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Appendices

A SMC algorithm

Algorithm 1 Sampling from qφ(x1:K0:M , a
1:K
0:M−1, l|θ) via

an SMC sampler
1: Input: observations y0:M , prior density pθ,

initial density fθ(x0), state transition density
fθ(xn+1|xn, yn), observation density gθ(yn|xn),
proposal densities Mφ

n (xn|yn, x0:n−1) and resam-
pling criteria.

2: Output: (X1:K
0:M , A

1:K
0:M−1, L) ∼ qφ(·|θ).

3: for k = 1...K do
4: Sample Xk

0 ∼M
φ
0 (·|y0).

5: Set α0(Xk
0 ) =

gθ(y0|Xk0 )fθ(X
k
0 |y0)

Mφ
0 (Xk0 )

.

6: Set w0(Xk
0:n) = α0(Xk

0:n)/K.
7: Set W k

0 ∝ w0(Xk
0 ).

8: end for
9: for n = 2...M do
10: if resampling criteria satisfied then
11: for k = 1...K do
12: Sample Akn−1 ∼ r(·|Wn−1).
13: end for
14: Set Wn−1 = ( 1

K , ...,
1
K ).

15: else
16: Set An−1 = (1, ...,K).
17: end if
18: for k = 1...K do
19: Sample Xk

n ∼Mφ
n (·|yn, X

Akn−1

0:n−1).
20: Set Xk

0:n = (Xk
0:n−1, X

k
n).

21: Set αn(Xk
0:n) =

gθ(yn|Xkn)fθ(X
k
n|X

Akn−1
n−1 ,yn−1)

Mφ
n (Xkn|yn,X

Ak
n−1

0:n−1 )

.

22: Set wn(Xk
0:n) = W k

n−1αn(Xk
0:n).

23: Set W k
n ∝ wn(Xk

0:n).
24: end for
25: Sample L = l with probability W l

M

26: end for

B Proof of Proposition 2

Consider an SMC algorithm with K particles targeting

πθ(x0:M ) := γ(θ, x0:M )/γM (θ),

where γ(θ, x0:M ) = p(θ, x0:M , y0:M ) is related to the
posterior via π(θ, x0:M ) = γ(θ, x0:M )/ZM . ZM is a
normalising constant independent of θ that represents
the marginal likelihood ZM = p(y0:M ). Furthermore,
γM (θ) =

∫
γ(θ, x0:M )dx0:M = p(θ)pθ(y0:M ). We de-

note the likelihood estimator of this SMC algorithm
as Z̃θ,φM . Following analogous arguments as in Andrieu

et al. (2010), we have from the definition of the impor-
tance weights

π̃(θ, x1:K0:M , a
1:K
0:M−1, l)

qφ,ψ(θ, x1:K0:M , a
1:K
0:M−1, l)

=
π(θ, xl0:M )K−(M+1)

qψW l
MM

φ
0 (x

bl0
0 |y0)

∏M
n=1W

bln−1

n−1 M
φ
n (x

bln
n |yn, x

bln−1

0:n−1)

=
π(θ, xl0:M )K−(M+1)

qψ(θ)Mφ
0 (x

bl0
0 |y0)

∏M
n=1M

φ
n (x

bln
n |yn, x

bln−1

0:n−1)

·

∏M
n=0

(∑K
k=1 wk(xk0:M )

)
∏M
n=0 wn(X

bln
0:M )

=
π(θ, xl0:M )Z̃θ,φM
qψ(θ)γ(θ, xl0:M )

=
Z̃θ,φM

qψ(θ)p(y0:M )
.

Note that Z̃θ,φ = p(θ)Ẑθ,φ, where Ẑφ,θ is the SMC
likelihood estimator in the main paper targeting a den-
sity proportional to pθ(x0:M , y0:M ), whilst Z̃θ,φ targets
a density proportional to p(θ)pθ(x0:M , y0:M ). Conse-
quently,

KL(qψ,φ||π̃) = −Eqψ,φ

[
log

Z̃θ,φM
qψ(θ)

]
+ log p(y0:M )

=− L(ψ, φ) + log p(y0:M ),

which concludes the proof.

C Proof of Corollary 3

Observe that we can write

KL
(
qψ,φ(θ, x1:K0:M , a

1:K
0:M−1, l)||π̃(θ, x1:K0:M , a

1:K
0:M−1, l)

)
= Eqψ,φ(θ,xl0:M ,bl0:M )

[
E
qφ(x

¬bl
0:M

0:M ,a
¬bl

0:M−1
0:M−1 )|θ,xl0:M ,bl0:M )

[
log qψ,φ(θ, xl0:M , b

l
0:M )

+ log qφ(x
¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M )

]
− log π̃(θ, xl0:M , b

l
0:M )

− log π̃CSMC(x
¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M )

]
= KL(qψ,φ(θ, xl0:M )||π(θ, xl0:M ))

+ Eqψ,φ(θ,xl0:M ,bl0:M )

[
KL(qφ(x

¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 )|θ, xl0:M , bl0:M )
∣∣∣∣∣∣

π̃CSMC(x
¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M ))

]
.
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D Proof of Proposition 4

We can write the extended target distribution as

π̃(x1:K0:M , a
1:K
0:M−1, l)

=
π(θ, xl0:M )

KM+1
π̃CSMC(x

¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M ).

This follows from the fact that xl0:M = (x
bl0
0 , ..., x

blM
M )

and that b0:M |xl0:M , θ is uniformly distributed on
{1, ...,K}M+1. Hence, π(θ,x

l
0:M )

K−(M+1) is the marginal density
π̃(θ, xl0:M , b

l
0:M ). Moreover, the variational approxima-

tion of the static parameter θ and latent states xl0:M ,
obtained as the marginal of the extended variational
distribution, is given by, following similar arguments
as in Naesseth et al. (2018),

qψ,φ(θ, xl0:M ) =
qψ,φ(θ, xl0:M , b

l
0:M )

qψ,φ(bl0:M |θ, xl0:M )

=
1

K−(M+1)

∫
qψ,φ(θ, xl0:M , a

l
0:M−1, x

¬bl
0:M , a

¬bl
0:M−1)

d(x¬b
l

0:M , a
¬bl
0:M−1)

= KM+1

∫
qψ(θ)

wlM (xb
l

0:M )∑
l′ w

l′
M (xl

′
0:M )

K∏
k=1

Mφ
0 (xk0 |y0)

·
M∏
n=1

wkn−1(x
bkn−1

0:n )∑
l′ w

l′
n−1(x

bl
′
n−1

0:n−1)
Mφ
n (xkn|yn, x

b
akn−1
n−1

0:n−1)

d(x¬b
l

0:M , a
¬bl
0:M−1)

=

∫
qψ(θ)

(
M∏
n=1

γθ(x
l
0:n)

γθ(xl0:n−1)
∑
l′ w

l′
n((xl

′
0:n))

)

·
∏

k:k 6=bl0

Mφ
0 (xk0 |y0)

·
M∏
n=1

∏
k:k 6=bln

W k
n−1M

φ
n (xkn|yn, x

akn−1

n−1 )d(x¬b
l

0:M , a
¬bl
0:M−1)

= qψ(θ)γθ(x
l
0:M )

· E
π̃CSMC(x

¬bl
0:M

0:M ,a
¬bl

0:M−1
0:M−1 |θ,xl0:M )

[(
Ẑθ,φM

)−1]

E Natural gradients

We have also experimented with optimizing the vari-
ational distribution over the static parameters using
natural gradients (Amari, 1998; Martens, 2014) to take
into account the Riemannian geometry of the approxi-
mating distributions, as explored previously for varia-
tional approximations, see for instance Honkela et al.
(2010); Hoffman et al. (2013). Recall that we are opti-
mizing over the space of probability distributions qψ(·)

with parameter ψ, for which we can consider a possible
metric given by the Fisher information

I(ψ) = Eqψ(θ)
[
∇ψ log qψ(θ) (∇ψ log qψ(θ))

T
]

= −Eqψ(θ)
[
Hlog qψ (θ)

]
,

The last equation assumes that qψ is twice differentiable
and Hlog qψ(θ) =

(
∂2 log qψ(θ)
∂ψi∂ψj

)
ij

denotes the Hessian.

This induces an inner product 〈ψ1, ψ2〉ψ0 = ψT1 F (ψ0)ψ2

locally around ψ0, hence gives rise to a norm || · ||ψ0 .
The Fisher information matrix is connected to the KL
divergence, since the distance in the induced metric is
given approximately by the square root of twice the
KL-divergence:

KL(qψ1
||qψ2

)

=
1

2
(ψ2 − ψ1)I(ψ1)(ψ2 − ψ1)T +O((ψ2 − ψ1)3),

This follows from a second order Taylor expansion and
from using the fact that Eqψ [∇ψ log qψ] = 0. Recall
that the natural gradient of a function L(ψ) is defined
by

∇̃ψL(ψ) = I(ψ)−1∇ψL(ψ)

and one can show that under mild assumptions
(Martens, 2014),

√
2
∇̃ψL(ψ)

||∇̃ψL(ψ)||ψ

= lim
ε→0

1

ε
argmaxd:KL(qψ+d||qψ)≤ε2L(ψ + d).

Thus the natural gradient is the steepest ascent direc-
tion with the distance measured by the KL-divergence.
The natural gradient ascent does not depend on the
parametrisation of qψ as a consequence of the invariance
of the KL-divergence with respect to reparametrisa-
tions.

For mean-field approximations, computing the inverse
of the Fisher information matrix simplifies, as the
Fisher information has a block-diagonal structure in
this case. We consider both normal and log-normal
factors. For a univariate Gaussian distribution qµ,v
with mean µ and variance exp(v)2 parametrized by
the logarithm of the standard deviation v, we obtain
∇µ,v log qµ,v(θ) = (e−2v(θ−µ), e−2v(θ−µ)2−1)T . Con-
sequently,

I(µ, v) =

(
e−2v 0

0 2

)
.

For a log-normal distribution qa,b(θ), parametrized so
that log θ ∼ N (a, exp(b)2), we have ∇a,b log qa,b(θ) =
(e−2b(log(θ)− a), e−2b(log(θ)− a)2− 1)T and we arrive
at the same form for the Fisher information

I(a, b) =

(
e−2b 0

0 2

)
.
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F Priors and variational
approximations for the stochastic
volatility model

Compared to Guarniero et al. (2017), we choose a
different structure of Σx to guarantee its positive-
definiteness, along with slightly different priors. We
model Σx with its unique Cholesky factorisation (Del-
laportas and Pourahmadi, 2012), i.e. Σx = LLT with
L a lower triangular matrix having positive values
on its diagonal. We set Σ0

x as the stationary co-
variance of the latent state. Independent priors are
placed for ai ∼ U(0, 1) and µi ∼ N (0, 10) as well as
Lij ∼ N (0, 10), for i < j and logLii ∼ N (0, 10). We
assume a mean-field variational approximation with
normal factors for µ and for the entries of L below
the diagonal and log-normal factors for its diagonal.
Furthermore, ai is assumed to be the sigmoid trans-
form sigm: x 7→ 1/(1 + e−x) of normally distributed
variational factors. We initialized the mean of L with
a diagonal matrix having entries 0.2 and the mean of
µi with the logarithm of the standard deviation of the
ith component of the time series. Densities of the vari-
ational approximation for parameters corresponding to
the GBP exchange rate are given in Figure 4.

(a) Mean reversion level µ of
the log volatility related to
the Pound Sterling.

(b) Autoregressive coefficient
a of the log volatility related
to the Pound Sterling.

(c) Variance part of Σx

for the error term of the
log volatility related to the
Pound Sterling.

(d) Covariance part of Σx

for the error term of the
log volatilities related to the
Pound Sterling and Euro.

Figure 4: Density estimates for the parameters related
to the Pound Sterling in the multivariate stochastic
volatility model.

G Hawkes point processes and state
space models

In contrast to linear Hawkes processes (Hawkes,
1971a,b), we also allow for negative excitations, as
explored previously for instance in Brémaud and Mas-
soulié (1996); Bowsher et al. (2007); Duarte et al. (2016).
The values of Ab and βb are commonly assumed to be
fixed through time, while time-varying µ have been
considered in various settings. Stochastic time-varying
excitations have been analysed in a probabilistic setting
in Brémaud and Massoulié (2002); Dassios and Zhao
(2011). Moreover, Ricci (2014) considered frequentist
inference of the excitation model parameters from a
matrix-valued categorical distribution, while Lee et al.
(2016) performed MCMC with excitations evolving ac-
cording to an Ito process in the one-dimensional case.
However, scalable Bayesian inference for non-linear
stochastic Hawkes processes has been missing, with
previous variational inference schemes (Linderman and
Adams, 2015) having been restricted to linear Hawkes
processes due to their resilience on the branching struc-
ture of linear Hawkes processes. SMC methods for
shot-noise Cox processes has been considered in White-
ley et al. (2011); Martin et al. (2013) for on-line filtering
and Finke et al. (2014) for static-parameter inference.
While we expect such methods to scale poorly to mod-
els with many parameters and observations, we bor-
row their idea of describing the dynamics of the point
process using piecewise-deterministic processes (Davis,
1984), which enables us to employ the proposed infer-
ence approach for discrete-time state space models.
More concretely, since Ξbt follows deterministic dynam-
ics between two events, we can write Ξbt = Fb(t, Tn,Ξ

b
Tn

)
for t ∈ [Tn, Tn+1) with the deterministic function
Fb(t, s, z

b) = e−βb(t−s)zb. Whenever an event of type
Cn occurs at time Tn, the process Ξb jumps with size
∆ΞbTn = βbA

b
n. The process Zbn = ΞbTn , n > 0, satisfies

Ξbt = Fb(t, Tn, Z
b
n) for t ∈ [Tn, Tn+1). Note that we

scale each Abn with the diagonal matrix βb. This en-
sures that the triggering kernel functions s 7→ βb e−β

bs

have L0 norm of one for any b.

H Inference and predictions details
for Hawkes process models

We place the following priors for the dynamics of A:
For any d ∈ {1, ..., D}, αd ∼ ⊗DBi=1N (0, 10) and con-
sider mean-field variational approximations having the
same forms. Furthermore, a priori, suppose that µ ∼
⊗Di=1Ga(0.01, 0.01), diag(σ2

d) ∼ ⊗DBi=1Ga(0.01, 0.01)
and βb − βb−1 ∼ LN (0, 1), b ∈ {1, ..., B}, β0 = 0, all
with a log-normal variational approximation. Even-
tually, for the softmax scale parameter, a priori ν ∼
U(0, 1) with a variational approximation as the sigmoid
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transform of a normal factor. The proposal function
used is

Mφ(an, zn|an−1, zn−1, tn+1, cn+1, tn, cn)

=hφ(an|cn)fθ(zn|zn−1, an−1, tn, cn), (10)

with hφ(an|cn) = N (
∑
d α̃dδcnd,

∑
d σ̃

2
dδcnd),

α̃d ∈ RBD, σ̃d positive diagonal matrices and
wherefθ describes the determinsitic decay of Zn
according to the prior transition density.
Let us also mention that the observation density
contains a one-dimenisonal intractable integral. We
apply Gaussian quadrature to evaluate the integral
after transforming the quadrature points to better
cover the interval immediately after an event where
the intensity function is varying more quickly, see
Appendix I for details. We initialised the variational
parameters so that the variational distribution of
α is largely concentrated around the maximum
likelihood estimates in a linear Hawkes model and the
variational distribtuion of ν concentrated around 0.
The values of βb are commonly fixed in a maximum
likelihood estimation setting to guarantee concavity
of the log-likelihood. We have chosen B = 5 with
(log β1, log(β2 − β1), ..., log(β5 − β4)) = (−1, 1, 3, 5, 7)
fixed. This allows event interactions across various
time scales, ranging from β1 ≈ 0.36 to β5 ≈ 1268.
We have also split the events in subsamples of length
M = 100 each and used the particles from the previous
event-batch as the initial particles for the subsequent
event-batch. We used K = 20 particles and performed
optimisation with Adam (Kingma and Ba, 2014) and
step size 0.0001. Similar performance was observed
either using standard or natural gradients for the
considered hyperparameters and reported results
correspond to optimsiaton with standard gradients
only.

Regarding inference for the benchmark models, maxi-
mum likelihood estimation for the linear Hawkes model
was performed using the tick library (Bacry et al., 2017),
with the fixed time scales β1, ..., β5 given above. Param-
eters for the non-linear Hawkes model were estimated
using a limiting case of the generative model with very
small σd, K = 1, and proposing the single particle
according to the generative model, hence particularly
with small variances σd. Concretly, we consider

fθ(an|an−1, zn−1, cn)

=hφ(an|cn) = N

(∑
d

αdδcnd,
∑
d

σdδcnd

)
,

recalling hφ from the definition (10) of the proposal

function and where for all d ∈ {1, ..., D},

σd = ε



β−11

. . .
β−11

. . .
β−1B

. . .
β−1B


,

ε = 0.0001. Stochastic gradient descent then yields
point estimates over α1, ..., αD, decay parameters
β1, ..., βB, softmax scale parameter ν and the back-
ground intensity parameter µ. Initial parameters
have similary been set to the maximum likelihood
estimates from the linear Hawkes model. We used
Adam (Kingma and Ba, 2014) with step sizes 0.0001
and 0.0005, with the reported result corresponding to
the best performing step size for the considered metric
in Table 2.

For the prediction of the next mark cm+1 given the
observations t1:m, c1:m, we can sample θ1, ..., θS ∼ qψ(θ)
and run a particle filter that yields

K∑
k=1

W k,s
m δ(Zk,s0:m−1,A

k,s
0:m−1)

(zs0:m−1, a
s
0:m−1)

as an approximation of pθs(zs0:m−1, αs0:m−1|t1:m, c1:m).
Set

Ẑb,k,sm = e−βb(tm−tm−1) Zb,k,sm−1 +Ab,k,sm ,

with Ak,sm ∼ fθs(·|cm) sampled from the prior transition
density. We then sample 10 realisations

tk,s,jm+1, c
k,s,j
m+1 ∼ gθs(tm+1, cm+1|Ẑk,sm ), j = 1, ..., 10,

using the standard thinning algorithm for point pro-
cesses, see for instance Ogata (1981); Daley and Vere-
Jones (2003); Bowsher et al. (2007). In the stochastic
Hawkes process model, we have chosen S = 4 and
K = 20. To account for a similar computational bud-
get for the benchmark models, we sample 10 · 4 · 20
event realisations in these cases instead. For predict-
ing the next mark cm+1, we use the sampled mark
that occurred most often within {ck,s,jm+1}k,s,j , where
the count associated with ck,s,jm+1 is weighted by W k,s

m .
Notice that we do not condition on the observed tm+1

for predicting cm+1 and the dependence of ck,s,jm+1 on
tk,s,jm+1 is accounted for via the thinning procedure. In
the stochastic Hawkes process model, we have also run
predictions using K = 80 particles, using the same
model trained with K = 20 particles.

In order to show how the different models generalize
if less data is available, we have trained the different
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models on either the first 100 or 1000 events of one
day and evaluated how well the model performs on
predicting the first 10000 events on another day. We
have repeated this procedure for 10 days and found that
a fully Bayesian treatment is beneficial when trained on
100 events. The fully variational approach has an error
rate of 65%, whilst the same stochastic Hawkes process
model using a point estimate of the static parameters
has an error rate of 70%. The two approaches yield
similar results when trained on 1000 events with an
error rate of below 50%, whereas a benchmark non-
linear Hawkes model without latent intensity dynamics
has an error rate of 65%. Although a fully Bayesian
treatment might not be necessary if one imposes a
parsimonious model for the evolution of the latent
intensity, we hope that this example encourages further
point process models that allow for online Bayesian
updating as we feel that intensity excitations with
latent dynamics have been underexplored for Hawkes
process models.

I Gaussian quadrature of the intensity
function

We approximate the integral of the intensity function
with Gaussian quadrature, see for instance Süli and
Mayers (2003) for details. Let p1, ..., pn be orthogonal
polynomials in L2[a, b] equipped with the scalar product
〈f, g〉 =

∫ b
a
f(t)g(t)dt, f, g ∈ L2[a, b] with pk having

degree k. Note that pk can be constructed recursively
by Gram-Schmidt-orthogonalization. Furthermore, let
t1, ..., tn be the roots of pn and consider the Lagrange
polynomials for i = 1, ..., n,

Li(t) =

n∏
j=1,j 6=i

t− tj
ti − tj

,

which satisfy Li(tk) = δik, k = 1, ..., n. Define

wi =

∫ b

a

Li(t)dt

as well as the Gaussian quadrature

In(f) =

n∑
i=1

wif(ti).

Then In(p) =
∫ b
a
p(t)dt for polynomials p of degree up

to 2n−1. We are interested in evaluating
∫ Tmax
Tmin

λi(t)dt
for fixed Tmin and Tmax. Here, Tmax is the time of
the next event and we have fixed Tmin to the previous
event plus one microsecond. The lowest resolution of
the event timestamps for the considered dataset is one
microsecond. Assume there is a function g such that

λ(t) = g(et) . We can write∫ Tmax

Tmin

λ(t)dt =

∫ log Tmax

log Tmin

g(et̃) et̃ dt̃.

This motivates the following change of variables that
has also been considered in Bacry et al. (2016) for solv-
ing an integral equation involving the kernel function of
a Hawkes process. Suppose that t1...tn are the quadra-
ture point with weights w1, ...wn on [log Tmin, log Tmax].
The transformed quadrature scheme is then

(t̃n, w̃n) = (etn , wn etn).

We used 50 quadrature points in our experiments.


