df lo_num_times med_r min_r max_r

<int> <int> <dbl> <dbl> <dbl>

1 4 1 0.974 0.949 0.984

2 4 2 0.975 0.902 0.992

3 4 3 0.967 0.871 0.991

4 5 1 0.963 0.856 0.983

5 5 2 0.966 0.860 0.984

6 5 3 0.947 0.759 0.981

7 6 1 0.980 0.807 0.985

8 6 2 0.968 0.835 0.986

9 6 3 0.929 0.759 0.983

10 7 1 0.962 0.794 0.974

11 7 2 0.952 0.737 0.976

12 7 3 0.914 0.599 0.974

13 8 1 0.962 0.703 0.971

14 8 2 0.941 0.663 0.974

15 8 3 0.829 0.251 0.958

A more meaningful measure is the correlation in the excess error for IJ and CV over the error
at the original fit.

In [12]: diff_corr <- refit_err_plot %>%

filter(test==FALSE, rereg==use_rereg) %>%

group_by(df, lo_num_times, comb) %>%
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summarize(r=cor(lin_e_diff, ref_e_diff)) %>%

group_by(df, lo_num_times) %>%

summarize(med_r=median(r), min_r=min(r), max_r=max(r))

print("Correlation between difference from train error: ")

print(diff_corr)

[1] "Correlation between difference from train error: "

# A tibble: 15 x 5

# Groups: df [?]

df lo_num_times med_r min_r max_r

<int> <int> <dbl> <dbl> <dbl>

1 4 1 0.483 0.0956 0.844

2 4 2 0.577 0.277 0.828

3 4 3 0.605 0.303 0.833

4 5 1 0.464 0.143 0.728

5 5 2 0.510 0.330 0.709

6 5 3 0.510 0.312 0.671

7 6 1 0.655 0.368 0.783

8 6 2 0.588 0.218 0.845

9 6 3 0.499 0.0701 0.737

10 7 1 0.660 0.512 0.760

11 7 2 0.564 0.224 0.863

12 7 3 0.491 0.0344 0.801

13 8 1 0.744 0.380 0.900

14 8 2 0.646 0.166 0.862

15 8 3 0.214 -0.226 0.767

For higher degrees of freedom, increasing the number of left-out points seems to decrease the
IJ’s accuracy, as you might expect.

In [13]: ggplot(diff_corr) +

geom_bar(aes(x=paste(df, lo_num_times, sep=","),

y=med_r, fill=as.character(df)), stat="identity")
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Plot the densities of the IJ and CV with points to show outliers. This is a graphical version of
the results summarized by the correlation tables above.

In [14]: # There are a few outliers, so limit the extent of the plot so that

# the bulk of the distribution is visible.

qlim <- quantile(refit_err_plot$ref_e_diff, c(0.1, 0.9))

options(repr.plot.width=4, repr.plot.height=20)

# This plot, or ones like it, is probably the best measure of

# the accuracy of the IJ.

ggplot(filter(refit_err_plot, test == FALSE, lo_num_times==1)) +

geom_point(aes(x=ref_e_diff, y=lin_e_diff), alpha=0.01) +

geom_density2d(aes(x=ref_e_diff, y=lin_e_diff)) +
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geom_abline(aes(slope=1, intercept=0)) +

facet_grid(df ~ rereg) +

xlim(qlim[1], qlim[2]) + ylim(qlim[1], qlim[2])

Warning message:

Removed 10770 rows containing non-finite values (stat_density2d).Warning message:

Removed 10770 rows containing missing values (geom_point).
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1.0.5 Save results for plotting in the paper.

In [15]: print(sprintf("Saving to %s", file.path(save_dir, save_filename)))

save(refit_err_summary,

metadata_df,

diff_corr,

err_corr,

file=file.path(save_dir, save_filename))

[1] "Saving to ../../fits/paper_results_init_kmeans_rereg_FALSE.Rdata"
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