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Abstract

Accelerated coordinate descent is a widely
popular optimization algorithm due to its ef-
ficiency on large-dimensional problems. It
achieves state-of-the-art complexity on an im-
portant class of empirical risk minimization
problems. In this paper we design and ana-
lyze an accelerated coordinate descent (ACD)
method which in each iteration updates a
random subset of coordinates according to
an arbitrary but fixed probability law, which
is a parameter of the method. While mini-
batch variants of ACD are more popular and
relevant in practice, there is no importance
sampling for ACD that outperforms the stan-
dard uniform minibatch sampling. Through
insights enabled by our general analysis, we de-
sign new importance sampling for minibatch
ACD which significantly outperforms previous
state-of-the-art minibatch ACD in practice. We
prove a rate that is at most O(

√
τ) times

worse than the rate of minibatch ACD with
uniform sampling, but can be O(n/τ) times
better, where τ is the minibatch size. Since
in modern supervised learning training sys-
tems it is standard practice to choose τ � n,
and often τ = O(1), our method can lead to
dramatic speedups. Lastly, we obtain simi-
lar results for minibatch nonaccelerated CD
as well, achieving improvements on previous
best rates.

1 Introduction

Many key problems in machine learning and data sci-
ence are routinely modeled as optimization problems
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and solved via optimization algorithms. With the in-
crease of the volume of data used to formulate optimiza-
tion models, there is a need for new efficient algorithms
able to cope with the challenge. Through intensive re-
search and algorithmic innovation during the last 10-15
years, gradient methods have become the methods of
choice for large-scale optimization problems.

In this paper we consider the optimization problem

min
x∈Rn

f(x), (1)

where f a smooth and strongly convex function, and
the main difficulty comes from the dimension n being
very large (e.g., millions or billions). In this regime,
coordinate descent (CD) variants of gradient methods
are the state of the art.

The simplest variant of CD in each iterations updates a
single variable of x by taking a one dimensional gradient
step along the direction of ith unit basis vector ei ∈ Rn,
which leads to the update rule

xk+1 = xk − αi∇if(xk)ei (2)

where ∇if(xk) := e>i ∇f(xk) is the ith partial deriva-
tive and αi is a suitably chosen stepsize. The classi-
cal smoothness assumption used in the analysis of CD
methods (Nesterov, 2012a) is to require the existence
of constants Li > 0 such that

f(x+ tei) ≤ f(x) + t∇if(x) +
Li
2
t2 (3)

holds for all x ∈ Rn, t ∈ R and i ∈ [n] := {1, 2, . . . , n}.
In this setting, one can choose the stepsizes to be
αi = 1/Li.

There are several rules studied in the literature for
choosing the coordinate i in iteration k, including
cyclic rule (Luo and Tseng, 1992; Tseng, 2001; Saha
and Tewari, 2013; Wright, 2015; Gurbuzbalaban et al.,
2017), Gauss-Southwell or other greedy rules (Nutini
et al., 2015; You et al., 2016; Stich et al., 2017a), ran-
dom (stationary) rule (Nesterov, 2012a; Richtárik and
Takáč, 2014, 2016; Shalev-Shwartz and Zhang, 2014;
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Lin et al., 2014; Fercoq and Richtárik, 2015) and adap-
tive random rules (Csiba et al., 2015; Stich et al., 2017b).
In this work we focus on stationary random rules, which
are popular by practitioners and well understood in
theory.

Updating one coordinate at a time. The sim-
plest randomized CD method of the form (2) chooses
coordinate i in each iteration uniformly at random.
If f is σ–convex1, then this method converges in
(nmaxi Li/σ) log(1/ε) iterations in expectation. If in-
dex i is chosen with probability pi ∝ Li, then the
iteration complexity improves to (

∑
i Li/σ) log(1/ε).

The latter result is always better than the former, and
can be up to n times better. These results were estab-
lished in a seminal paper by Nesterov (2012a). The
analysis was later generalized to arbitrary probabilities
pi > 0 by Richtárik and Takáč (2014), who obtained
the complexity (

max
i

Li
piσ

)
log

1

ε
. (4)

Clearly, (4) includes the previous two results as special
cases. Note that the importance sampling pi ∝ Li
minimizes the complexity bound (4) and is therefore
in this sense optimal.

Minibatching: updating more coordinates at a
time. In many situations it is advantageous to update
a small subset (minibatch) of coordinates in each iter-
ation, which leads to the minibatch CD method which
has the form

xk+1
i =

{
xki − αi∇if(xk) i ∈ Sk,
xki i /∈ Sk.

(5)

For instance, it is often equally easy to fetch infor-
mation about a small batch of coordinates Sk from
memory at the same or comparable time as it is to
fetch information about a single coordinate. If this
memory access time is the bottleneck as opposed to
computing the actual updates to coordinates i ∈ Sk,
then it is more efficient to update all coordinates belong-
ing to the minibatch Sk. Alternatively, in situations
where parallel processing is available, one is able to
compute the updates to a small batch of coordinates
simultaneously, leading to speedups in wall clock time.
With this application in mind, minibatch CD methods
are also often called parallel CD methods (Richtárik and
Takáč, 2016).

1We say that f is σ–convex if it is strongly convex with
strong convexity modulus σ > 0. That is, if f(x + h) ≥
f(x) + (∇f(x))>h+ σ

2
‖h‖2 for all x, h ∈ Rn, where ‖h‖ :=

(
∑
i h

2
i )

1/2 is the standard Euclidean norm.

2 Arbitrary sampling and
minibatching

Arbitrary sampling. Richtárik and Takáč (2016)
analyzed method (5) for uniform samplings Sk, i.e.,
assuming that P(i ∈ Sk) = P(j ∈ Sk) for all i, j.
However, the ultimate generalization is captured by
the notion of arbitrary sampling pioneered by Richtárik
and Takáč (2016b). A sampling refers to a set-valued
random mapping S with values being the subsets of [n].
The word arbitrary refers to the fact that no additional
assumptions on the sampling, such as uniformity, are
made. This result generalizes the results mentioned
above.

M–smoothness. For minibatch CD methods it is
useful to assume a more general notion of smooth-
ness parameterized by a positive semidefinite matrix
M ∈ Rn×n. We say that f is M–smooth if

f(x+ h) ≤ f(x) +∇f(x)>h+
1

2
h>Mh (6)

for all x, h ∈ Rn. The standard L–smoothness con-
dition is obtained in the special case when M = LI,
where I is the identity matrix in Rn. Note that if
f is M–smooth, then (3) holds for Li = Mii. Con-
versely, it is known that if (3) holds, then (6) holds
for M = nDiag (L1, L2, . . . , Ln) (Nesterov, 2012a).
If h has at most ω nonzero entries, then this re-
sult can be strengthened and (6) holds with M =
ωDiag (L1, L2, . . . , Ln) (Richtárik and Takáč, 2016,
Theorem 8). In many situations, M–smoothness is
a very natural assumption. For instance, in the con-
text of empirical risk minimization (ERM), which is
a key problem in supervised machine learning, f is
of the form f(x) = 1

m

∑m
i=1 fi(Aix) +

σ
2 ‖x‖

2, where
Ai ∈ Rq×n are data matrices, fi : Rq → R are loss
functions and σ ≥ 0 is a regularization constant. If
fi is convex and γi–smooth, then f is σ–convex and
M–smooth with M = ( 1

m

∑
i γiA

>
i Ai) + σI (Qu and

Richtárik, 2016). In these situations it is useful to
design CD algorithms making full use of the information
contained in the data as captured in the smoothness
matrix M.

Given a sampling S and M–smooth function f , let v =
(v1, . . . , vn) be positive constants satisfying the ESO
(expected separable overapproximation) inequality

P ◦M � Diag (p1v1, . . . , pnvn) , (7)

where P is the probability matrix associated with sam-
pling S, defined by Pij := P(i ∈ S & j ∈ S),
pi := Pii = P(i ∈ S) and ◦ denotes the Hadamard (i.e.,
elementwise) product of matrices. From now on we
define the probability vector as p := (p1, . . . , pn) ∈ Rn
and let v = (v1, . . . , vn) ∈ Rn be the vector of ESO pa-
rameters. With this notation, (7) can be equivalently
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written as P ◦M � Diag (p ◦ v). We say that S is
proper if pi > 0 for all i.

It can be show by combining the results of Richtárik and
Takáč (2016b) and Qu and Richtárik (2016) that under
the above assumptions, the minibatch CD method (5)
with stepsizes αi = 1/vi enjoys the iteration complexity

(
max
i

vi
piσ

)
log

1

ε
. (8)

Since in situations when |Sk| = 1 with probability 1
once can choose vi = Li, the complexity result (8) gen-
eralizes (4). Inequality (7) is standard in minibatch
coordinate descent literature. It was studied exten-
sively by Qu and Richtárik (2016), and has been used
to analyze parallel CD methods (Richtárik and Takáč,
2016; Richtárik and Takáč, 2016b; Fercoq and Richtárik,
2015), distributed CD methods (Richtárik and Takáč,
2016a; Fercoq et al., 2014), accelerated CD methods
(Fercoq and Richtárik, 2015; Fercoq et al., 2014; Qu
and Richtárik, 2016; Chambolle et al., 2017), and dual
methods (Qu et al., 2015; Chambolle et al., 2017).

Importance sampling for minibatches. It is easy
to see, for instance, that if we do not restrict the class
of samplings over which we optimize, then the trivial
full sampling Sk = [n] with probability 1 is optimal.
For this sampling, P is the matrix of all ones, pi = 1
for all i, and (7) holds for vi = L := λmax(M) for
all i. The minibatch CD method (5) reduces to gradi-
ent descent, and the complexity estimate (8) becomes
(L/σ) log(1/ε), which is the standard rate of gradient
descent. However, typically we are interested in finding
the best sampling from the class of samplings which
use a minibatch of size τ , where τ � n. While we have
seen that the importance sampling pi = Li/

∑
j Lj is

optimal for τ = 1, in the minibatch case τ > 1 the
problem of determining a sampling which minimizes
the bound (8) is much more difficult. For instance,
Richtárik and Takáč (2016b) consider a certain para-
metric family of samplings where the problem of finding
the best sampling from this family reduces to a linear
program.

Surprisingly, and in contrast to the situation in the
τ = 1 case where an optimal sampling is known and
is in general non-uniform, there is no minibatch sam-
pling that is guaranteed to outperform τ–nice sam-
pling. We say that S is τ–nice if it samples uni-
formly from among all subsets of [n] of cardinality
τ . The probability matrix of this sampling is given
by P = τ

n ((1− β)I+ βE) , where β = τ−1
n−1 (assume

n > 1) and E is the matrix of all ones, and pi = τ
n (Qu

and Richtárik, 2016). It follows that the ESO inequal-
ity (7) holds for vi = (1 − β)Mii + βL. By plugging

into (8), we get the iteration complexity

n

τ

(
(1− β)maxiMii + βL

σ

)
log

1

ε
. (9)

This rate interpolates between the rate of CD with uni-
form probabilities (for τ = 1) and the rate of gradient
descent (for τ = n).

3 Contributions

For accelerated coordinate descent (ACD) without mini-
batching (i.e., when τ = 1), the currently best known
iteration complexity result, due to Allen-Zhu et al.
(2016), is

O
(∑

i

√
Li√
σ

log
1

ε

)
. (10)

The probabilities used in the algorithm are proportional
to the square roots of the coordinate-wise Lipschitz
constants: pi ∝

√
Li. This is the first CD method

with a complexity guarantee which does not explicitly
depend on the dimension n, and is an improvement on
the now-classical result of Nesterov (2012a) giving the
complexity

O

(√
n
∑
i Li
σ

log
1

ε

)
.

The rate (10) is always better than this, and can be up
to
√
n times better if the distribution of Li is extremely

non-uniform. Unlike in the non-accelerated case de-
scribed in the previous section, there is no complexity
result for ACD with general probabilities such as (4),
or with an arbitrary sampling such as (8). In fact, an
ACD method was not even designed in such settings,
despite a significant recent development in accelerated
coordinate descent methods (Nesterov, 2012b; Lee and
Sidford, 2013; Lin et al., 2014; Qu and Richtárik, 2016;
Allen-Zhu et al., 2016).

Our key contributions are:

� ACD with arbitrary sampling. We design an ACD
method which is able to operate with an arbitrary
sampling of subsets of coordinates. We describe our
method in Section 4.

� Iteration complexity. We prove (see Theorem 4.2)
that the iteration complexity of ACD is

O
(√

max
i

vi
p2iσ

log
1

ε

)
, (11)

where vi are ESO parameters given by (7) and pi > 0 is
the probability that coordinate i belongs to the sampled
set Sk: pi := P(i ∈ Sk). The result of Allen-Zhu et
al. (10) (NUACDM) can be recovered as a special case of
(11) by focusing on samplings defined by Sk = {i} with
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Table 1: Complexity results for non-accelerated (CD) and accelerated (ACD) coordinate descent methods for σ–convex
functions and arbitrary sampling S. The last row corresponds to the setup with arbitrary proper sampling S (i.e., a
random subset of [n] with the property that pi := P(i ∈ S) > 0). We let τ := E [|S|] be the expected mini-batch size. We
assume that f is M–smooth (see (6)). The positive constants v1, v2, . . . , vn are the ESO parameters (depending on f and
S), defined in (7). The first row arises as a special of the third row in the non-minibatch (i.e., τ = 1) case. Here we have
vi = Li := Mii. The second row is a special case of the first row for the optimal choice of the probabilities p1, p2, . . . , pn.

CD ACD

τ = 1, pi > 0

(
max
i

Li
piσ

)
log

1

ε
(Richtárik and Takáč, 2014)

√
max
i

Li
p2iσ

log
1

ε

(this paper)

τ = 1, best pi

∑
i Li

σ
log

1

ε
; pi ∝ Li

(Nesterov, 2012a)

∑
i

√
Li√
σ

log
1

ε
; pi ∝

√
Li

(Allen-Zhu et al., 2016)

arbitrary
sampling S

(
max
i

vi
piσ

)
log

1

ε
(Richtárik and Takáč, 2016b)

√
max
i

vi
p2iσ

log
1

ε
(this paper)

probability pi ∝
√
Li (recall that in this case vi = Li).

When Sk = [n] with probability 1, then our method
reduces to accelerated gradient descent (AGD) (Nesterov,
1983, 2004), and since pi = 1 and vi = L (the Lipschitz
constant of ∇f) for all i, (11) reduces to the standard
complexity of AGD: O(

√
L/σ log(1/ε)).

� Weighted strong convexity. We prove a slightly
more general result than (11) in which we allow the
strong convexity of f to be measured in a weighted Eu-
clidean norm with weights vi/p2i . In situations when f
is naturally strongly convex with respect to a weighted
norm, this more general result will typically lead to a
better complexity result than (11), which is fine-tuned
for standard strong convexity. There are applications
when f is naturally a strongly convex with respect to
some weighted norm (Allen-Zhu et al., 2016).

�Minibatch methods. We design several new impor-
tance samplings for minibatches, calculate the associ-
ated complexity results, and show through experiments
that they significantly outperform the standard uniform
samplings used in practice and constitute the state of
the art. Our importance sampling leads to rates which
are provably within a small factor from the best known
rates, but can lead to an improvement by a factor of
O(n). We are the first to establish such a result, both
for CD (Appendix B) and ACD (Section 5).

The key complexity results obtained in this paper are
summarized and compared to prior results in Table 1.

4 The algorithm

The accelerated coordinate descent method (ACD) we
propose is formalized as Algorithm 1. If we removed
(13) and (16) from the method, and replaced yk+1 in
(15) by xk+1, we would recover the CD method. Acceler-
ation is obtained by the inclusion of the extrapolation

steps (13) and (16). As mentioned before, we will ana-
lyze our method under a more general strong convexity
assumption.

Assumption 4.1. f is σw–convex with respect to the
‖ · ‖w norm. That is,

f(x+ h) ≥ f(x) + 〈∇f(x), h〉+ σw
2
‖h‖2w, (12)

for all x, h ∈ Rn, where σw > 0.

Note that if f is σ–convex in the standard sense (i.e.,
for w = (1, . . . , 1)), then f is σw–convex for any w > 0
with σw = mini

σ
wi
. Considering a general σw–convexity

allows us to get a tighter convergence rate in some
cases (Allen-Zhu et al., 2016).

Algorithm 1 ACD (Accelerated coordinate descent
with arbitrary sampling)
Input: i.i.d. proper samplings Sk ∼ D; ESO param-
eters v ∈ Rn++; pi = P(i ∈ Sk) and wi = vi/p

2
i for

all i ∈ [n]; strong convexity constant σw > 0; stepsize
parameters θ ≈ 0.618

√
σω (see (20)) and η = 1/θ

Initialize: Initial iterate y0 = z0 ∈ Rn
for k = 0, 1 . . . do

xk+1 = (1− θ)yk + θzk (13)

Get Sk ∼ D (14)

yk+1 = xk+1 −
∑
i∈Sk

1
vi
∇if(xk+1)ei (15)

zk+1 = 1
1+ησw

(
zk + ησwx

k+1

−
∑
i∈Sk

η
piwi
∇if(xk+1)ei

)
(16)

end

Using the tricks developed by Lee and Sidford (2013);
Fercoq and Richtárik (2015); Lin et al. (2014), Algo-
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rithm 1 can be implemented so that only |Sk| coordi-
nates are updated in each iteration. We are now ready
derive a convergence rate of ACD.
Theorem 4.2 (Convergence of ACD). Let Sk be i.i.d.
proper (but otherwise arbitrary) samplings. Let P be
the associated probability matrix and pi := P(i ∈ Sk).
Assume f is M–smooth (see (6)) and let v be ESO
parameters satisfying (7). Further, assume that f is
σw–convex (with σw > 0) for

wi :=
vi
p2i
, i = 1, 2, . . . , n, (17)

with respect to the weighted Euclidean norm ‖ · ‖w (i.e.,
we enforce Assumption 4.1). Then

σw ≤
Miip

2
i

vi
≤ p2i ≤ 1, i = 1, 2, . . . n. (18)

In particular, if f is σ–convex with respect to the stan-
dard Euclidean norm, then we can choose

σw = min
i

p2iσ

vi
. (19)

Finally, if we choose

θ :=

√
σ2
w + 4σw − σw

2
=

2σw√
σ2
w + 4σw + σw

≥ 0.618
√
σω (20)

and η := 1
θ , then the random iterates of ACD satisfy

E
[
P k
]
≤ (1− θ)kP 0, (21)

where P k := 1
θ2

(
f(yk)− f(x∗)

)
+ 1

2(1−θ)‖z
k − x∗‖2w

and x∗ is the optimal solution of (1).

Noting that 1/0.618 ≤ 1.619, as an immediate conse-
quence of (21) and (20) we get bound

k ≥ 1.619
√
σw

log
1

ε
⇒ E

[
P k
]
≤ εP 0. (22)

If f is σ–convex, then by plugging (19) into (22) we
obtain the iteration complexity bound

1.619 ·
√
max
i

vi
p2iσ

log
1

ε
. (23)

Complexity (23) is our key result (also mentioned in
(11) and Table 1).

5 Importance sampling for
minibatches

Let τ := E
[
|Sk|

]
be the expected minibatch size. The

next theorem provides an insightful lower bound for
the complexity of ACD we established, one independent
of p and v.

Theorem 5.1 (Limits of minibatch performance). Let
the assumptions of Theorem 4.2 be satisfied and let f
be σ–convex. Then the dominant term in the rate (23)
of ACD admits the lower bound√

max
i

vi
p2iσ
≥
∑
i

√
Mii

τ
√
σ

. (24)

Note that for τ = 1 we have Mii = vi = Li, and
the lower bound is achieved by using the importance
sampling pi ∝

√
Li. Hence, this bound gives a limit

on how much speedup, compared to the best known
complexity in the τ = 1 case, we can hope for as
we increase τ . The bound says we can not hope for
better than linear speedup in the minibatch size. An
analogous result (obtained by removing all the squares
and square roots in (24)) was established by Richtárik
and Takáč (2016b) for CD.

In what follows, it will be useful to write the complexity
result (23) in a new form by considering a specific choice
of the ESO vector v.
Lemma 5.2. Choose any proper sampling S and let P
be its probability matrix and p its probability vector. Let
c(S,M) := λmax(P

′ ◦M′), where P′ := D−1/2PD−1/2,
M′ := D−1MD−1 and D := Diag (p). Then the vec-
tor v defined by vi := c(S,M)p2i satisfies the ESO
inequality (7) and the total complexity (23) becomes

1.619 ·
√
c(S,M)√
σ

log
1

ε
. (25)

Since 1
nTrace (P

′ ◦M′) ≤ c(S,M) ≤ Trace (P′ ◦M′)
and Trace (P′ ◦M′) =

∑
iP
′
iiM

′
ii =

∑
iM
′
ii =∑

iMii/p
2
i , we get the bounds:√
c(S,M)

σ
log

1

ε
≥

√
1

n

∑
i

Mii

p2iσ
log

1

ε√
c(S,M)

σ
log

1

ε
≤

√∑
i

Mii

p2iσ
log

1

ε
. (26)

5.1 Sampling 1: standard uniform minibatch
samlpling (τ–nice sampling)

Let S1 be the τ -nice sampling. It can be shown (see
Lemma C.3) that c(S1,M) ≤ n2

τ2 ((1 − β)maxiMii +
βL), and hence the iteration complexity (23) becomes

O

(
n

τ

√
(1− β)maxiMii + βL

σ
log

1

ε

)
. (27)

This result interpolates between ACD with uniform prob-
abilities (for τ = 1) and accelerated gradient descent
(for τ = n). Note that the rate (27) is a strict improve-
ment on the CD rate (9).
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Table 2: New complexity results for ACD with minibatch size τ = E
[
|Sk|

]
and various samplings (we suppress log(1/ε)

factors in all expressions). Constants: σ = strong convexity constant of f , L = λmax(M), β = (τ − 1)/(n− 1), 1 ≤ γ ≤
√
n,

and ω ≤ O(
√
τ) (ω can be as small as O(τ/n)).

Lower bound S1 : pi =
τ

n
S2 :

p2i
Mii

∝ 1 S3 :
p2i
Mii

∝ 1− pi∑
i

√
Mii

τ
√
σ

n
√
(1− β)maxiMii + βL

τ
√
σ

γ
∑
i

√
Mii

τ
√
σ

ω
n
√
(1− β)maxiMii + βL

τ
√
σ

(24) = uniform ACD for τ = 1
= AGD for τ = n

≤
√
n× lower bound

• τ ≤
∑
j

√
Mjj

maxiMii

• fastest in practice
• any τ allowed

5.2 Sampling 2: importance sampling for
minibatches

Consider now the sampling S2 which includes every
i ∈ [n] in S2, independently, with probability pi =

τ
√
Mii∑

j

√
Mjj

. This sampling was not considered in the

literature before. Note that E [|S2|] =
∑
i pi = τ . For

this sampling, bounds (26) become:√
c(S,M)

σ
log

1

ε
≥

∑
i

√
Mii

τ
√
σ

log
1

ε√
c(S,M)

σ
log

1

ε
≤
√
n
∑
i

√
Mii

τ
√
σ

log
1

ε
. (28)

Clearly, with this sampling we obtain an ACD method
with complexity within a

√
n factor from the lower

bound established in Theorem 5.1. For τ = 1 we have
P′ = I and hence

c(S,M) = λmax(I ◦M′) = λmax(Diag (M′))

= max
i

Mii/p
2
i = (

∑
j

√
Mjj)

2.

Thus, the rate of ACD achieves the lower bound in (28)
(see also (10)) and we recover the best current rate
of ACD in the τ = 1 case, established by Allen-Zhu
et al. (2016). However, the sampling has an important
limitation: it can be used for τ ≤

∑
j

√
Mjj/maxiMii

only as otherwise the probabilities pi exceed 1.

5.3 Sampling 3: another importance
sampling for minibatches

Now consider sampling S3 which includes each coor-
dinate i within S3 independently, with probability pi
satisfying the relation p2i /Mii ∝ 1− pi. This is equiva-
lent to setting

pi :=
2Mii√

M2
ii + 2Miiδ +Mii

, (29)

where δ is a scalar for which
∑
i pi = τ . This sampling

was not considered in the literature before. Probability

vector p was chosen as (29) for two reasons: i) pi ≤ 1
for all i, and therefore the sampling can be used for all
τ in contrast to S1, and ii) we can prove Theorem 5.3.

Let c1 := c(S1,M) and c3 := c(S3,M). In light of (25),
Theorem 5.3 compares S1 and S3 and says that ACD
with S3 has at most O(

√
τ) times worse rate compared

to ACD with S1, but has the capacity to be O(n/τ)
times better. We prove in Appendix B a similar the-
orem for CD. We stress that, despite some advances
in the development of importance samplings for mini-
batch methods (Richtárik and Takáč, 2016b; Csiba and
Richtárik, 2018), S1 was until now the state-of-the-art
in theory for CD. We are the first to give a provably
better rate in the sense of Theorem B.3. The numerical
experiments show that S3 consistently outperforms S1,
and often dramatically so.

Theorem 5.3. The leading complexity terms c1 and
c3 of ACD (Algorithm (5)) with samplings S1, and S3,
respectively, defined in Lemma 5.2, compare as follows:

c3 ≤ 2
(2n− τ)(nτ + n− τ)

(n− τ)2
c1 = O(τ)c1. (30)

Moreover, there exists M where c3 ≤ O( τ
2

n2 )c1.

In real world applications, minibatch size τ is limited
by hardware and in typical situations, one has τ � n,
oftentimes τ = O(1). The importance of Theorem 5.3
is best understood from this perspective.

6 Experiments

We perform extensive numerical experiments to justify
that minibatch ACD with importance sampling works
well in practice. Here we present a few selected experi-
ment only; more can be found in Appendix D.

In most of plots we compare of both accelerated and
non-accelerated CD with all samplings S1, S2, S3 intro-
duced in Sections 5.1, 5.2 and 5.3 respectively. We refer
to ACD with sampling S3 as AN (Accelerated Nonuniform),
ACD with sampling S1 as AU, ACD with sampling S2 as
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Figure 1: Six variants of coordinate descent (AN, AU, NN, NU, AN2 and AU2) applied to a logistic regression problem,
with minibatch sizes τ = 1, 8, 64 and 512.

AN2, CD with sampling S3 as NN, CD with sampling S1as
NU and CD with sampling S2 as NN2. We compare the
methods for various choices of the expected minibatch
sizes τ and on several problems.

In Figure 1, we report on a logistic regression problem
with a few selected LibSVM Chang and Lin (2011)
datasets. For larger datasets, pre-computing both
strong convexity parameter σ and v may be expen-
sive (however, recall that for v we need to tune only
one scalar). Therefore, we choose ESO parameters
v from Lemma 5.2, while estimating the smoothness
matrix as 10× its diagonal. An estimate of the strong
convexity σ for acceleration was chosen to be the mini-
mal diagonal element of the smoothness matrix. We
provide a formal formulation of the logistic regression
problem, along with more experiments applied to fur-
ther datasets in Appendix D.2, where we choose v and
σ in full accord with the theory.

Coordinate descent methods which allow for separable
proximal operator were proven to be efficient to solve
ERM problem, when applied on dual (Shalev-Shwartz
and Tewari, 2011; Shalev-Shwartz and Zhang, 2013,
2014; Zhao and Zhang, 2015). Although we do not
develop proximal methods in this paper, we empiri-
cally demonstrate that ACD allows for this extension as
well. As a specific problem to solve, we choose dual of

SVM with hinge loss. Figure 2 presents the results. A
detailed description of the experiment is presented in
Appendix D.3. The results are indeed in favour of ACD
with importance sampling. Therefore, ACD is not only
suitable for big dimensional problems, it can handle
the big data setting as well.

Finally, in Appendix D.1 we present several synthetic
examples in order to shed more light on acceleration and
importance sampling, and to see how its performance
depends on the data. We also study how minibatch size
influences the convergence rate. All the experimental
results clearly show that acceleration, importance sam-
pling and minibatching have a significant impact on
practical performance of CD methods. Moreover, the
difference in the performance of samplings S2 and S3

is negligible, and therefore we recommend using S3, as
it is not limited by the bound on expected minibatch
size τ .
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Appendix

A Proof of Theorem 4.2

Before starting the proof, we mention that the proof technique we use is inspired by Allen-Zhu and Orecchia
(2017); Allen-Zhu et al. (2016), which takes the advantage of the coupling of gradient descent with mirror descent,
resulting in a relatively simple proof.

A.1 Proof of inequality (18)

By comparing (12) and (6) for h = ei, we get σwwi ≤Mii, and the first inequality in (18) follows. Using (7) it
follows that e>i (P ◦M)ei � e>i Diag (p ◦ v) ei, which in turn implies Mii ≤ vi and the second inequality in (18)
follows.

A.2 Descent lemma

The following lemma is a consequence of M–smoothness of f , and ESO inequality (7).
Lemma A.1. Under the assumptions of Theorem 4.2, for all k ≥ 0 we have the bound

f(xk+1)− E
[
f(yk+1) |xk+1

]
≥ 1

2
‖∇f(xk+1)‖2v−1◦p. (31)

Proof. We have

E
[
f(yk+1) | xk+1

] (15)
= E

f
xk+1 −

∑
i∈Sk

1

vi
∇if(xk+1)ei

 | xk+1


(6)
≤ f(xk+1)− ‖∇f(xk+1)‖2v−1◦p +

1

2
E


∥∥∥∥∥∥
∑
i∈Sk

1

vi
∇if(xk+1)ei

∥∥∥∥∥∥
2

M

| xk+1


(7)
≤ f(xk+1)− ‖∇f(xk+1)‖2v−1◦p +

1

2

∥∥∇f(xk+1)
∥∥2
v−1◦p .

A.3 Key technical inequality

We first establish a lemma which will play a key part in the analysis.
Lemma A.2. For every u we have

η
∑
i∈Sk

〈
1

pi
∇if(xk+1)ei, z

k+1 − u
〉
− ησw

2
‖xk+1 − u‖2w

≤ −1

2
‖zk − zk+1‖2w +

1

2
‖zk − u‖2w −

1 + ησw
2

‖zk+1 − u‖2w.

Proof. The proof is a direct generalization of the proof of analogous lemma of Allen-Zhu et al. (2016). We include
it for completeness. Notice that (16) is equivalent to

zk+1 = argminz h
k(z) := argminz

1

2
‖z − zk‖2w + η

∑
i∈Sk

〈 1
pi
∇if(xk+1)ei, z〉+

ησw
2
‖z − xk+1‖2w.

Therefore, we have for every u

0 = 〈∇hk(zk+1), zk+1 − u〉w

= 〈zk+1 − zk, zk+1 − u〉w + η
∑
i∈Sk

〈 1
pi
∇if(xk+1)ei, z

k+1 − u〉+ ησw〈zk+1 − xk+1, zk+1 − u〉w. (32)
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Next, by generalized Pythagorean theorem we have

〈zk+1 − zk, zk+1 − u〉w =
1

2
‖zk − zk+1‖2w −

1

2
‖zk − u‖2w +

1

2
‖u− zk+1‖2w (33)

and
〈zk+1 − xk+1, zk+1 − u〉w =

1

2
‖xk+1 − zk+1‖2w −

1

2
‖xk+1 − u‖2w +

1

2
‖u− zk+1‖2w. (34)

It remains to put (34) and (35) into (33).

A.4 Proof of the theorem

To mitigate notational burden, consider all expectations in this proof to be taken with respect to the choice of
the random subset of coordinates Sk. Using Lemma A.2 we have

η
∑
i∈Sk

〈 1
pi
∇if(xk+1)ei, z

k − u〉 − ησw
2
‖xk+1 − u‖2w

≤ η
∑
i∈Sk

〈 1
pi
∇if(xk+1)ei, z

k − zk+1〉 − 1

2
‖zk − zk+1‖2w +

1

2
‖zk − u‖2w −

1 + ησw
2

‖zk+1 − u‖2w

≤ η2

2
‖
∑
i∈Sk

1

pi
∇if(xk+1)ei‖2w−1 +

1

2
‖zk − u‖2w −

1 + ησw
2

‖zk+1 − u‖2w

=
η2

2
‖
∑
i∈Sk

∇if(xk+1)ei‖2w−1◦p−2 +
1

2
‖zk − u‖2w −

1 + ησw
2

‖zk+1 − u‖2w.

Taking the expectation over the choice of Sk, we get

η〈∇f(xk+1), zk − u〉 − ησw
2
‖xk+1 − u‖2w

≤ η2

2
‖∇f(xk+1)‖2w−1◦p−1 +

1

2
‖zk − u‖2w −

1 + ησw
2

E
[
‖zk+1 − u‖2w

]
(17)
=

η2

2
‖∇f(xk+1)‖2v−1◦p +

1

2
‖zk − u‖2w −

1 + ησw
2

E
[
‖zk+1 − u‖2w

]
(31)
≤ η2

(
f(xk+1)− E

[
f(yk+1)

])
+

1

2
‖zk − u‖2w −

1 + ησw
2

E
[
‖zk+1 − u‖2w

]
.

Next, we have the following bounds

η
(
f(xk+1)− f(x∗)

) (12)
≤ η〈∇f(xk+1), xk+1 − x∗〉 − ησw

2
‖x∗ − xk+1‖2w

= η〈∇f(xk+1), xk+1 − zk〉+ η〈∇f(xk+1), zk − x∗〉 − ησw
2
‖x∗ − xk+1‖2w

(13)
=

(1− θ)η
θ

〈∇f(xk+1), yk − xk+1〉+ η〈∇f(xk+1), zk − x∗〉 − ησw
2
‖x∗ − xk+1‖2w

(36)
≤ (1− θ)η

θ

(
f(yk)− f(xk+1)

)
+ η2

(
f(xk+1)− E

[
f(yk+1)

])
+
1

2
‖zk − x∗‖2w −

1 + ησw
2

E
[
‖zk+1 − x∗‖2w

]
.

Choosing η = 1
θ and rearranging the above we obtain

1

θ2
(
E
[
f(yk+1)

]
− f(x∗)

)
+

1 + σw

θ

2
E
[
‖zk+1 − x∗‖2w

]
≤ (1− θ)

θ2
(
f(yk)− f(x∗)

)
+

1

2
‖zk − x∗‖2w.

Finally, setting θ such that 1 + σw

θ = 1
1−θ , which coincides with (20), we get

E
[
P k+1

]
≤ (1− θ)P k,

as desired.
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B Better rates for minibatch CD (without acceleration)

In this section we establish better rates for minibatch CD method than the current state of the art. Our starting
point is the following complexity theorem.

Theorem B.1. Choose any proper sampling and let P be its probability matrix and p its probability vector. Let

c(S,M) := λmax(P
′′ ◦M),

where P′′ := D−1PD−1 and D := Diag (p). Then the vector v defined by vi = c(S,M)pi satisfies the ESO
inequality (7). Moreover, if we run the non-accelerated CD method (5) with this sampling and stepsizes αi =

1
c(S,M)pi

, then the iteration complexity of the method is

c(S,M)

σ
log

1

ε
. (35)

Proof. Let vi = cpi for all i. The ESO inequality holds for this choice of v if P ◦M � cD2. This is equivalent
to Since D−1(P ◦M)D−1 = P′′ ◦M, the above inequality is equivalent to P′′ ◦M � cI, which is equivalent to
c ≥ λmax(P

′′ ◦M). So, choosing c = c(S,M) works. Plugging this choice of v into the complexity result (8) gives
(36).

B.1 Two uniform samplings and one new importance sampling

In the next theorem we compute now consider several special samplings. All of them choose in expectation a
minibatch of size τ and are hence directly comparable.

Theorem B.2. The following statements hold:

(i) Let S1 be the τ–nice sampling. Then

c1 := c(S1,M) =
n

τ
λmax

(
τ − 1

n− 1
M+

n− τ
n− 1

Diag (M)

)
. (36)

(ii) Let S2 be the independent uniform sampling with minibatch size τ . That is, for all i we independently decide
whether i ∈ S, and do so by picking i with probability pi = τ

n . Then

c2 := c(S2,M) = λmax

(
M+

n− τ
τ

Diag (M)

)
. (37)

(iii) Let S3 be an independent sampling where we choose pi ∝ Mii

δ+Mii
where δ > 0 is chosen so that

∑
i pi = τ .

Then
c3 := c(S3,M) = λmax(M) + δ. (38)

Moreover,

δ ≤ Trace (M)

τ
. (39)

Proof. We will deal with each case separately:

(i) The probability matrix of S1 is P = τ
n (βE+ (1− β)I) , where β = τ−1

n−1 , and D = τ
nI. Hence,

P′′ ◦M = (D−1PD−1) ◦M

=
τ

n

(
βD−1ED−1 + (1− β)D−2

)
◦M

=
τ

n

(
τ − 1

n− 1
E+

n− τ
n− 1

I

)
◦M

=
τ

n

(
τ − 1

n− 1
M+

n− τ
n− 1

Diag (M)

)
.
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(ii) The probability matrix of S2 is P = τ
n

(
τ
nE+ (1− τ

n )I
)
, and D = τ

nI. Hence,

P′′ ◦M = (D−1PD−1) ◦M

=
τ

n

( τ
n
D−1ED−1 +

(
1− τ

n

)
D−2

)
◦M

=

(
E+

n− τ
τ

I

)
◦M

= M+
n− τ
τ

Diag (M) .

(iii) The probability matrix of S3 is P = pp> +D−D2. Therefore,

P′′ ◦M = (D−1PD−1) ◦M
=

(
D−1pp>D−1 +D−1 − I

)
◦M

=
(
E+D−1 − I

)
◦M

=
(
E+ δ(Diag (M))−1

)
◦M

= M+ δI.

To establish the bound on δ, it suffices to note that

τ =
∑
i

pi =
∑
i

Mii

δ +Mii
≤
∑
i

Mii

δ
=

Trace (M)

δ
.

B.2 Comparing the samplings

In the next result we show that sampling S3 is at most twice worse than S2, which is at most twice worse than
S1. Note that S1 is uniform; and it is the standard minibatch sampling used in the literature and applications.
Our novel sampling S3 is non-uniform, and is at most four times worse than S1 in the worst case. However, it
can be substantially better, as we shall show later by giving an example.

Theorem B.3. The leading complexity terms c1, c2, and c3 of CD (Algorithm (5)) with samplings S1, S2, and S3,
respectively, defined in Theorem B.2, compare as follows:

(i) c3 ≤ 2n−τ
n−τ c2

(ii) c2 ≤ (n−1)τ
n(τ−1)c1 ≤ 2c1

Proof. We have:
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(i)

c3
(39)
= λmax(M) + δ

≤ λmax

(
M+

n− τ
τ

Diag (M)

)
+ δ

(38)
= c2 + δ

(40)
≤ c2 +

Trace (M)

τ

≤ c2 +
nmaxiMii

τ

= c2 +
n

n− τ
n− τ
τ

max
i

Mii

= c2 +
n

n− τ
λmax

(
n− τ
τ

Diag (M)

)
≤ c2 +

n

n− τ
λmax

(
M+

n− τ
τ

Diag (M)

)
(38)
=

2n− τ
n− τ

c2.

(ii)

c2
(38)
= λmax

(
M+

n− τ
τ

Diag (M)

)
= λmax

(
n(τ − 1)

τ(n− 1)
M+

n− τ
τ

Diag (M) +

(
1− n(τ − 1)

τ(n− 1)

)
M

)
(†)
≤ λmax

(
n(τ − 1)

τ(n− 1)
M+

n− τ
τ

Diag (M)

)
+ λmax

((
1− n(τ − 1)

τ(n− 1)

)
M

)
≤ λmax

(
n(τ − 1)

τ(n− 1)
M+

n(n− τ)
τ(n− 1)

Diag (M)

)
+

n− τ
(n− 1)τ

λmax (M)

(37)
= c1 +

n− τ
(n− 1)τ

λmax (M)

(38)
≤ c1 +

n− τ
(n− 1)τ

c2.

The statement follows by reshuffling the final inequality. In step (†) we have used subadditivity of the
function A 7→ λmax(A).

The next simple example shows that sampling S3 can be arbitrarily better than sampling S1.
Example 1. Consider n� 1, and choose any τ and

M :=

(
n 0>

0 I

)

for I ∈ R(n−1)×(n−1). Then, it is easy to verify that c1
(37)
= n2

τ and c3
(39)+(40)
≤ n+ 2n−1

τ = O(nτ ). Thus, convergence
rate of CD with S3 sampling can be up to O(n) times better than convergence rate of CD with τ–nice sampling.
Remark 1. Looking only at diagonal elments of M, an intuition tells us that one should sample a coordinate
corresponding to larger diagonal entry of M with higher probability. However, this might lead to worse convergence,
comparing to τ–nice sampling. Therefore the results we provide in this section cannot be qualitatively better, i.e.
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there are examples of smoothness matrix, for which assigning bigger probability to bigger diagonal elements leads
to worse rate. It is an easy exercise to verify that for M ∈ R10×10 such that

M :=

(
2 0>

0 11>

)
,

and τ ≥ 2 we have c(Snice,M) ≤ c(S′,M) for any S′ satisfying p(S′)i ≥ p(S′)j if and only if Mii ≥Mjj .

C Proofs for Section 5

C.1 Proof of Theorem 5.1

We start with a lemma which allows us to focus on ESO parameters vi which are proportional to the squares of
the probabilities pi.

Lemma C.1. Assume that the ESO inequality (7) holds. Let j = argmaxi
vi
p2i
, c = vj

p2j
and v′ = cp2 (i.e., v′i = cp2i

for all i). Then the following statements hold:

(i) v′ ≥ v.

(ii) ESO inequality (7) holds for v′ also.

(iii) Assuming f is σ–convex, Theorem 4.2 holds if we replace v by v′, and the rate (24) is unchanged if we
replace v by v′.

Proof. (i) v′i = cp2i =
vj
p2j
p2i =

(
vj
p2j

p2i
vi

)
vi ≥ vi.

(ii) This follows directly from (i).

(iii) Theorem 4.2 holds with v replaced by v′ because ESO holds. To show that the rates are unchanged first
note that maxi

vi
p2i

=
vj
p2j

= c. On the other hand, by construction, we have c = v′i
p2i

for all i. So, in particular,

c = maxi
v′i
p2i
.

In view of the above lemma, we can assume without loss of generality that v = cp2. Hence, the rate in (24) can
be written in the form √

max
i

vi
p2iσ

=

√
c

σ
. (40)

In what follows, we will establish a lower bound on c, which will lead to the lower bound on the rate expressed as
inequality (24). As a starting point, note that directly from (7) we get the bound

P ◦M � Diag (p ◦ v) = cDiag
(
p3
)
. (41)

Let D1 = Diag (p)
−1/2 and D2 = Diag (p)

−1. From (42) we get D1D2(P ◦M)D2D1 � cI and hence

c ≥ c(S,M) := λmax(D1D2(P ◦M)D2D1). (42)

At this point, the following identity will be useful.

Lemma C.2. Let A,B,D1,D2 ∈ Rn×n, with D1,D2 being diagonal. Then

D1(A ◦B)D2 = (D1AD2) ◦B = A ◦ (D1BD2). (43)

Proof. The proof is straightforward, and hence we do not include it. The identity is formulated as an exercise in
(Zhang, 1999).
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Repeatedly applying Lemma C.2, we get

D1D2(P ◦M)D2D1 = (D1PD1)︸ ︷︷ ︸
P′

◦ (D2MD2)︸ ︷︷ ︸
M′

.

Plugging this back into (43), and since P′ii = 1 for all i, we get the bound

c ≥ c(S,M) = λmax(P
′ ◦M′) ≥ max

i
(P′ ◦M′)ii = max

i
P′iiM

′
ii = max

i
M′ii

= max
i

Mii

p2i
≥

(∑n
i=1 M

1/2
ii

)2
τ2

. (44)

The last inequality follows by observing that the optimal solution of the optimization problem

min
p

{
max
i

Mii

p2i
| p1, . . . , pn > 0,

∑
i

pi = τ

}

is pi = τ
M

1/2
ii∑

j M
1/2
jj

. Inequality (24) now follows by substituting the lower bound on c obtained in (45) into (41).

C.2 Proof of Lemma 5.2

Diag (p1v1, . . . , pnvn) = c(S,M)Diag
(
p31, . . . , p

3
n

)
= c(S,M)D3

= λmax

((
D−1/2PD−1/2

)
◦
(
D−1MD−1

))
D3

� D
3
2

((
D−1/2PD−1/2

)
◦
(
D−1MD−1

))
D

3
2

(44)
= P ◦M.

The last inequality came from the fact that D is diagonal.

C.3 Bound on c(S1,S)

Lemma C.3. c(S1,M) ≤ n2

τ2 ((1− β)maxiMii + βL).

Proof. Recall that the probability matrix of S1 is P = τ
n ((1− β)I+ βE). Since pi = τ

n and M � LI, we have

c(S1,M) = λmax (P
′ ◦M′)

= λmax

(
(D−1/2PD−1/2) ◦ (D−1MD−1)

)
= λmax

( τ
n

(
(1− β)D−1 + βD−1/2ED−1/2

)
◦D−1MD−1

)
=

τ

n
λmax

((
(1− β)D−1 + βD−1/2ED−1/2

)
◦D−1MD−1

)
=

τ

n
λmax

(
(1− β)Diag

(
Mii/p

3
i

)
+ βD−3/2MD−3/2

)
� τ

n
λmax

(
(1− β)Diag

(
Mii/p

3
i

)
+ βLD−3

)
=

τ

n
λmax

(
(1− β)n

3

τ3
max
i

Mii + βL
n3

τ3

)
=

n2

τ2

(
(1− β)max

i
Mii + βL

)
.
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C.4 Proof of Theorem 5.3

For the purpose of this proof, let S2 be the independent uniform sampling with minibatch size τ . That is, for all
i we independently decide whether i ∈ S, and do so by picking i with probability pi = τ

n . Recall that S3 is the
independent importance sampling.

For simplicity, let Pi be the probability matrix of sampling Si, Di := Diag (Pi), and M′i := D
−1/2
i MD

−1/2
i , for

i = 1, 3. Next, we have

c(Si,M) = λmax

((
D
−1/2
i PiD

−1/2
i

)
◦
(
D−1i MD−1i

))
(44)
= λmax

((
D−1i PiD

−1
i

)
◦
(
D
−1/2
i MD

−1/2
i

))
= λmax

((
E+D−1i − I

)
◦M′i

)
= λmax

(
M′i +Diag (M′i) ◦ (D−1i − I)

)
, (45)

where the third identity holds since both Si is an independent sampling, which means that
(
D−1i PiD

−1
i

)
kl

= pkl

pkpl
,

where p = Diag (Di).

Denote ci := c(Si,M). Thus for S2 we have

c2 =
τ

n
λmax

(
M+

n− τ
τ

Diag (M)

)
. (46)

Let us now establish a technical lemma.

Lemma C.4.

λmax

(
M′3 + diag(M′3) ◦ (D−13 − I)

)
≤ 2n− τ

n− τ
λmax

(
M′3 +

n− τ
τ

Diag (M′3)

)
(47)

Proof. The statement follows immediately repeating the steps of the proof of (i) from Theorem B.3 using the fact
that for sampling S3 we have pi/Mii ∝ p−1i − 1.

We can now proceed with comparing c2 to c3.

c3 = λmax

(
M′3 +Diag (M′3) ◦ (D−13 − I)

)
(48)
≤ 2n− τ

n− τ
λmax

(
M′3 +

n− τ
τ

Diag (M′3)

)
(∗)
≤ 2n− τ

n− τ
λmax

(
nDiag (M′3) +

n− τ
τ

Diag (M′3)

)
=

2n− τ
n− τ

nτ + n− τ
τ

λmax (Diag (M′3))

(∗∗)
≤ 2n− τ

n− τ
nτ + n− τ

τ

τ

n
λmax (Diag (M))

≤ 2n− τ
n− τ

nτ + n− τ
τ

τ

n

τ

n− τ
λmax

(
M+

n− τ
τ

Diag (M)

)
(46)
=

2n− τ
n− τ

nτ + n− τ
τ

τ

n− τ
c2 (48)

Above, inequality (∗) holds since for any n× n matrix Q � 0 we have Q � nDiag (Q) and inequality (∗∗) holds
since (D3)ii ≥ (D3)jj if and only if Mii ≥Mjj due to choice of p.
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Let us now compare to c2 and c1. We have

c1 = λmax

((
D
−1/2
1 P1D

−1/2
1

)
◦
(
D−11 MD−11

))
(44)
= λmax

((
D−11 P1D

−1
1

)
◦
(
D
−1/2
1 MD

−1/2
1

))
= λmax

((
τ − 1

n− 1

n

τ
E+

n

τ
I− τ − 1

n− 1

n

τ
I

)
◦M′′1

)
=

n

τ
λmax

(
τ − 1

n− 1
M′′1 +

n− τ
n− 1

Diag (M′′1)

)
=

(n
τ

)2
λmax

(
τ − 1

n− 1
M+

n− τ
n− 1

Diag (M)

)
. (49)

As (47) and (50) are established, following the proof of (ii) from Theorem B.3, we arrive at

c2 ≤
(n− 1)τ

n(τ − 1)
c1 ≤ 2c1. (50)

It remains to combine (49) and (51) to establish (30).

As an example where c3 ≈
(
τ
n

)2
c2, we propose Example 2.

Example 2. Consider n ≥ 1, choose any n ≥ τ ≥ 1 and

M :=

(
N 0>

0 I

)

for I ∈ R(n−1)×(n−1). Then, it is easy to verify that c1
(50)
=
(
n
τ

)2
N . Moreover, for large enough N we have

p ≈
(
1,
τ − 1

n− 1
, . . . ,

τ − 1

n− 1

)>
⇒ M′3 ≈ Diag

(
N,

n− 1

τ − 1
, . . . ,

n− 1

τ − 1

)
.

Therefore, using (46) and again for large enough N , we get c3 ≈ N . Thus, c3 ≈
(
τ
n

)2
c2.
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D Extra Experiments

In this section we present additional numerical experiments. We first present some synthetic examples in
Section D.1 in order to have better understanding of both acceleration and importance sampling, and to see how
it performs on what type of data. We also study how minibatch size influences the convergence rate.

Then, in Section D.2, we work with logistic regression problem on LibSVM (Chang and Lin, 2011) data. For
small datasets, we choose the parameters of ACD as theory suggests and for large ones, we estimate them, as we
describe in the main body of the paper. Lastly, we tackle dual of SVM problem with squared hinge loss, which
we present in Section D.3.

In most of plots we compare of both accelerated and non-accelerated CD with all samplings S1, S2, S3 introduced
in Sections 5.1, 5.2 and 5.3 respectively. We refer to ACD with sampling S3 as AN (Accelerated Nonuniform), ACD
with sampling S1 as AU, ACD with sampling S2 as AN2, CD with sampling S3 as NN, CD with sampling S1as NU and
CD with sampling S2 as NN2. As for Sampling 2, it might happen that probabilities become larger than one if τ is
large (see Section 5.2), we set those probabilities to 1 while keeping the rest as it is.

We compare the mentioned methods for various choices of the expected minibatch sizes τ and several problems.

D.1 Synthetic quadratics

As we mentioned, the goal of this section is to provide a better understanding of both acceleration and importance
sampling. For this purpose we consider as simple setting as possible – minimizing quadratic

f(x) =
1

2
x>Mx− b>x, (51)

where b ∼ N(0, I) and M is chosen as one of the 5 types, as the following table suggests.

Problem type M

1 A>A+ I for A
n
2
×n; have independent entries from N(0, 1)

2 A>A+ I for A2n×n; have independent entries from N(0, 1)
3 diag(1, 2, . . . , n)
4 A+ I, An,n = n, A1:(n−1),1:(n−1) = 1, A1:(n−1),n = An,1:(n−1) = 0

5 A>DA+ I for A
n
2
×n; have independent entries from N(0, 1), D = 1√

n
Diag (1, 2, . . . , n)

Table 3: Problem types

In the first example we perform (Figure 3), we compare the performance of both accelerated and non-accelerated
algorithm with both nonuniform and τ nice sampling on problems as per Table 3. In all experiments, we set
n = 1000 and we plot a various choices of τ .
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D.1.1 Comparison of methods on synthetic data

Figure 3 presents the numerical performance of ACD for various types of synthetic problems given by (52) and
Table 3. It suggests what our theory shows – that accelerated algorithm is always faster than its non-accelerated
counterpart, and on top of that, performance of τ–nice sampling (S1) can be negligibly faster than importance
sampling (S2, S3), but is usually significantly slower. A significance of the importance sampling is mainly
demonstrated on problem type 4, which roughly coincides with Examples 1 and 2. Figure 3 presents Sampling 2
only for the cases when the bound on τ form Section 5.2 is satisfied.

Figure 3: Comparison of accelerated, nonaccelerated algorithm with both importance and τ nice sampling for a
various quadratic problems.
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D.1.2 Speedup in τ

The next experiment shows an empirical speedup for the coordinate descent algorithms for a various types of
problems. For simplicity, we do not include Sampling 2. Figure 4 provides the results. Oftentimes, the empirical
speedup (in terms of the number of iteration) in τ is close to linear, which demonstrates the power and significance
of minibatching.

Figure 4: Comparison of speedup gained by both τ -nice sampling and importance sampling with and without
acceleration on various quadratic problems.
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D.2 Logistic Regression

In this section we apply ACD on the regularized logistic regression problem, i.e.

f(x) =
1

m

m∑
i=1

log (1 + exp (Ai,:x · b)) +
λ

2
‖x‖2,

for b ∈ {−1, 1} and data matrix A comes from LibSVM. In each experiment in this section, we have chosen
regularization parameter λ to be the average diagonal element of the smoothness matrix. We first apply the
methods with the optimal parameters as our theory suggests on smaller datasets. On larger ones (Section D.2.1),
we set them in a cheaper way, which is not guaranteed to work by theory we provide.

In our first experiment, we apply ACD on LibSVM data directly for various minibatch sizes τ . Figure 5 shows the
results. As expected, ACD is always better to CD, and importance sampling is always better to uniform one.

Figure 5: Accelerated coordinate desent applied on the logistic regression problem, for various LibSVM datasets
and minibatch sizes τ
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Note that, for some datasets and especially bigger minibatch sizes, the effect of importance sampling is sometimes
negligible. To demonstrate the power of importance sampling, in the next experiment, we first corrupt the data –
we multiply each row and column of the data matrix A by random number from uniform distribution over [0, 1].
The results can be seen in Figure 6. As expected, the effect of importance sampling becomes more significant.

Figure 6: Accelerated coordinate desent applied on the logistic regression problem, for various rescaled LibSVM
datasets and minibatch sizes τ
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D.2.1 Practical method on larger dataset

For completeness, we restate here experiments from Figure 1. We have chosen regularization parameter λ to be
the average diagonal element of the smoothness matrix and estimated v, σ as described in Section 6.

Figure 7: Six variants of coordinate descent (AN, AU, NN, NU, AN2 and AU2) applied to a logistic regression problem,
with minibatch sizes τ = 1, 8, 64 and 512.
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D.3 Support Vector Machines

In this section we apply ACD on the dual of SVM problem with squared hinge loss, i.e.,

f(x) =
1

λn2

m∑
j=1

(
n∑
i=1

biAjixi

)2

− 1

n

n∑
i=1

xi +
1

4n

n∑
i=1

x2i + I[0,∞](x),

where I[0,∞] stands for indicator function of set [0,∞], i.e. I[0,∞](x) = 0 if x ∈ Rn+, otherwise I[0,∞](x) =∞. As
for the data, we have rescaled each row and each column of the data matrix coming frol LibSVM by random
scalar generated from uniform distribution over [0, 1]. We have chosen regularization parameter λ to be maximal
diagonal element of the smoothness matrix divided by 10 in each experiment below. We deal with nonsmooth
indicator function using proximal operator, which happens to be a projection in this case. We choose ESO
parameters v from Lemma 5.2, while estimating the smoothness matrix as

√
n–times multiple of its diagonal. An

estimate of the strong convexity σ for acceleration was chosen to be minimal diagonal element of the smoothness
matrix, therefore we adapt a similar approach as in Section D.2.1.

Recall that we did not provide a theory for the proximal steps. However, we make the experiment to demonstrate
that ACD can solve big data problems on top of large dimensional problems. Although the results are presented in
the main body, we restate them here again (Figure 8) for the sake of readibility.

Figure 8: Accelerated coordinate desent applied on the dual of of SVM with squared hinge loss, for various
LibSVM datasets
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