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Appendices

A Visualizing the Set of Confusion
Matrices

To clarify the geometry of the feasible set, we visualize
one instance of the set of confusion matrices C using

the dual representation of the supporting hyperplanes.

This contains the following steps.

1. Population Model: We assume a joint probability

for ¥ = [—1,1] and Y = {0, 1} given by
=U[-1,1 d = — 12
fx=ULY and @)= ()
where U[—1,1] is the uniform distribution on [—1,1]

and a > 0 is a parameter controlling the degree of noise
in the labels. If a is large, then with high probability,
the true label is 1 on [-1, 0] and 0 on [0, 1]. On the
contrary, if a is small, then there are no separable
regions and the classes are mixed in [—1,1].

Furthermore, the integral fil H%dx =1foracR

implying P(Y =1)=( =1 Va€eR.

2. Generate Hyperplanes: Take 6 € [0,27] and set
m = (my1,mgo) = (cosf,sinf). Let us denote z’ as
the point where the probability of positive class n(z) is
equal to the optimal threshold of Proposition 1. Solving
for z in the equation 1/(1 + €**) = mqo/(mgo + m11)
gives us

! 1 m
o' =Ty {z I (52) ) (13)
where IT;_; j{z} is the projection of z on the interval
L—l, 1]. If mqy1 4+ mgo > 0, then the Bayes classifier
h predicts class 1 on the region [~1,2'] and 0 on the

remaining region. If my;+mgg < 0, h does the opposite.

Using the fact that Y'|X and h|X are independent, we
have that

(a) if mi1 + Moo Z 0, then

1 l‘
m 5 ‘]; 1+eaa‘

(b) if m11 + mog < 0, then

Now, we can obtain the hyperplane as defined in (8)
for each #. We sample around thousand #'s € [0, 27]
randomly, obtain the hyperplanes following the above
process, and plot them.

The sets of feasible confusion matrices C’s for a =
0.5,1,2,5,10, and 50 are shown in Figure 5. The middle
white region is C: the intersection of the half-spaces
associated with its supporting hyperplanes. The curve
on the right corresponds to the confusion matrices
on the upper boundary 9C,. Similarly, the curve on
the left corresponds to the confusion matrices on the
lower boundary OC_. Points (¢,0) = (3,0) and (0,1 —
¢) = (0,3) are the two vertices. The geometry is

180°rotationally symmetric around the point (% 1 4)

Notice that as we increase the separability of the two
classes via a, all the points in [0, (] x [0,1 — ¢] becomes
feasible. In other words, if the data is completely
separable, then the corners on the top-right and the
bottom left are achievable. If the data is ‘inseparable’,
then the feasible set contains only the diagonal line

joining (0,1) and (3, 0), which passes through (1, 1).

B Proofs

Lemma 4. The feasible set of confusion matrices C
has the following properties:

(i). For all (TP,TN) € C,0<TP <, and 0 <
TN <1-¢.

(ii). (¢,0) €C and (0,1 —¢) eC.
(i11). For oll (TP,TN)€C, ((-TP,1-(—-TN)eC.
(iv). C is conve.

(v). C has a supporting hyperplane associated to every
normal vector.

(vi). Any supporting hyperplane with positive slope is
tangent to C at (0,1 — () or (¢,0).

Proof. We prove the statements as follows:

=1 <

V=1
Y =0]

¢, and similarly,

P
P 1-¢.

(ii). If h is the trivial classifier which always predicts
1, then TP(h) =Prlh=Y =1]=Pr[Y =1] =
¢, and TN(h) = 0. This means that (¢,0) €
C. Similarly, if h is the classifier which always
predicts 0, then TP(h) = Pr[h =Y =1] =0,
and TN(h) = Prlh = | =Pr[Y =0] =

— (. Therefore, (0,1 — C) ecC.

(iii). Let h be a classifier such that TP(h) = TP,
TN(h) =TN. Now, consider the classifier 1 —h
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Fig. 5: Supporting hyperplanes and associated set of feasible confusion matrices for exponential model (12)
with a = 0.5,1,2,5,10 and 50. The middle white region is C: the intersection of half-spaces associated with its

supporting hyperplanes.

(which predicts exactly the opposite of h). We
have that

TP —h)=P[(1—h)=Y =1]
=Py =1]-Ph=Y = 1]
= ¢ —TP(h).

A similar argument gives

TN(1—h)=1—-¢—TN(h).

(iv). Consider any two confusion matrices
(TP, TN1), (TP2,TNy) € C, attained by
the classifiers hq,ho € H, respectively. Let
0 < X < 1. Define a classifier A’ which predicts
the output from the classifier hy with probability
A and predicts the output of the classifier ho
with probability 1 — A. Then,

TP(h)=PKh =Y =1]
=Plh =Y = 1|h = hy|P[h = hy]
+ Plhe =Y = 1|h = h|P[h = hs)
= ANTP(h1) + (1 = N)TP(hg).
A similar argument gives the convex combina-

tion for TN. Thus, A(TP(h1),TN(h1)) + (1 —
A)(TP(h2), TN (hs2)) € C and hence, C is convex.

(v). This follows from convexity (iv) and bounded-
ness (i).

(vi). For any bounded, convex region in [0, ¢]x[0, 1—(]
which contains the points (0,¢) and (0,1 — ¢),
it is true that any positively sloped supporting
hyperplane will be tangent to (0,¢) or (0,1 — ().

O

Lemma 5. The boundary of C is exactly the confusion
matrices of estimators of the form Al [n(x) > t] + (1 —
A1[n(z) > t] and ALn(x) < t]+ (1= XN)1Ln(x) <t for
some A\t € [0,1].

Proof. To prove that the boundary is attained by es-
timators of these forms, consider solving the prob-
lem under the constraint P[h = 1] = ¢. We have
Ph=1=TP+ FP,and (=P[Y =1]=TP+ FN,
so we get

TP—TN = ¢+(—-TP-TN—FP—FN = c+(—1,

which is a constant. Note that no confusion matrix
has two values of TP —T'N. This effectively partitions
C, since all confusion matrices are attained by varying
¢ from 0 to 1. Furthermore, since A :=TN =TP —
¢— ¢+ 1is an affine space (a line in tp-tn coordinate
system), C N A has at least one endpoint, because A
would pass through the box [, 0] x [0,1 — (] and has at
most two endpoints due to convexity and boundedness
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of C. Since A is a line with positive slope, CN A is a
single point only when A is tangent to C at (0,1 — ()
or (¢,0), from Lemma 4, part (vi).

Since the affine space A has positive slope, we claim
that the two endpoints are attained by maximizing
or minimizing TP(h) subject to Pr[h = 1] = ¢. Tt
remains to show that this happens for estimators of
the form h, := A[n(z) > ¢] + (1 — A)1L[n(z) > ] and
h} = M[n(x) <t} + (1 — A\)1[n(z) < t], respectively.

Let h be any estimator, and recall
TP(h) ::/ n(x)Plh = 11X = z]dfx.
x

It should be clear that under a constraint P[h = 1] = ¢,
the optimal choice of h puts all the weight onto the
larger values of 1. One can begin by classifying those
X into the positive class where n(X) is maximum,
until one exhausts the budget of c. Let ¢t be such
that P[hy, = 1] < ¢ < Plhy, = 1], and let X € [0,1]
be chosen such that P[h}, = 1] = ¢, then A}, must
maximize TP(h) subject to P[h =1] = ¢.

A similar argument shows that all TP-minimizing
boundary points are attained by the h;_’s. O

Remark 1. Under Assumption 1, 1n(xz) > t] =
1[n(z) > t] and 1n(z) < t] = Ln(z) < t]. Thus,
the boundary of C is the confusion matrices of estima-
tors of the form 1[n(x) > t] and 1n(z) < t] for some
t e 0,1].

Proof of Proposition 1. “Let ¢ € wrpn, then

h(z) = 11[77(%2002 ], mar 4 moo > 0
is a Bayes optimal classifier w.r.t ¢. Further, the
inverse Bayes classifier is given by h =1—h.”

Note, we are maximizing a linear function on a convex
set. There are 6 cases to consider:

1. If the signs of m1; and mgg differ, the maximum is
attained either at (0, 1—() or ({,0), as per Lemma 4,
part (vi). Which of the two is optimum depends on

whether [my1| > |mgol, i.e. on the sign of my1+mgp.

It should be easy to check that in all 4 possible
cases, the statement holds, noting that in all 4
cases, 0 < mgg/(m11 + mgo) < 1.

2. If my1, mgo > 0, then the maximum is attained on
0C,., and the proof below gives the desired result.

We know, from Lemma 5, that A must be of the form
1[n(z) > t] for some ¢. It suffices to find ¢. Thus, we

wish to maximize m11TP(h:) + mooT N (ht). Now,
let Z :=n(X) be the random variable obtained by
evaluating n at random X. Under Assumption 1,
dfx = dfz and we have that

1
TP = [ g = [ sds
z:n(x)>t t

Similarly, TN(h;) = fg(l — 2)dfz. Therefore,

2 (muTP(hy) +mooTN (hy))
= —mutfz(t) + moo(l —t)fz ().

So, the critical point is attained at t = mgo/(m11 +
mop), as desired. A similar argument gives the
converse result for mi; + mgg < 0.

3. if my1, mgo < 0, then the maximum is attained on
0C_, and an argument identical to the proof above
gives the desired result.

Proof of Proposition 2. “The set of confusion matrices
C is conver, closed, contained in the rectangle [0, (] X
[0,1 —¢] (bounded), and 180° rotationally symmetric
around the center-point (%, %) Under Assumption 1,
(0,1 —¢) and (¢,0) are the only vertices of C, and C is
strictly convex. Thus, any supporting hyperplane of C

s tangent at only one point.”

That C is convex and bounded is already proven in
Lemma 4. To see that C is closed, note that, from
Lemma 5, every boundary point is attained. From
Lemma 4, part (iii), it follows t}g‘latl CCiS 180° rotationally

symmetric around the point (35, ~5>).

Further, recall every boundary point of C can be at-
tained by a thresholding estimator. By the discussion
in Section 3, every boundary point is the optimal classi-
fier for some linear performance metric, and the vector
defining this linear metric is exactly the normal vector
of the supporting hyperplane at the boundary point.

A vertex exists if (and only if) some point is supported
by more than one tangent hyperplane in two dimen-
sional space. This means it is optimal for more than
one linear metric. Clearly, all the hyperplanes corre-
sponding to the slope of the metrics where mi; and
moo are of opposite sign (i.e. hyperplanes with positive
slope) support either ({,0) or (0,1 — (). So, there are
at least two supporting hyperplanes at these points,
which make them the vertices. Now, it remains to show
that there are no other vertices for the set C.

Now consider the case when the slopes of the hy-
perplanes are negative, i.e. mj; and mgg have the



Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, Oluwasanmi Koyejo

same sign for the corresponding linear metrics. We
know from Proposition 1 that optimal classifiers for
linear metrics are threshold classifiers. Therefore there
exist more than one threshold classifier of the form
hy = 1[n(x) > t] with the same confusion matrix.
Let’s call them h;, and h;, for the two thresholds
t1,t2 € [0,1]. This means that frc:n(m)ztl n(x)dfx =
fx:n(I)th n(z)dfx. Hence, there are multiple values of
1 which are never attained! This contradicts that g
is strictly decreasing. Therefore, there are no vertices
other than (¢,0) or (0,1 —¢) in C.

Now, we show that no supporting hyperplane is tangent
at multiple points (i.e., there no flat regions on the
boundary). If suppose there is a hyperplane which
supports two points on the boundary. Then there exist
two threshold classifiers with arbitrarily close threshold
values, but confusion matrices that are well-separated.
Therefore, there must exist some value of 77 which exists
with non-zero probability, contradicting the continuity
of g. By the discussion above, we conclude that under
Assumption 1, every supporting hyperplane to the
convext set C is tangent to only one point. This makes
the set C strictly convex. O

Proof of Lemma 1. “Let p* : [0,1] — 90Cy, p~
[0,1] — OC_ be continuous, bijective, parametrizations
of the upper and lower boundary, respectively. Let
¢ :C — R be a quasiconcave function, and 1 : C — R
be a quasiconvex function, which are monotone in-
creasing in both TP and TN. Then the composition
¢opt:]0,1] = R is quasiconcave (and therefore uni-
modal) on the interval [0,1], and Yo p~ : [0,1] = R is
quasiconvez (and therefore unimodal) on the interval
[0,1].7

We will prove the result for ¢ o p™ on OCT, and the
argument for ¢ o p~ on ACT is essentially the same.
For simplicity, we drop the + symbols in the notation.
Recall that a function is quasiconcave if and only if its
superlevel sets are convex.

It is given that ¢ is quasiconcave. Let S be some super-
level set of ¢. We first want to show that for any r <
s <t if p(r) € S and p(t) € S, then p(s) € S. Since
p is a continuous bijection, due to the geometry of C
(Lemma 4 and Proposition 2), we must have — without
loss of generality — T'P(p(r)) < TP(p(s)) < TP(p(t)),
and TN(p(r)) > TN(p(s)) > TN(p(t)). (otherwise
swap r and ¢). Since the set C is strictly convex and the
image of p is OC, then p(s) must dominate (component-
wise) a point in the convex combination of p(r) and p(t).
Say that point is z. Since ¢ is monotone increasing,
then x € S = y € S for all y > x componentwise.
Thereofore, ¢(p(s)) > ¢(z). Since, S is convex, z € S

and, due to the argument above, p(s) € S.

This implies that p~*(0C N S) is an interval, and is
therefore convex. Thus, the superlevel sets of ¢ o p are
convex, so it is quasiconcave, as desired. This implies
unimodaltiy as a function over the real line which has
more than one local maximum can not be quasiconcave
(consider the super-level set for some value slightly less
than the lowest of the two peaks). O

Proof of Proposition 3. “Sufficient conditions for ¢ €
orLrpym to be bounded in [0,1] and simultaneously
monotonically increasing in TP and TN are: p11,poo >
0, p11 > qi1, Poo = Goos 90 = (P11 — q11)C + (Poo —
q00)(1 = ¢) + po, po = 0, and p11 + poo = 1 (Condi-
tions in Assumpotion 2). WLOG, we can take both the
numerator and denominator to be positive.”

For this proof, we denote TP and TN as C7; and Cyo,
respectively. Let us take a linear-fractional metric

_ p11C11 + pooCoo + Po
q11C11 + q00Coo + qo

where p11, q11, Poo, Qoo are not zero simultaneously. We
want ¢(C) to be monotonic in TP, TN and bounded.
If for any C € C, ¢(C) < 0, we can add a large positive
constant such that ¢(C) > 0, and still the metric would
remain linear fractional. So, it is sufficient to assume
¢(C) > 0. Furthermore, boundedness of ¢ implies
»(C) € [0, D], for some R 5 D > 0. Therefore, we may
divide ¢(C) by D so that ¢(C) € [0,1] for all C € C.
Still, the metric is linear fractional and ¢(C) € [0, 1].

¢(C)

(14)

Taking derivative of ¢(C) w.r.t. Cq;.
99(C) b11

9C11  q11C11 + q00Coo + qo
~ qu1(p11C11 + PooCoo + po)

(q11C11 + 900Co0 + q0)?

= p11(¢11C11 + 900Coo + 90) = q11(P11C11 + PooCoo + Po)

If denominator is positive then the numerator is positive
as well.

e Case 1: The denominator q11C11 4+ qooCoo+qo > 0.
— Case (a) g11 > 0.

= p11 > q110(C)
= p11 > qi1 sup ¢(C)
cec

= p11 > Q1T (Necessary Condition)

We are considering sufficient condition, which
means 7 can vary from [0,1]. Hence, a suf-
ficient condition for monotonicity in Ci; is
p11 > q11. Furthermore, p1; > 0 as well.
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— Case (b) ¢11 < 0.

= p11 = quT

Since ¢11 < 0 and 7 € [0, 1], sufficient condi-
tion is p1; > 0. So, in this case as well we
have that

P11 = qi1, p11 = 0.
— Case(c) ¢11 = 0.
=pn >0

We again have p11 > ¢11 and p;; > 0 as
sufficient conditions.

A similar case holds for Cyg, implying pgp >
qoo and poo > 0.

e Case 2: The denominator ¢11C11 4+ qooCoo + qo is
negative.

(PnCn + pooCoo +po)
P11 < qn1
q11C11 + g00Coo + qo
= p11 < quT

— Case(a) If ¢11 > 0. So, we have p11 < ¢11 and
p11 < 0 as sufficient condition.

— Case(b) If g11 < 0, = p11 < ¢11- So, we have
q11 < 0, = p11 < 0 as sufficient condition.

— Case(c) If g11 = 0, = p11 <0 and p11 < qny
as sufficient condition.
So in all the cases we have that

P11 < qu1 and pi;p <0

as the sufficient conditions. A similar case
holds for Cpg resulting in pog < goo and pog <
0.

Suppose the points where denominator is positive is
C* C C. Suppose the points where denominator is
negative is C~ C C. For gradient to be non-negative at
points belonging to CT, the sufficient condition is

p11 > qu1 and p11 >0

Poo > qoo and poo > 0
For gradient to be non-negative at points belonging to
C—, the sufficient condition is

P11 < gi1 and p1; <0

Poo < qoo and pop < 0

If C4 and C_ are not empty sets, then the gradient is

non-negative only when pi11,pgo = 0 and ¢11, goo = 0.
This is not possible by the definition described in (14).

Hence, one of C; or C_ should be empty. WLOG, we
assume C_ is empty and conclude that C; = C.

An immediate consequence of this is, WLOG, we can
take both the numerator and the denominator to be
positive, and the sufficient conditions for monotonicity
are as follows:

P11 > q11 and p1g >0
Poo = goo and pgg > 0

Now, let us take a point in the feasible space (¢, 0). We

know that

_ puC+po
1€ + o

= p11¢ +po < 7(q11¢ + qo)

= (P11 — Tq11)¢ + (po — Tq0) < 0

= (po —7q) < — (p11 —Tqu1) ¢

positive

¢((¢,0))

<7

positive

= (po — Tqo) < 0. (15)
Metric being bounded in [0, 1] gives us

P11C11 + pooCoo + Po <1
q11C11 + qo0Coo + g0 —
= p11C11 + pooCoo + po < q11C11 + gooCoo + qo

= qo > (p11—¢q11)c11 + (Poo — go0) oo + Po vC eC.

Hence, a sufficient condition is

g0 = (P11 — q11)¢ + (Poo — qoo)(1 — ¢) + po.

Equation (15), which we derived from monotonicity,
implies that

e Case (a) go > 0, = po < 0 as a sufficient condition.

e Case (b) g0 <0, = pp < qo < 0 as a sufficient
condition.

Since the numerator is positive for all C € C and
P11, Poo > 0, a sufficient condition for pg is pg = 0.

Finally, a monotonic, bounded in [0, 1], linear fractional
metric is defined by

_ buicu + Poocoo + Po

o(C ;
(©) q11¢11 + QooCoo + Qo

where p11 > qi1,p11 > 0,po0 > qoo,Poo > 0,90 =

(P11 — q11)¢ + (Poo — g00)(1 — €) + po,Po
P11, 411, Poo, and goo are not simulataneously zero. Fur-

ther, we can divide the numerator and denominator
with p11 4+ poo without changing the metric ¢ and the
above sufficient conditions. Therefore, for elicitation
purposes, we can take p11 + pog = 1. O
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Proof of Proposition J. “Under Assumption 2, know-
ing py, solves the system of equations (9) as follows:

/

Q"

/ /

a1 = (P11 — mll)@> Qo0 = (Poo — mgo)@, (16)

P60 =1 —p/117 Q6 = éo

where P’ = ph ¢ + pho(1 —¢) and Q' = P' + Co —
m11¢ — moo(1 — ¢). Thus, it elicits the LEPM.”

For this proof as well, we use TP = Cy; and TN =
Coo. Since the linear fractional matrix is monotonically
increasing in C11 and Cyg, it is maximized at the upper
boundary 0C,. Hence mi; > 0 and mgy > 0. So, after
running Algorithm 1, we get a hyperplane such that

P11 — 7Tq11 = &@mi1,  Poo — TGoo = QIMoo,

po — 7qo = —a (m11C7y + mooCpyp) - (17)

=:Cp

Since p11 — Tg11 = 0 and my; > 0, = a > 0. As
discussed in the main paper, we avoid the case when
a = 0. Therefore, we have that a > 0.

Equation (17) implies that

P11 Tqu1 Poo  Tqoo _
- = mii, - = Moo,
le’ le’ le' «
Po 740
= -2 = (.
o le'
/ — b1 / __ Poo / — q11 / — 900
Assume pj; = = Poo = o 11 = 5 90 T T4

py = 2, gy = L. Then, the above system of equations

turns into

/ =1/ / =/
P11 — Tqi1 = M1,  Poo — TGpp = 100,

po —7qp = —Co.
A ¢ metric defined by the p};, Phos @115 05 €6 1S moONO-

tonic, bounded in [0, 1], and satisfies all the sufficient
conditions of Assumptions 2, i.e.,

P> dha s Poo = i1y Py =0, pog >0,

a0 = (P11 — @)™ + (Pho — doo)™ + Po, Po = 0.
As discussed in the main paper, solving the above sys-
tem does not harm the elicitation task. For simplicity,

replacing the “’ 7 notation with the normal one, we
have that

P11 — Tqi1 = M11, Poo — TGoo = Moo,

po — T7qo = —Ch

From last equation, we have that 7 =

Co+po
. . 9
it in the rest gives us

. Putting

qop11 — (Co + po)qi1 = Mmi1qo,
qopoo — (Co + Po)qo0 = Mooqo-

We already have

g0 = (P11 — q11)¢ + (Poo — qoo)(1 — ¢) + po
_ Poo(1 —¢) — qoo(1 — ¢) +p11¢ — qo + po
C b

= q11

which further gives us

o = (Co + po)[poo(1 — ¢) + p11¢ + pol

p11¢ + poo(1 = ¢) + po + Co — m11¢ — moo(1 —¢)’
_ (oo — mo0)[Poo(1 — ¢) + p11¢ + po]
~ p1rC+poo(1 =€) + po + Co — my1¢ — mgo(1 =)’
_ (P11 — m11)[poo(1 — €) + p11¢ + po]
~ p1i¢ +poo(1 =€) + po + Co — m11¢ — moo(1 = ¢)

Define

qoo

q11

P = poo(]. — C) +p11C =+ Do,
Q = P+ Co —m11¢ — moo(1 — ().

Hence,

P
q11 = (pll - m11)*7

g = (Co +p0)£ 0

Q’
= (50 — moo)
qoo = (Poo 00 Q

Now using sufficient conditions, we have pg = 0. The
final solution is the following:

q11 = (P11 - mll)

P
0
where P := p11¢ + poo(l — ¢) and Q := P + Cy —
m11¢ — moo(1 — ). We have taken p11 + poo = 1, but
the original p{; + phy = <. Therefore, we learn $(C)
such that such that ¢(C) = ag(C). O

P
qo = CO@?

qoo = (poo — Moo)

P
Q?

Corollary 1. For Fg-measure, where 8 is unknown,
Algorithm 1 elicits the true performance metric up to
a constant in O(log(2)) queries to the oracle.

Proof. Algorithm 1 gives us the supporting hyperplane,
the trade-off, and the Bayes confusion matrix. If we
know p11, then we can use Proposition 4 to compute
the other coefficients. In Fjg-measure, p;; = 1, and we
do not require Algorithms 2 and 3. O

Proof of Theorem 1. “Given €, eq > 0 and a 1I-
Lipschitz metric ¢ that is monotonically increasing
in TP, TN. If it is quasiconcave (quasiconvex) then



Performance Metric Elicitation from Pairwise Classifier Comparisons

Algorithm 1 (Algorithm 2) finds an approximate mazi-
mizer C (minimizer C). Furthemore, (i) the algorithm
returns the supporting hyperplane at that point, (ii) the
value of ¢ at that point is within O(\/éq + €) of the

optimum, and (iit) the number of queries is O(log %)

(i)

”

As a direct consequence of our representation of
the points on the boundary via their supporting
hyperplanes (Section 3.1), when we search for the
maximizer (mimimizer), we also get the associated
supporting hyperplane as well.

By the nature of binary search, we are effectively
narrowing our search interval around some target
angle 6y. Furthermore, since the oracle queries
are correct unless the ¢ values are within e, we
must have [¢(Cj) — ¢(Chy, )| < €q, and we output
0’ such that |y — 0'| < e. Now, we want to check
the bound |¢(Cy/) — ¢(Cp)|. In order to do that,
we will also consider the threshold corresponding
to the supporting hyperplanes at Cy’s, i.e. dy =
sin e/sin 0 + cos 0.

Notice that,

[6(C5) — &(Cor)| = |p(Cp) — &(Ch,
+ ¢(Co,) —
< [¢(Cq) — #(Ca, )|

+ |#(Co,) — #(Cor)|  (18)
The first term is bounded by e due to the ora-

cle assumption. For the bounds the second term,
consider the following.

)
d(Co)|
)

\TP(C’GO) —TP(Cy)|
_ / (@) dfx
sinfq >n(2)>—sino’

" Sindgfcoshy = sin6’ +cos6’

< / dfx
 sing s e sing! %
** 5in6gFcosby o2n(x) =62 5in0’ +cos0’ g
- / dfx
sinfg sind sin@’ sin@
- > > —__si _
SO0 Fcos00 ~ sindteosd 2" (%) 2 ot cosd? sinb+cos
- / dfx|,
. sin(0g—0) > 5> sin6’ _ sin®
" sin (09 +8)+cos(89—8) =) 702 550/ Y cos0”  sinbtcosd

(19)

where the inequality in the second step follows from
the fact that n(x) < 1.

Recall that the left term in the integral limits is
actually, dg, — d5. When |¢(Cs, ) — ¢(Cs,)| < €q,

(iii)

then we have |[§ — g| < k%\/kleg. The proof of
this statement is given in the proof of Theorem 2
(proved later). Since sin is 1-Lipschitz, adding and
subtracting sin 6y/(sin 6y + cos ) in the right term
of the integration limit gives us the minimum value
of the right term to be —e — 2‘/%;769 This implies
that the quantity in (19) is less than

< ko — k‘169}ﬂ
{(6 —n(X)) < e—i- \/kleg}
< P[0 —n(X oV k1 €q]

2k:
! \/kleg + k1e  (by Assumption 4) (20)

<e+

As P(AN B) < min{P(A),P(B)}, the inequality
used in the second step is rather loose, but it shows
the dependency on sufficiently small €. It could be
independent of the tolerance e depending on the
P(n(X)—9) or the sheer big value of e. Nevertheless,
a similar result applies to the true negative rate.
Since ¢ is 1-Lipschitz, we have that [¢(C)—¢(C')| <
1-]|C=C||, but

\/ k?1€Q + ]{116

1C(60) — C(6

Moo <

Hence, [¢(Co) —3(Cp)| < V2(3VE1eq+kie)+ea.
Since the metrics are in [0, 1], eq € [0, 1]. Therefore,
V€q > €q. This gives us the desired result.

We needed only, for part (ii), that the interval of
possible values of §’ be at most € to the target angle
0o. Ideally, this is obtained by making log,(1/¢€)
queries, but due to the region where oracle misreport
its preferences, we can be off to the target angle 6,
by more than e. However, binary search will again
put us back in the correct direction, once we leave
the misreporting region. And this time, even if we
are off to the target angle 6y, we will be closer than
before. Therefore, for the interval of possible values
of 6’ to be at most €, we require at least log(%)
rounds of the algorithm, each of which is a constant
number of pairwise queries. 0

Proof of Lemma 2.

“Under our model, mno algo-

rithm can find the mazimizer (minimizer) in fewer
than O(log 1) queries.”

For any fixed ¢, divide the search space € into bins of
length €, resulting in E-‘ classifiers. When the function
evaluated on these classifiers is unimodal, and when
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the only operation allowed is pairwise comparison, the
optimal worst case complexity for finding the argu-
ment maximum (of function evaluations) is O(log 1)
[5], which is achieved by binary search. O

Proposition 5. Let (y1,21, h(x1)), -+ (Yn, ZTn, h(xn))
be n i.i.d. samples from the joint distribution on 'Y, X,
and h(X). Then by Héffding’s inequality,

P (|4 S0, 0l = s = 1] = TP()] = ¢ < 2¢72",

n

The same holds for the analogous estimator on TN.

Proof. Direct application of Hoffding’s inequality. [J

Proof of Theorem 2. “Let wrpy 3 ¢ = m* be the
true performance metric. Under Assumption 4, given
e > 0, LPM elicitation (Section 5.1) outputs a per-
formance metric ¢ = 1, such that [m* —m|_ <

V2e + %0\/216169.”

We will show this for threshold classifiers, as in the
statement of the Assumption 4, but it is not difficult
to extend the argument to the case of querying angles.
(Involves a good bit of trigonometric identities...)

Recall, the threshold estimator hs returns positive if
n(x) > &, and zero otherwise. Let & be the threshold
which maximizes performance with respect to ¢, and C;
be its confusion matrix. For simplicity, suppose that
8" < 6. Recall, from Assumption 4 that Pr[n(X) €

[6 — 2%6, 8] < koe/2, but Pr[n(X) € [§ —¢,6]] > koe,
and therefore

P[n(X) €f6—€6— 2%6] > koe/2

Denoting ¢(C) = (m,C), and recalling that § =
moo/(m11 + moo), expanding the integral, we get

¢(C5) — ¢(Cs)

- / oo (1 — 7)) — man(z)] dfx
@8/ <n(x)<6

— [ fmee =) — mun)] dfx
:5—(5—8")<n(2)<3

> / oo (1 — () — marn(z)] dfx
@:5—(5-8") <n(2)<T— 52 (5-6)

—moo ko

> [(ma + moo)( (6 — 5/)) + moo] X

moo +mu | 2k

/
2:5—(5—6')<n(w)<5— 2l (5-5")

LY

= [(ma1 + moo) =2 (5 — 6]

2k:
< < / < k < /
P[d_(5—5)§77($)§5—ﬁ(5—5)}
> ko5 ¢y ko4 —ng—a’?
> 2( )+ g ( )= 1, ¢ )"

Similar results hold when ¢’ > 6. Therefore, if we have
|6(C) — ¢(C(d"))] < eq, then we must have |§ — &'| <
,%0\/ kieq. Thus, if we are in a regime where the oracle
is mis-reporting the preference ordering, it must be the
case that the thresholds are sufficiently close to the
optimal threshold.

Again, as in the proof of Theorem 1, when the tolerance
€ is small, our binary search closes in on a parameter
¢ which has ¢(Cjs,,) within eq of the optimum, but
from the above discussion, this also implies that the
search interval itself is close to the true value, and thus,
the total error in the threshold is at most € + k%\/kl €Q.

Since & = Mmoo/ (m11 +mao), this bound extends to the
cost vector with a factor of /2, thus giving the desired
result.

We observe that the above theorem actually provide
bounds on the slope of the hyperplanes. Thus, the
guarantees for LEPM elicitation follow naturally. It
only requires that we recover the slope at the upper
boundary and lower boundary correctly (within some
bounds). This theorem provides those guarantees. Al-
gorithm 3 is independent of oracle queries and thus can
be run with high precision, making the solutions of the
two systems match. O

Proof of Lemma 3. “Let hy and }Alg be two classi-
fiers estimated using m and 17, respectively.  Fur-
ther, let 0 be such that hy = argmaxy ¢(hg). Then

1C(hg) = C(hg)lloe = Oliin — nlloc)-”

Suppose the performance metric of the oracle is charac-
terized by the parameter 6. Recall the Bayes optimal

classifier would be h; = 1[ > §]. Let us assume we
are given a classifier }Azg = 1[f) > 6]. Notice that the op-
timal threshold ¢ is the property of the metric and not
the classifier or 7. We want to bound the difference in
the confusion matrices for these two classifiers. Notice
that, by Assumption 3, we can take n sufficiently large
so that || — .|| is arbitrarily small. Consider the
quantity
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TP(hy) = TP(hg) = [ndfs— [ndfs. ()

n>é

Now the maximum loss in the above quantity can occur
when, in the region where the classifiers’ predictions
differ, there 7 is less than 7 with the maximum possible
difference. This is equal to

[

2:85<n (%) <3+ —ll oo
<Plo <n(X) <0+ 17— 1llc]

< k1lln — N co- (by Assumpition 4)

Similarly, we can look at the maximum gain in the
following quantity.

TP(hg) — TP(hy) :/nglfx—/zng (22)

126

Now the maximum gain in the above quantity can occur
when, in the region where the classifiers’ predictions
differ, there 7 is greater than n with the maximum
possible difference. This is equal to

[ wa

2:5—|In—1l oo <n(x) <8
< PP —[In =il <n(X) < 9]
< k1lln — N co- (by Assumpition 4)
Hence,

TP (hz) — TP(hg)| < kalln = llo-

Similar arguments apply for TN, which gives us the
desired result. O

C Extended Experiments

In this section, we empirically validate the theory and
understand the sensitivity due to finite samples.

C.1 Synthetic Data Experiments

We take the same distribution as in (12) with the noise
parameter ¢ = 5. In the LPM elicitation case, we define
a true metric ¢* by m* = (mj,, m{,). This defines the
query outputs in line 6 of Algorithm 1. Then we run
Algorithm 1 to check whether or not we get the same
metric. The results for both monotonically increasing
and monotonically decreasing LPM are shown in Ta-
ble 3. We achieve the true metric even for very tight
tolerance € = 0.02 radians.

Table 3: Empirical Validation for LPM elicitation at
tolerance € = 0.02 radians. ¢* and ¢ denote the true
and the elicited metric, respectively.

(0.98,0.17) | (0.99,0.17) | (-0.94,-0.34) | (-0.94,-0.34)
(0.87,0.50) | (0.87,0.50) | (-0.77,-0.64) | (-0.77,-0.64)
(0.64,0.77) | (0.64,0.77) | (-0.50,-0.87) | (-0.50,-0.87)
(0.34,0.94) | (0.34,0.94) | (-0.17,-0.98) | (-0.17,-0.99)

Next, we elicit LFPM. We define a true metric ¢*
by {(p11:Pbo): (411,400, 45)}- Then, we run Algorithm
1 with € = 0.05 to find the hyperplane ¢ and maxi-
mizer on 0C, Algorithm 2 with € = 0.05 to find the
hyperplane £ and minimizer on dC_, and Algorithm
3 with n = 2000 (1000 confusion matrices on both
0C, and OC_ obtained by varying parameter 6 uni-
formly in [0,7/2] and [r,37/2]) and A = 0.01. This
gives us the elicited metric QAS, which we represent by
{(ﬁll,ﬁoo), (qul,qAOQ,qu)}. In Table 4, we present the
elicitation results for LFPMs (column 2). We also
present the mean («) and the standard deviation (o)
of the ratio of the elicited metric ¢ to the true metric
¢ over the set of confusion matrices (column 3 and 4
of Table 4). As suggested in Corollary 1, if we know
the true ratio of 11/p;,, then we can elicit the LEFPM
up to a constant by only using Algorithm 1 resulting
in better estimate of the true metric, because we avoid
errors due to Algorithms 2 and 3. Line 1 and line 2 of
Table 4 represent F; measure and F% measure, respec-
tively. In both the cases, we assume the knowledge of
p11 = 1. Line 3 to line 6 correspond to some arbitrarily
chosen linear fractional metrics to show the efficacy of
the proposed method. For a better judgment, we show
function evaluations of the true metric and the elicited
metric on selected pairs of (TP, TN) € 9C4 (used for
Algorithm 3) in Figure 6. The true and the elicited
metric are plotted together after sorting values based
on slope parameter . We see that the elicited metric
is a constant multiple of the true metric. The vertical
solid line and dashed line corresponds to the argmax of
the true and the elicited metric, respectively. In Figure
6, we see that the argmax of the true and the elicited
metrics coincides, thus validating Theorem 1.

C.2 Real-World Data Experiments

In real-world datasets, we do not know n(z) and only
have finite samples. As a result of these two road blocks,
the feasible space C is not as well behaved as shown in
Figure 5, and poses a good challenge for the elicitation
task. Now, we validate the elicitation procedure with
two real-world datasets.

The datasets are: (a) BREAST CANCER (BC) Wiscon-
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Table 4: LFPM Elicitation for synthetic distribution (Section C.1) and Magic (M) dataset (Section C.2) with
e = 0.05 radians. (p}1,p50), (431, @6o> ¢¢) denote the true LEPM. (p11,Poo), (¢11, doo, o) denote the elicited LEPM.
a and ¢ denote the mean and the standard deviation in the ratio of the elicited to the true metric (evaluated on
the confusion matrices in dC4 used in Algorithm 3), respectively. We empirically verify that the elicited metric is

constant multiple («) of the true metric.

True Metric Results on Synthetic Distribution (Section C.1) | Results on Real World Dataset M (Section C.2)

(P11, Pbo), (411, 9505 96) (P11, Poo); (11, Goo, Go) a o (P11, Poo), (411, Goos Go) a o
(1.00,0.00),(0.50,-0.50,0.50) | (1.00,0.00),(0.25,-0.75,0.75) | 0.92 | 0.03 | (1.00,0.00),(0.25,-0.75,0.75) | 0.90 0.06

(1.0,0.0),(0.8,-0.8,0.5) (1.0,0.0),(0.73,-1.09,0.68) 094 | 002 | (1.0,0.0),(0.72-1.13, 0.57) | 1.06 0.05

(0.8,0.2),(0.3,0.1,0.3) (0.86,0.14),(-0.13,-0.07, 0.60) | 0.90 | 0.06 | (0.23,0.77),(-0.87,0.66,0.76) | 0.84 0.09
(0.60,0.40),(0.40,0.20,0.20) (0.67,0.33),(-0.07,-0.44,76) | 0.82 | 0.05 | (0.16,0.84),(-0.89,0.25,0.89) | 0.65 0.05
(0.40,0.60),(-0.10,-0.20,0.65) (0.36,0.64),(-0.21,-0.25,0.73) 0.97 0.01 (0.08,0.92),(-0.75,0.12,0.82) | 0.79 0.08
(0.20,0.80),(-0.40,-0.20,0.80) | (0.12, 0.88),(-0.43, 0.002, 0.71) | 1.02 | 0.006 | (0.19,0.81),(-0.38,-0.13,0.70) | 1.02 |  0.004

Table 5: LPM elicitation results on real datasets (e
in radians). M and BC represent Magic and Breast
Cancer dataset, respectively. \ is the regularization
parameter in the regularized logistic regression models.
The table shows error in terms of the proportion of the
number of times when Algorithm 1 (Algorithm 2) failed
to recover the true m*(6*) within e threshold. The
observations made in the main paper are consistent for
both the regularized models.

A=10 A=1
€ M BC M BC
0.02 | 0.57 | 0.79 | 0.54 | 0.79
0.05 | 0.14 | 0.43 | 0.36 | 0.64
0.08 | 0.07 | 0.21 | 0.14 | 0.57
0.11 | 0.00 | 0.07 | 0.07 | 0.43

sin Diagnostic dataset [25] containing 569 instances,
and (b) Macic (M) dataset [8] containing 19020 in-
stances. For both the datasets, we standardize the
attributes and split the data into two parts S; and Ss.
On &7, we learn an estimator 7 using regularized logis-
tic regression model with regularizing constant A = 10
and A = 1. We use Sy for making predictions and
computing sample confusion matrices.

We generated twenty eight different LPMs ¢* by gener-
ating 0* (or say, m* = (cos 6*,sin 6*)). Fourteen from
the first quadrant starting from 7 /18 radians to 5m/12
radians in step of 7/36 radians. Similarly, fourteen from
the third quadrant starting from 197/18 to 177/12 in
step of 7/36 radians. We then use Algorithm 1 (Algo-
rithm 2) for different tolerance e, for different datasets,
and for different regularizing constant X in order to
recover the estimate m. We compute the error in terms
of the proportion of the number of times when Algo-
rithm 1 (Algorithm 2) failed to recover the true m*
within e threshold.

We report our results in Table 5. We see improved
elicitation for dataset M, suggesting that ME improves

with larger datasets. In particular, for dataset M,
we elicit all the metrics within threshold ¢ = 0.11
radians. We also observe that e = 0.02 is an overly
tight tolerance for both the datasets leading to many
failures. This is because the elicitation routine gets
stuck at the closest achievable confusion matrix from
finite samples, which need not be optimal within the
given (small) tolerance. Furthermore, both of these
observations are consistent for both the regularized
logisitic regression models with regularizer .

Next, we discuss the case of LFPM elicitation. We use
the same true metrics ¢* as described in Section C.1
and follow the same process for eliciting LFPM, but
this time we work with MAGIC dataset. In Table 4
(columns 5, 6, and 7), we present the elicitation results
on MAGIC dataset along with the mean « and the
standard deviation o of the ratio of the elicited metric
and the true metric. Again, for a better judgment, we
show the function evaluation of the true metric and the
elicited metric on the selected pairs of (TP, TN) € 9C1
(used for Algorithm 3) in Figure 7, ordered by the
parameter 6. Although we do observe that the argmaz
is different in two out of six cases (see Sub-figure (b) and
Sub-figure (¢)) due to finite samples, elicited LEFPMs are
almost equivalent to the true metric up to a constant.

D Monotonically Decreasing Case

Even if the oracle’s metric is monotonically decreas-
ing in TP and TN, we can figure out the supporting
hyperplanes at the maximizer and the minimizer. It
would require to pose one query Q(C* ,, C’g‘ﬂ/4). The
response from this query determines whether we want
to search over 0C4 or OC_ and apply Algorithms 1 and
2 accordingly. In fact, if C;/4 =< Cg‘ﬂ/4, then the met-
ric is monotonically decreasing, and we search for the
maximizer on the lower boundary dC_. Similarly if the
converse holds, then we search over dC, as discussed
in the main paper.
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Metric Evaluation

Metric Evaluation

Fig. 6: True and elicited LFPMs for synthetic distribution from Table 4. The solid green curve and the dashed
blue curve are the true and the elicited metric, respectively. The solid red and the dashed black vertical lines
represent the maximizer of the true metric and the elicited metric, respectively. We see that the elicited LFPMs
are constant multiple of the true metrics with the same maximizer (solid red and dashed black vertical lines
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Fig. 7: True and elicited LFPMs for dataset M from Table 4. The solid green curve and the dashed blue curve
are the true and the elicited metric, respectively. The solid red and the dashed black vertical lines represent the
maximizer of the true metric and the elicited metric, respectively. We see that the elicited LFPMs are constant
multiple of the true metrics with almost the same maximizer (solid red and dashed black vertical lines overlap
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