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Abstract

We propose a novel deep learning paradigm
of differential flows that learn a stochastic dif-
ferential equation transformations of inputs
prior to a standard classification or regres-
sion function. The key property of differential
Gaussian processes is the warping of inputs
through infinitely deep, but infinitesimal, dif-
ferential fields, that generalise discrete layers
into a dynamical system. We demonstrate ex-
cellent results as compared to deep Gaussian
processes and Bayesian neural networks.

1 INTRODUCTION

Gaussian processes are a family of flexible kernel func-
tion distributions (Rasmussen and Williams, 2006).
The capacity of kernel models is inherently determined
by the function space induced by the choice of the ker-
nel, where standard stationary kernels lead to models
that underperform in practice. Shallow – or single –
Gaussian processes are often suboptimal since flexi-
ble kernels that would account for the non-stationary
and long-range connections of the data are difficult
to design and infer. Such models have been proposed
by introducing non-stationary kernels (Tolvanen et al.,
2014; Heinonen et al., 2016), kernel compositions (Du-
venaud et al., 2011; Sun et al., 2018), spectral kernels
(Wilson et al., 2013; Remes et al., 2017), or by ap-
plying input-warpings (Snoek et al., 2014) or output-
warpings (Snelson et al., 2004; Lázaro-Gredilla, 2012).
Recently, Wilson et al. (2016) proposed to transform
the inputs with a neural network prior to a Gaussian
process model. The new neural input representation
can extract high-level patterns and features, however,
it employs rich neural networks that require careful
design and optimization.
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Deep Gaussian processes elevate the performance of
Gaussian processes by mapping the inputs through
multiple Gaussian process ‘layers’ (Damianou and
Lawrence, 2013; Salimbeni and Deisenroth, 2017), or as
a network of GP nodes (Duvenaud et al., 2011; Wilson
et al., 2012; Sun et al., 2018). However, deep GPs
result in degenerate models if the individual GPs are
not invertible, which limits their capacity (Duvenaud
et al., 2014).

In this paper we propose a novel paradigm of learning
continuous-time transformations or flows of the data
instead of learning a discrete sequence of layers. We
apply stochastic differential equation systems in the
original data space to transform the inputs before a
classification or regression layer. The transformation
flow consists of an infinite path of infinitesimal steps.
This approach turns the focus from learning iterative
function mappings to learning input representations in
the original feature space, avoiding learning new feature
spaces. A TensorFlow compatible implementation will
be made available upon acceptance.

Our experiments show excellent prediction performance
on a number of benchmark datasets on classification
and regression. The performance of the proposed model
is comparable to that of other Bayesian approaches,
including deep Gaussian processes.

2 BACKGROUND

We begin by summarising useful background of Gaus-
sian processes and continuous-time dynamicals models.

2.1 Gaussian processes

Gaussian processes (GP) are a family of Bayesian mod-
els that characterise distributions of functions (Ras-
mussen and Williams, 2006). A zero-mean Gaussian
process prior on a function f(x) over vector inputs
x ∈ RD,

f(x) ∼ GP(0,K(x,x′)), (1)
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defines a prior distribution over function values f(x)
whose mean and covariances are

E[f(x)] = 0 (2)

cov[f(x), f(x′)] = K(x,x′). (3)

A GP prior defines that for any collection of N inputs,
X = (x1, . . . ,xN )T , the corresponding function values
f = (f(x1), . . . , f(xN ))T ∈ RN follow a multivariate
normal distribution

f ∼ N (0,K), (4)

where K = (K(xi,xj))
N
i,j=1 ∈ RN×N is the kernel

matrix. The key property of GP’s is that output pre-
dictions f(x) and f(x′) correlate depending on how
similar are their inputs x and x′, as measured by the
kernel K(x,x′) ∈ R.

We consider sparse Gaussian process functions by aug-
menting the Gaussian process with a small number
M of inducing ‘landmark’ variables u = f(z) (Snelson
and Ghahramani, 2006). We condition the GP prior
with the inducing variables u = (u1, . . . , uM )T ∈ RM
and Z = (z1, . . . , zM )T to obtain the GP posterior
predictions at data points

f |u; Z ∼ N (Qu,KXX −QKZZQT ) (5)

u ∼ N (0,KZZ), (6)

where Q = KXZK−1ZZ, and where KXX ∈ RN×N is
the kernel between observed image pairs X ×X, the
kernel KXZ ∈ RN×M is between observed images X
and inducing images Z, and kernel KZZ ∈ RM×M is
between inducing images Z×Z. The inference problem
of sparse Gaussian processes is to learn the parame-
ters θ of the kernel (such as the lengthscale), and the
conditioning inducing variables u,Z.

2.2 Stochastic differential equations

Stochastic differential equations (SDEs) are an effec-
tive formalism for modelling continuous-time systems
with underlying stochastic dynamics, with wide range
of applications (Friedrich et al., 2011). We consider
multivariate continuous-time systems governed by a
Markov process xt described by SDE dynamics

dxt = µ(xt)dt+
√

Σ(xt)dWt, (7)

where xt ∈ RD is the state vector of a D-dimensional
dynamical system at continuous time t ∈ R, µ(xt) ∈
RD is a deterministic state evolution vector field,√

Σ(xt) ∈ RD×D is the diffusion matrix field of the
stochastic multivariate Wiener process Wt ∈ RD. The√

Σ(xt) is the square root matrix of a covariance ma-

trix Σ(xt), where we assume Σ(xt) =
√

Σ(xt)
√

Σ(xt)

Figure 1: An example vector field defined by the induc-
ing vectors (a) results in the ODE flow solutions (b)
of a 2D system. Including the colored Wiener diffusion
(c) leads to SDE trajectory distributions (d).

holds. A Wiener process has zero initial state W0 = 0,
and independent, Gaussian increments Wt+s −Wt ∼
N (0, sID) over time with standard deviation

√
sID

(See Figure 1).

The SDE system (7) transforms states xt forward in
continuous time by the deterministic drift function
µ : RD → RD, while the diffusion Σ : RD → RD×D
is the scale of the random Brownian motion Wt that
scatter the state xt with random fluctuations. The
state solutions of an SDE are given by the stochastic
Itô integral (Oksendal, 2014)

xt = x0 +

∫ t

0

µ(xτ )dτ +

∫ t

0

√
Σ(xτ )dWτ , (8)

where we integrate the system state from an initial state
x0 for time t forward, and where τ is an auxiliary time
variable. SDEs produce continuous, but non-smooth
trajectories x0:t over time due to the non-differentiable
Brownian motion. This causes the SDE system to
not have a time derivative dxt

dt , but the stochastic Itô
integral (8) can still be defined.

The only non-deterministic part of the solution (8) is
the Brownian motion Wτ , whose random realisations
generate path realisations x0:t that induce state distri-
butions

xt ∼ pt(x;µ,Σ,x0) (9)

at any instant t, given the drift µ and diffusion Σ from
initial state x0. The state distribution is the solution



Pashupati Hegde, Markus Heinonen, Harri Lähdesmäki, Samuel Kaski

(a) Sparse GP (b) Deep GP (c) Differentially deep GP

Figure 2: The sparse Gaussian processes uncouples the observations through global inducing variables ug (a).
Deep Gaussian process is a hierarchical model with a nested composition of Gaussian processes introducing layer
dependency (b). In our formulation deepness is introduced as a temporal dependency across states xi(t) (indicated
by dashed line) with a GP prior over their differential function value fi (c).

to the Fokker-Planck-Kolmogorov partial differential
equation, which is intractable for general non-linear
drift and diffusion.

In practise the Euler-Maruyama (EM) numerical solver
can be used to simulate trajectory samples from the
state distribution (Yildiz et al., 2018) (See Figure 1d).
We assume a fixed time discretisation t1, . . . , tN with
∆t = tN/N being the time window (Higham, 2001).
The EM method at tk is

xk+1 = xk + µ(xk)∆t+
√

Σ(xk)∆Wk, (10)

where ∆Wk = Wk+1−Wk ∼ N (0,∆tID) with standard
deviation

√
∆t. The EM increments ∆xk = xk+1 − xk

correspond to samples from a Gaussian

∆xk ∼ N (µ(xk)∆t,Σ(xk)∆t). (11)

Then, the full N length path is determined from the N
realisations of the Wiener process, each of which is a D-
dimensional. More efficient high-order approximations
have also been developed (Kloeden and Platen, 1992;
Lamba et al., 2006).

SDE systems are often constructed by manually defin-
ing drift and diffusion functions to model specific sys-
tems in finance, biology, physics or in other domains
(Friedrich et al., 2011). Recently, several works have
proposed learning arbitrary drift and diffusion func-
tions from data (Papaspiliopoulos et al., 2012; Garćıa
et al., 2017; Yildiz et al., 2018).

3 DEEP DIFFERENTIAL
GAUSSIAN PROCESS

In this paper we propose a paradigm of continuous-
time deep learning, where inputs xi are not treated as
constant, but are instead driven by an SDE system.
We propose a continuous-time deep Gaussian process
model through infinite, infinitesimal differential com-
positions, denoted as DiffGP. In DiffGP, a Gaussian

process warps or flows an input x through an SDE sys-
tem until a predefined time T , resulting in x(T ), which
is subsequently classified or regressed with a separate
function. We apply the process to both train and test
inputs. We impose GP priors on both the stochastic
differential fields and the predictor function (See Figure
2). A key parameter of the differential GP model is the
amount of simulation time T , which defines the length
of flow and the capacity of the system, analogously to
the number of layers in standard deep GPs or deep
neural networks.

We assume a dataset of N inputs X = (x1, . . . ,xN )T ∈
RN×D of D-dimensional vectors xi ∈ RD, and associ-
ated scalar outputs y = (y1, . . . , yN )T ∈ RN that can
be continuous for a regression problem or categorical
for classification, respectively. We redefine the inputs
as temporal functions x : T → RD over time such that
state paths xt over time t ∈ T = R+ emerge, where
the observed inputs xi,t , xi,0 correspond to initial
states xi,0 at time 0. We classify or regress the final
data points XT = (x1,T , . . . ,xN,T )T after T time of an
SDE flow with a predictor Gaussian process

g(xT ) ∼ GP(0,K(xT ,x
′
T )) (12)

to classify or regress the outputs y. The framework
reduces to a conventional Gaussian process with zero
flow time T = 0 (See Figure 2).

The prediction depends on the final dataset XT struc-
ture, determined by the SDE flow dxt from the original
data X. We consider SDE flows of type

dxt = µ(xt)dt+
√

Σ(xt)dWt (13)

where

µ(x) = KxZf
K−1ZfZf

vec(Uf ) (14)

Σ(x) = Kxx −KxZf
K−1ZfZf

KZfx (15)
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are the vector-valued Gaussian process conditioned on
inducing variable Uf = (uf1 , . . . ,u

f
M )T defining func-

tion values f(z) at inducing states Zf = (zf1 , . . . , z
f
M ).

These choices of drift and diffusion correspond to an
underlying time-invariant GP

f ∼ GP(0,K(x,x′)) (16)

f |Uf ,Zf ,x ∼ N (µ(x),Σ(x)) (17)

where K(x,x′) ∈ RD×D is a matrix-valued ker-
nel of the vector field f(x) ∈ RD, and KZfZf

=

(K(zfi , z
f
j ))Mi,j=1 ∈ RMD×MD block matrix of matrix-

valued kernels (similarly for KxZf
).

The vector field f(x) is now a GP with deterministic
conditional mean µ and covariance Σ at every location
x given the inducing variables. We encode the underly-
ing GP field mean and covariance uncertainty into the
drift and diffusion of the SDE flow (13). The Wiener
process Wt of an SDE samples a new fluctuation from
the covariance Σ around the mean µ at every instant
t. An affine transformation of the GP field (17),

µ(x)∆t+ (f(x)− µ(x))
√

∆t ∼ N (µ(x)∆t,Σ(x)∆t),
(18)

shows that sampling from a GP vector field with the
temporal discretisation of (18) matches the SDE Euler-
Maruyama increment ∆xk distribution (11). The state
distribution pT (x;µ,Σ,x0) can then be represented
as p(xT |Uf ) =

∫
p(xT |f)p(f |Uf )df , where p(xT |f) is a

Dirac distribution of the end point of a single Euler-
Maruyama simulated path, and where the vector field
p(f |Uf ) is marginalized along the Euler-Maruyama
path.

Our model corresponds closely to the doubly-stochastic
deep GP, where the Wiener process was replaced by ran-
dom draws from the GP posterior εl ·Σl(f l−1) per layer
l (Salimbeni and Deisenroth, 2017). In our approach
the continuous time t corresponds to continuously in-
dexed states, effectively allowing infinite layers that are
infinitesimal.

3.1 Spatio-temporal fields

Earlier we assumed a global, time-independent vec-
tor field f(xt), which in the standard models would
correspond to a single ‘layer’ applied recurrently over
time t. To extend the model capacity, we consider
spatio-temporal vector fields ft(x) := f(x, t) that them-
selves evolve as a function of time, effectively apply-
ing a smoothly changing vector field ‘layer’ at every
instant t. We select a separable spatio-temporal ker-
nel K((x, t), (x′, t′)) = K(x,x′)k(t, t′) that leads to
an efficient Kronecker-factorised (Stegle et al., 2011)

spatio-temporal SDE flow

ft|Zsf ,Ztf ,Uf ,x ∼ N (µt(x),Σt(x)) (19)

µt(x) = CxZf
C−1ZfZf

vec(Uf ) (20)

Σt(x) = Cxx −CxZf
C−1ZfZf

CZfx, (21)

where Cxx = Kxxktt, CxZ = KxZs
f
⊗ KtZt

f
and

CZfZf
= KZs

fZ
s
f
⊗KZt

fZ
t
f
, and where the spatial induc-

ing states are denoted by Zsf and the temporal inducing
times by Ztf . In practice we place usually only a few
(e.g. 3) temporal inducing times equidistantly on the
range [0, T ]. This allows the vector field itself to curve
smoothly throughout the SDE. We only have a sin-
gle inducing matrix Uf for both spatial and temporal
dimensions.

3.2 Stochastic variational inference

The differential Gaussian process is a combination of
a conventional prediction GP g(·) with an SDE flow
GP f(·) fully parameterised by Z,U as well as kernel
parameters θ. We turn to variational inference to
estimate posterior approximations q(Uf ) and q(ug) for
both models.

We start by augmenting the predictor function g with
M inducing locations Zg = (zg1, . . . , zgM ) with asso-
ciated inducing function values g(z) = u in a vector
ug = (ug1, . . . , ugM )T ∈ RM . We aim to learn the
distribution of the inducing values u, while learning
point estimates of the inducing locations Z, which we
hence omit from the notation below. The prediction
conditional distribution is (Titsias, 2009)

p(g|ug,XT ) = N (g|QTug,KXTXT
−QTKZgZg

QT
T )

(22)

p(ug) = N (ug|0,KZgZg
), (23)

where we denote QT = KXTZg
K−1ZgZg

.

The joint density of a single path and prediction of the
augmented system is

p(y,g,ug,XT , f ,Uf |X0) (24)

= p(y|g)︸ ︷︷ ︸
likelihood

p(g|ug,XT )p(ug)︸ ︷︷ ︸
GP prior of g(x)

p(XT |f ; X0)︸ ︷︷ ︸
SDE

p(f |Uf )p(Uf )︸ ︷︷ ︸
GP prior of f(x)

.

The joint distribution contains the likelihood term,
the two GP priors, and the SDE term p(XT |f ; X0)
representing the Euler-Maruyama paths of the dataset.
Henceforth, we also omit explicit conditioning of the
state distributions on the initial states or the observed
dataset p(XT |f) := p(XT |f ; X0). The inducing vector
field prior follows

p(Uf ) =

D∏
d=1

N (ufd|0,KZf dZf d
), (25)
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Figure 3: (a)Illustration of samples from a 2D deep Gaussian processes prior. DGP prior exhibits a pathology
wherein representations in deeper layers concentrate on low-rank manifolds.(b) Samples from a differentially deep
Gaussian processes prior result in rank-preserving representations.(c) The continuous-time nature of the warping
trajectories results from smooth drift and structured diffusion (d).

where ufd = (uf1 (d)T , . . . ,ufM (d)) and Zf d =

(zf1 (d), . . . , zfM (d))T .

We consider optimizing the marginal log likelihood

log p(y) = logEp(g|XT )p(XT )p(y|g), (26)

where the p(g|XT ) is a Gaussian process predictive dis-
tribution, and the state distribution p(XT ) marginal-
izes the trajectories,

p(XT ) =

∫∫
p(XT |f)p(f |Uf )p(Uf )dfdUf , (27)

with no tractable solution.

We follow stochastic variational inference (SVI) by
Hensman et al. (2015), where standard variational infer-
ence (Blei et al., 2016) is applied to find a lower bound
of the marginal log likelihood, or in other words model
evidence. In particular, a variational lower bound for
the evidence (26) without the state distributions has al-
ready been considered by Hensman et al. (2015), which

tackles both problems of cubic complexity O(N3) and
marginalization of non-Gaussian likelihoods. We pro-
pose to include the state distributions by simulating
Monte Carlo state trajectories.

We propose a complete variational posterior approxi-
mation over both f and g,

q(g,ug,XT , f ,Uf ) = p(g|ug,XT )q(ug) (28)

· p(XT |f)p(f |Uf )q(Uf )

q(ug) = N (ug|mg,Sg) (29)

q(Uf ) =

D∏
d=1

N (ufd|mfd,Sfd), (30)

where Mf = (mf1, . . . ,mfD) and Sf = (Sf1, . . . ,SfD)
collect the dimension-wise inducing parameters. We
continue by marginalizing out inducing variables ug
and Uf from the above joint distribution, arriving at
the joint variational posterior

q(g,XT , f) = q(g|XT )p(XT |f)q(f), (31)
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where

q(g|XT ) =

∫
p(g|ug,XT )q(ug)dug (32)

= N (g|QTmg,KXTXT
+ QT (Sg −KZgZg )QT

T )
(33)

q(f) =

∫
p(f |Uf )q(Uf )dUf = N (f |µq,Σq) (34)

µq = Qfvec(Mf ) (35)

Σq = KXX + Qf (Sf −KZfZf
)QT

f , (36)

where Qf = KXZf
K−1ZfZf

. We plug the derived varia-
tional posterior drift µq and diffusion Σq estimates to
the final variational SDE flow

dxt = µq(xt)dt+
√

Σq(xt)dWt, (37)

which conveniently encodes the variational approxima-
tion of the vector field f .

Now the lower bound for our differential deep GP model
can be written as (detailed derivation is provided in
the appendix)

log p(y) ≥
N∑
i=1

{
1

S

S∑
s=1

E
q(g|x(s)

i,T )
log p(yi|gi)︸ ︷︷ ︸

variational expected likelihood

− kl[q(ug)||p(ug)]︸ ︷︷ ︸
prior divergence of g(x)

− kl[q(Uf )||p(Uf )]︸ ︷︷ ︸
prior divergence of f(x)

}
, (38)

which factorises over both data and SDE paths with

unbiased samples x
(s)
i,T ∼ pT (x;µq,Σq,xi) by numeri-

cally solving the variational SDE (37) using the Euler-
Maruyama method.

For likelihoods such as Gaussian for regression prob-
lems, we can further marginalize g from the lowerbound
as shown by Hensman et al. (2013). For other in-
tractable likelihoods, numerical integration techniques
such as Gauss-Hermite quadrature method can be used
(Hensman et al., 2015).

3.3 Rank pathologies in deep models

A deep Gaussian process fL(· · · f2(f1(x))) is a compo-
sition of L Gaussian process layers f l(x) (Damianou
and Lawrence, 2013). These models typically lead to
degenerate covariances, where each layer in the com-
position reduces the rank or degrees of freedom of
the system (Duvenaud et al., 2014). In practice the
rank reduces via successive layers mapping inputs to
identical values (See Figure 3a), effectively merging
inputs and resulting in a reduced-rank covariance ma-
trix with repeated rows and columns. To counter this
pathology Salimbeni and Deisenroth (2017) proposed

pseudo-monotonic deep GPs by using identity mean
function in all intermediate GP layers.

Unlike the earlier approaches, our model does not seem
to suffer from this degeneracy. The DiffGP model warps
the input space without seeking low-volume representa-
tions. In particular the SDE diffusion scatters the tra-
jectories preventing both narrow manifolds and input
merging. In practice, this results in a rank-preserving
model (See Figure 3b-d).

4 EXPERIMENTS

We optimize the inducing vectors, inducing locations,
kernel lengthscales and signal variance of both the SDE
function f equation (13) and the predictor function
g(xT ). We also optimize noise variance in problems
with Gaussian likelihoods. The number of inducing
points M is manually chosen, where more inducing
points tightens the variational approximation at the
cost of additional computation. We train the model
end-to-end and all parameters are jointly optimised
against the evidence lower bound (38). The gradients
of the lower bound back-propagate through the pre-
diction function g(xT ) and through the SDE system
from x(T ) back to initial values x(0). Gradients of an
SDE system approximated by an EM method can be
obtained with the autodiff differentiation of TensorFlow
(Abadi et al., 2016). The gradients of continuous-time
systems follow from forward or reverse mode sensitivity
equations (Kokotovic and Heller, 1967; Raue et al.,
2013; Fröhlich et al., 2017; Yildiz et al., 2018). We per-
form stochastic optimization with mini-batches and the
Adam optimizer (Kingma and Ba, 2014) with a step
size of 0.01. For numerical solutions of SDE, we use
Euler-Maruyama solver with 20 time steps. Also, ini-
tializing parameters of g(·) with values learned through
SGP results in early convergence; we initialize DiffGP
training with SGP results and a very weak warping
field Uf ≈ 0 and kernel variance σ2

f ≈ 0.01. We use
diagonal approximation of the Σq. We also use GPflow
(Matthews et al., 2017), a Gaussian processes frame-
work built on TensorFlow in our implementation.

4.1 Step function estimation

We begin by highlighting how the DiffGP estimates a
signal with multiple highly non-stationary step func-
tions. Figure 4 shows the univariate signal observations
(top), the learned SDE flow (middle), and the resulting
regression function on the end points X(t) (bottom).
The DiffGP separates the regions around the step func-
tion such that the final regression function g with a
standard stationary Gaussian kernel can fit the trans-
formed data X(t). The model then has learned the
non-stationarities of the system with uncertainty in the
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boston energy concrete wine red kin8mn power naval protein

N 506 768 1,030 1,599 8,192 9,568 11,934 45,730
D 13 8 8 22 8 4 26 9

Linear 4.24(0.16) 2.88(0.05) 10.54(0.13) 0.65(0.01) 0.20(0.00) 4.51(0.03) 0.01(0.00) 5.21(0.02)

BNN L = 2 3.01(0.18) 1.80(0.05) 5.67(0.09) 0.64(0.01) 0.10(0.00) 4.12(0.03) 0.01(0.00) 4.73(0.01)

Sparse GP
M = 100 2.87(0.15) 0.78(0.02) 5.97(0.11) 0.63(0.01) 0.09(0.00) 3.91(0.03) 0.00(0.00) 4.43(0.03)
M = 500 2.73(0.12) 0.47(0.02) 5.53(0.12) 0.62(0.01) 0.08(0.00) 3.79(0.03) 0.00(0.00) 4.10(0.03)

Deep GP
M = 100

L = 2 2.90(0.17) 0.47(0.01) 5.61(0.10) 0.63(0.01) 0.06(0.00) 3.79(0.03) 0.00(0.00) 4.00(0.03)
L = 3 2.93(0.16) 0.48(0.01) 5.64(0.10) 0.63(0.01) 0.06(0.00) 3.73(0.04) 0.00(0.00) 3.81(0.04)
L = 4 2.90(0.15) 0.48(0.01) 5.68(0.10) 0.63(0.01) 0.06(0.00) 3.71(0.04) 0.00(0.00) 3.74(0.04)
L = 5 2.92(0.17) 0.47(0.01) 5.65(0.10) 0.63(0.01) 0.06(0.00) 3.68(0.03) 0.00(0.00) 3.72(0.04)

DiffGP
M = 100

T = 1.0 2.80(0.13) 0.49(0.02) 5.32(0.10) 0.63(0.01) 0.06(0.00) 3.76(0.03) 0.00(0.00) 4.04(0.04)
T = 2.0 2.68(0.10) 0.48(0.02) 4.96(0.09) 0.63(0.01) 0.06(0.00) 3.72(0.03) 0.00(0.00) 4.00(0.04)
T = 3.0 2.69(0.14) 0.47(0.02) 4.76(0.12) 0.63(0.01) 0.06(0.00) 3.68(0.03) 0.00(0.00) 3.92(0.04)
T = 4.0 2.67(0.13) 0.49(0.02) 4.65(0.12) 0.63(0.01) 0.06(0.00) 3.66(0.03) 0.00(0.00) 3.89(0.04)
T = 5.0 2.58(0.12) 0.50(0.02) 4.56(0.12) 0.63(0.01) 0.06(0.00) 3.65(0.03) 0.00(0.00) 3.87(0.04)

Table 1: Test RMSE values of 8 benchmark datasets (reproduced from Salimbeni & Deisenroth 2017). Uses
random 90% / 10% training and test splits, repeated 20 times.

signals being modelled by the inherent uncertainties
arising from the diffusion.

4.2 UCI regression benchmarks

We compare our model on 8 regression benchmarks
with the previously reported state-of-the-art results
in (Salimbeni and Deisenroth, 2017). We test all the
datasets on different flow time values from 1 to 5. We
use the RBF kernel with ARD and 100 inducing points
for both the differential Gaussian process and the re-
gression Gaussian process. Each experiment is repeated
20 times with random 90% / 10% training and test
splits. While testing, we compute predictive mean and
predictive variance for each of the sample generated
from (37), and compute the average of summary statis-
tics (RMSE and log likelihood) over these samples. The
mean and standard error of RMSE values are reported
in Table 1.

On Boston, Concrete and Power datasets, where deep
models show improvement over shallow models, our
model outperforms previous best results of DGP. There
is a small improvement by having a non-linear model on
the Kin8mn dataset and our results match that of DGP.
Energy and Wine are small datasets where single Gaus-
sian processes perform the best. As expected, both
DiffGP and DGP recover the shallow model indicating
no over-fitting. Regression task on the Protein dataset
is aimed at predicting RMSD (Root Mean Squared De-
viation) between modeled and native protein structures
using 9 different properties of the modeled structures
(Rana et al., 2015). We suspect DGP particularly per-
forms better than DiffGP in the task because of its
capability to model long-range correlations.

4.3 UCI classification benchmarks

We perform binary classification experiments on large-
scale HIGGS and SUSY datasets with a data size in the
order of millions. We use the AUC as the performance
measure and compare the results with the previously
reported results using DGP (Salimbeni and Deisenroth,
2017) and DNN (Baldi et al., 2014). The classification
task involves identifying processes that produce Higgs
boson and super-symmetric particles using data from
Monte Carlo simulations. Previously, deep learning
methods based on neural networks have shown promis-
ing results on these tasks (Baldi et al., 2014). On the
HIGGS dataset, the proposed DiffGP model shows
state-of-the-art (0.878) results, equal or even better
than the earlier reported results using DGPs (0.877)
and DNNs (0.876). On the SUSY dataset, we reach the
performance of 4-hidden layer DGP (0.841) with non-
temporal DiffGP (0.842). Considering the consistent
improvement in the performance of DGP models with
additional layers, we tried increasing the capacity of
DiffGP model using the temporal extension proposed
in Section 3.1. In particular, we used 100 spatial in-
ducing vectors along with 3 temporal inducing vectors.
The temporal DiffGP model gives an AUC of 0.878
on HIGGS and 0.846 on SUSY datasets matching the
best reported results of DGP (see appendix for detailed
comparison).

4.4 Importance of flow time

In this we experiment we study the SDE flow time
parameter on Concrete dataset. Increasing integration
time provides more warping flexibility to the SDE com-
ponent. That is, with increase in the flow time, the
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Figure 4: Step function estimation: Observed input space (a) is transformed through stochastic continuous-time
mappings (b) into a warped space (c). The stationary Gaussian process in the warped space gives a smooth
predictive distribution corresponding to a highly non-stationary predictions in the original observed space.

Figure 5: Concrete dataset: increasing the flow time
variable T improves the train and test errors (a,c) and
likelihoods (b,d). The horizontal line indicates GP and
DGP2 performance. The model convergence indicates
the improved capacity upon increased flow time (e).

SDE system can move observations further away from
the initial state, however at the cost of exposing the
state to more diffusion which acts as regularization.
Hence increasing time can lead to an increase in the
model capacity without over-fitting. We empirically
support this claim in the current experiment by fit-
ting a regression model multiple times and maintaining
same experimental setup, expect for the flow time. Fig-
ure 5 shows the variation in RMSE, log likelihood and
the lower bound on marginal likelihood across different
flow times. It can be seen that the improvement in the
performance almost saturates near time = 10.

5 DISCUSSION

We have proposed a novel continuous-time deep learn-
ing approach with Gaussian processes. The proposed
deferentially deep composition is a continuous-time ap-
proach wherein a Gaussian processes input locations
are warped through stochastic and smooth differen-
tial equations. This results in a principled Bayesian
approach with a smooth non-linear warping; the uncer-
tainty through diffusion acts as a key regularizer.

We empirically show excellent results in various regres-
sion and classification tasks. Also, DGP with the model
specification as proposed by Salimbeni and Deisenroth
(2017), uses a total of O(LDM) number of inducing
parameters for the regression results, where L is the
number of layers, D is the input dimension, M is the
number of inducing points for each latent GP. In con-
trast, with a smaller number of inducing parameters
O(DM), we arrive at similar or even better results.

The continuous-time deep model admits ‘decision-
making paths’, where we can explicitly follow the trans-
formation applied to a data point xi. Analyzing these
paths could lead to a better interpretable model. How-
ever, modeling in the input space without intermediate
low-dimensional latent representations presents scala-
bility issues. We leave scaling the approach to high
dimensions as future work, while we also intend to
explore new optimisation modes, such as SG-MCMC
(Ma et al., 2015) or Stein inference (Liu and Wang,
2016) in the future.
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