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A The Option Transition Process

It will be convenient to consider the option transition
process:

P (0)(xf |xs) = Pr(xt = xf |xt = xs) = Ixs=xf
P (1)(xf |xs) = Pr(xt+1 = xf |xt = xs)

= (1− βo(xs))pπ
o

(xf |xs)
. . .

P (k)(xf |xs) = Pr(xt+k = xf |xt = xs)

=
∑
x

P (1)(x|xs)P (k−1)(xf |x)

We can then rewrite P o from (3) as:

P o(xf |xs) = βo(xf )
(
P (0)(xf |xs) + P (1)(xf |xs) + . . .

)
= βo(xf )

∞∑
k=0

P (k)(xf |xs) (6)

B Omitted Proofs

B.1 Proof of Theorem 1

Proof. We have:

∇θβP o(xf |xs)

= ∇θββo(xs)Ixf=xs +∇θβ (1− βo(xs))
∑
x

pπ
o

(x|xs)P o(xf |x)

= ∇θββo(xs)Ixf=xs +
∑
x

pπ
o

(x|xs)
(
∇θβP o(xf |x)

−∇θβ
(
βo(xs)P

o(xf |x)
))

= ∇θββo(xs)Ixf=xs +
∑
x

pπ
o

(x|xs)
(
∇θβP o(xf |x)

−∇θββo(xs)P o(xf |x)− βo(xs)∇θβP o(xf |x)
)

= ∇θββo(xs)
(
Ixf=xs −

∑
x

pπ
o

(x|xs)P o(xf |x)
)

+ (1− βo(xs))
∑
x

pπ
o

(x|xs)∇θβP o(xf |x). (7)

And so what we have is a (1−βo(xi))-discounted value
function, whose reward is ∇θββo(xi)roxf (xi), where

roxf (xi) = Ixf=xi −
∑
xi+1

pπ
o

(xi+1|xi)P o(xf |xi+1)

Now, from Eq. (3) and if βo(x) 6= 1, we have:∑
x

pπ
o

(x|xs)P o(xf |x) =
P o(xf |xs)− βo(xs)Ixf=xs

1− βo(xs)

roxf (xs) = Ixf=xs −
P o(xf |xs)− βo(xs)Ixf=xs

1− βo(xs)

=
Ixf=xs − P o(xf |xs)

1− βo(xs)
(8)

Using this notation, and recalling the transition process
from Eq. (6), we can rewrite (7) as:

∇θβP o(xf |xs)

= ∇θββo(xs)roxf (xs) +
∑
x

P (1)(x|xs)∇θβP o(xf |x)

=
∑
x

∞∑
k=0

P (k)(x|xs)∇θββo(x)roxf (x)

=
∑
x

P o(x|xs)
βo(x)

∇θββo(x)roxf (x)

=
∑
x

P o(x|xs)∇θβ log βo(x)roxf (x)

Where the third equality follows from (6) and requires
for βo(x) to not be 0.

B.2 Proof of Proposition 1

Proof. Let Pr(x|o) denote the probability of a state x
being terminal for an option o. By definition of entropy
we have:

H(Xf |o) = −
∑
xf

Pr(xf |o) log Pr(xf |o)

= −
∑
xf

∑
xs

Pr(xs|o) Pr(xf |xs, o)

× log
∑
xs

Pr(xs|o) Pr(xf |xs, o)

= −
∑
xf

∑
xs

dµ(xs|o)P o(xf |xs)

× log
∑
ys

dµ(ys|o)P o(xf |ys)︸ ︷︷ ︸
marginal P oµ(xf )

= −
∑
xs

dµ(xs|o)
∑
xf

P o(xf |xs) logP oµ(xf )

B.3 Proof of Theorem 2

Proof.

∇θβJ(P o) = −∇θβ
∑
xs

dµ(xs|o)︸ ︷︷ ︸
Exs

∑
xf

P o(xf |xs) logP oµ(xf )

= −Exs
[∑
xf

(
∇θβP o(xf |xs) logP oµ(xf )
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+ P o(xf |xs)
∇θβP oµ(xf )
P oµ(xf )

)]
= −Exs

[∑
xf

(∑
x

P o(x|xs)roxf (x)∇θβ log β
o(x) logP oµ(xf )

+
P o(xf |xs)
P oµ(xf )

∑
ys

dµ(ys|o)
∑
x

P o(x|ys)︸ ︷︷ ︸∑
x P

o
µ(x)

roxf (x)∇θβ log β
o(x)

)]

= −Exs
[∑

x

P o(x|xs)∇θβ log βo(x)
∑
xf

roxf (x)

×
(
logP oµ(xf ) +

P o(xf |xs)
P oµ(xf )

P oµ(x)

P o(x|xs)

)]
= −Exs

[∑
x

P o(x|xs)
∇θββo(x)
βo(x)

∑
xf

Ixf=x − P o(xf |x)
1− βo(x)

×
(
logP oµ(xf ) +

P o(xf |xs)
P oµ(xf )

P oµ(x)

P o(x|xs)

)]
= −

∑
xs

dµ(xs|o)︸ ︷︷ ︸
sample

∑
x

P o(x|xs)
βo(x)︸ ︷︷ ︸

sample (continuation)

∇θββo(x)
1− βo(x)

×
[(

logP oµ(x) + 1
)

−
∑
xf

P o(xf |x)︸ ︷︷ ︸
sample

(
logP oµ(xf ) +

P o(xf |xs)P oµ(x)
P oµ(xf )P

o(x|xs)

)]

Sampling the highlighted expectations, and noting that
if ` are the logits of βo,

∇θβ `βo(x) =
∇θββo(x)

βo(x)(1− βo(x))
,

we have our result.

C Correlation with Planning
Performance

The policies considered in these experiments consist
of some set of four options combined with the set of
primitive actions. Planning performance, for a single
goal-directed task, is evaluated as the average policy
value over all states at the end of each of ten iterations
of value iteration. Consider Figure 7 which shows the
value iteration performance curve for a single task,
comparing policies of primitive actions, options, and
their combination. The planning performance is the
average of this curve for ten iterations, further averaged
over all possible goal-directed tasks in Four Rooms.
This measures how quickly value iteration, using this
set of option policies and terminations, is able to plan.

Figure 6: The Four Rooms domain map.

Figure 7: Example of planning performance using op-
tions, primitive actions, and both options and primitive
actions.

D Learning Dynamics

Fig. 8 further studies the learning dynamics induced
by the different components of the algorithm. We
compare the previous two variants from Fig. 2 with
only including the reachability advantage term (Row
3), and only including the trajectory advantage term
(Row 4). The former does not focus on a single state,
while the latter does not concentrate at all for many
values of β.
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Figure 8: Learning dynamics. The color groups correspond with the states of the MDP from Fig. 1, while
different lines correspond to different initial values of β(green) (a lighter color depicts a lower value), First row:
Termination-critic. Second row: Naive reachability. Third row: Only termination score advantage. Fourth
row: Only relative termination advantage. We see that when the β-initialization is not too low, termination critic
correctly concentrates termination on the attractor state and that state only, while the naive version saturates
two of the states. The two ablations show the reachability advantage having similar behavior to naive reachability,
while the trajectory advantage is not concentrating enough when the attraction values are low.


