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1 Finite mixtures with regularized
composite transportation distance

In this section, we provide detailed analyses for obtain-
ing updates with weights and atoms in Algorithm 1
to find the local solution of the objective function in
Eq. (6), which optimizes finite mixtures with regular-
ized composite transportation distance. To ease the
presentation, we would like to remind this objective
function, which is defined as follows

min inf (m, M) — \H ()
Wi, OK mell(L1, wi)
where A > 0 is a penalization term and H(w) =
— > i Tijlogm; is an entropy of m € II(1,/n, wk).
Here, P, = %Z?:l dx, an empirical measure with
respect to samples Xq,...,X,. Furthermore, M =
(M;;) is a cost matrix such that M;; = —log f(X;]0;)
for 1 < i <n,1 <j < K while IT(+,-) is the set of
transportation plans between 1, /n and wgk.

1.1 Update weights

Our strategy for updating weights wx in the above
objective function relies on solving the following relax-
ation of that optimization problem

inf (m, M) — \H (7) (15)
weS,
where S,, = {71' : Zszl Tij = 1/n} Invoking the La-

grangian multiplier for the constraint wlx = %ln, the
above objective function is equivalent to minimize the
following function
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F = ZZT(UMU +/\ZZ7Tij (logmj — 1)

i=1 j=1 i=1 j=1

n K
1
+ E Kj E Tij — —
: X n
i=1 j=1

Dinh Phung? Michael I. Jordan'
fMonash University, Australia

By taking the derivative of F with respect to m;; and
setting it to zero, the following equation holds

oOF
87'('7;]'

= M;; + /\logmj + K; = 0.
The above equation leads to
—Mi‘ — R —K;

Invoking the condition ), m; = %, we have

exo () S () | = L,

Jj=1

which suggests that

( —Kj > 1 1

exp|— ) =— 5

A (X))
Governed by the previous equations, we find that

_1 (exaent
nyE L (FG10,))

Therefore, we can update the weight w; as

n
wj = mj
i=1

(16)

ij

forany 1 < j < K.

1.2 TUpdate atoms

Given the updates for weight wx and the formulation
of cost matrix M, to obtain the update for atoms 6;
as 1 < j < K, we optimize the following objective
function

n K
%El—z;z;mj log f(Xi0;). (17)
i=1 j=



Probabilistic Multilevel Clustering via Composite Transportation Distance: Supplementary Material

Since f(x]0) is an exponential family distribution with
natural parameter 6, we can represent it as

h(z)exp (T (x) ,0) — A(0)),

where A (0) is the log-partition function which is con-
vex. Plugging this formulation of f(x|f) into the ob-
jective function (17) and taking the derivative with
respect to 0;, we obtain the following equation

Z miy T

Therefore, we can update atoms ¢; as the solution of
the above equation for 1 < j < K,

f(=]0) =

— w;VA(8;) = 0. (18)

1.3 Proof for local convergence of
Algorithm 1

Given the formulation of Algorithm 1, we would like
to demonstrate its convergence to local solution of ob-
jective function (6) in Theorem 1.

Our proof of the theorem is straight-forward from the
updates of weights and atoms via Lagrangian multi-
pliers. In particular, we denote w&?, @(I?, and ()
as the update of weights, atoms, and transportation
plan in step t of Algorithm 1 for ¢ > 0. Addi-
tionally, let M® Dbe the cost matrix at step t, i.e.,

MS) = —log f(Xi|9J(-t)) for all i,j. Furthermore, we
denote
J(wk,BK) = inf (m, M) — \H () .

TI'GH(%].”,CAJK)
Then, for any ¢ > 0, it is clear that

g(wt? e = inf
WEH(TII 1,,,,4.);))

wiél;n <7r, M(t)> — AH ()

<7,(t+1>, M(t>> _\H (7,<t+1>>

<7'r Mt)> H ()

Y

v

where S,, = {71' : Zszl mi; =1/nV1<i< n} Here,
the first to the fact that

I ( 1,, w( ) C &, while the second inequality is due

inequality is due

to (16) in subsection 1.1. According to the update of
atoms in (18) in subsection 1.2, we have that

<7-‘-(t+1)7M(t)> COH (71'(“'1))
> <ﬂ-(t+1)7M(t+1)> CO\H (W(tﬂ))

> inf <7'r, M(t+1)> — MH (7)

ﬂ'EH( 1, w(t+1>)

— g(wi ey,

Governed by the above results, for any ¢ > 0, the fol-
lowing holds

9w, 0P) > gwict ).

As a consequence, we achieve the conclusion of Theo-
rem 1.

2 Regularized composite
transportation barycenter

In this section, we provide a detailed algorithm for
achieving local solution to regularized composite trans-
portation barycenter in objective function in Eq. (8).
To facilitate the discussion, we will remind the formu-
lation of that objective function. In particular, the
objective function with regularized composite trans-
portation distance has the following formulation

wrg%lL Z a; min <7rj, Mj> — AH (ﬂ'j)

j=1 wJEH(w’ij,WL

where M7 is the corresponding KL cost matrix be-

tween finite mixture probability distribution Pj eﬂ

and Qw, w, for 1 < j < J. Here, {aj}jzl € A’ are
given weights associated with the finite mixture prob-

J
ability distributions {Pi . } .
i j=1

K> 7K

As f(x|6) is an exponential family, the cost matrix
M’ = (M} ,) has the following formulation

M}, = KL(f(z[vy), f(«]67))
= A(ai) - A(%) - <VA(wv)a (ai - wv)>

forall 1 <wu,v < K.

2.1 Update weights and atoms

Our procedure for updating weights wg for the objec-
tive function of regularized composite transportation
distance will be similar to Algorithm 1 in [1]. There-
fore, we will only focus on the updates with atoms

W = (Y1,...,9%L).

Given the updates of weights wg, we compute the
optimal transportation plan m/ = (7J,) between ijj
and wy, using Algorithm 3 in [1]. Then, to obtain the
updates for ¥,, we consider the following optimization
problem

mmZaJZZWJ MJ

u=1v=1
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By taking the derivative of the above objective func-
tion with respect to 1, and setting it to 0, we achieve
the following equation

33w (92400, 9

j=1lu=1

_’(/)v>:O

One possible solution to the above equation is
Zj:l ZuKi1 7, (03 —b,) = 0. This previous equation
suggests that

Z] 1Zu 17T] 9]
Zj:l Zu':l o

for all 1 < v < L. Equipped with these updates for
weights wy, and atoms ¥, we summarize the detail of
an algorithm for determining the local solution of reg-
ularized composite transportation barycenter in Eq.
(8) in Algorithm 3.

% = (19)

Algorithm 3 Regularized composite transportation
barycenter

Input: Finite mixture probability distributions

{PJ'K o } ; given weights {aj}J ., and the
j=

regularlzed hyper-parameter A > 0.

Output: Optimal weights wy and atoms W¥p.
Initialize weights {w; }le and atoms {1); }le
while not converged do

1. Update weights wy, as Algorithm 1 in [1].
2. Compute transportation plans 7/ for 1 < j <
J using Algorithm 3 in [1].
3. Update atoms ¥, as in Eq. (19).
end while

2.2 Local convergence of Algorithm 3

Given the formulation of Algorithm 3, the following
theorem demonstrates that this algorithm determines
the local solution of objective function (8)

Theorem 3. The Algorithm 3 monotonically de-
creases the objective function (8) of regularized com-
posite transportation barycenter until local conver-
gence.

The proof of Theorem 3 is a direct consequence of the
updates with weights and atoms in the above subsec-
tion and can be argued in the similar fashion as that
of Theorem 1; therefore, it is omitted.

3 Multilevel clustering with
composite transportation distance

In this section, we provide detailed argument for the
algorithm development to determine the local solu-

tions of regularized multilevel composite transporta-
tion (MCT). To ease the presentation later, we would
like to remind the objective function of this problem as
well as all its important relevant notations. We start
with the objective function in Eq. (12) as follows

J

S W (PR )T PQ)

J J
wK].,QKJ.,Q

j=1

*R(TF,T,(I),

AT H(m) + (AlH(a) +
Ag 23'121 2221 H(79™)] is a combination of all regu-
larized terms for the local and global clustering. Here,
for the simplicity of our argument, we choose ( = 1
to derive our learning updates. In the above ob-
jective function, P = %ijl dpi ~and Q =
uKJ ,@JKJ
We summarize below the nota-

where R(m,7,a) =

c
tions for our algorithm development.

Variables of local clustering structures

e Local transportation plans for group j: =
1
{xi, o 1n7,wK)st Y0 T :n,and

Zu v = w{)?

e Local atoms for local group &’ I {ei}k _, end
=1
, - . = LV
their local mixing weights w’ = {wk} E=1

Variables of assignment group to barycenter

e Global transportation plan a =
II(+1,,b) between P and Q.

(ajm) €

Variables of global clustering structures

e Partial global transportation plans between local
measure P,_; i and global measure Q' pm
wic, ;

im J,m Jjm J

T = {Tkl }M where Y, ;" = wj and
j,m ’

21T

e Global atoms for global measure ¥} = {z/)lm}lL:l

=wtforalll<j<Jand1<m<C.

and global mixing weights w7" = {wlm}lL:lwhere
=Y, i forany j.
3.1 Local clustering updates

As being mentioned in the main text, to obtain up-
dates for local weights w?, K, and local atoms @ K> We
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solve the following regularized composite transporta-
tion barycenter problem

inf WP, P, ) = NH(#)

“’]Kjv@ij Tk, Ok
C K

+ D amW(PL o Qupay) =X Y H(ET).
m=1 J J m=1

The above objective function can be rewritten as

inf inf <7Tj,Mj> — NH(w?)
wl G)K wiell(-- 1“J7‘”K )
+ a; 1nf Fhm ~dm

— Z H(™)  (20)

where M’
P,

J J
w (C]
K"K

is the cost matrix between P,{j and

that has a formulation as

[Mj]u —log f(X;ul0} )
for 1 <u <njand 1 <wv < Kj. Additionally, the cost
matrix 47 has the following formulation

— i)

Update local weights: The idea for obtaining the
local solutions of above objective function is similar to
that in Section 1.

A= A(6) - A - (VA (4

Update local atoms: Given the updates for local
weight w]Kj, to obtain the update equation for local

atoms @J}{_, we optimize the following objective func-
J
tion

c
mln—ZZﬂ log f(X;..|09) —i—Za]mZ ]lm'yilm.
m=1 v,l

u=1v=1 s

(21)

Since f(x]0) is an exponential family distribution with
natural parameter 6, we can represent it as

f(z]6) = h(z) exp (T (x) , 8) — A(0)),

where A (0) is the log-partition function which is con-
vex. Given that formulation of f(z|f), our objective
function (17) is equivalent to minimize the following

objective function

ZZ” Xju),0) -

u=1v=1
+Z“sz7'kz [

— (VA" (6] wzn)>]~

Eocal =

A(67))

A"

By direct computation, Fjoca1 has the following partial
derivative with respect to 67

6?91 - ZW —VA(%))
n Z aijTJm [VA(6]) — VAWM
- Z 7 (X)) +wiVA (6]
+ Zlajm Z (VA(0)) = VA®@M),

where in the last equality,
ZZJ:1 7T1jw = wqjj'

Given the above partial derivatives, we can update the
atoms 67 to be the solution of the following equation

we use the identity

Z%mz VA ) + Zﬁj T(Xju)

VA (p7) = == 4
mzl Ajm E 4wl

(22)
3.2 Computing global transportation plan

Given the updates for local weights w%-(j and local
atoms @Ji(j for 1 < j < J, we now develop an update
on for global transportation plan @ = (a;,) between
P and Q. Our strategy for the update relies on solving
the following objective function

mf Z ajmW (Pj Qm ‘I”L") -\ H(a).

where a in the above infimum satisfies the constraint
alyg = %171. By means of Lagrangian multiplier, the
above objective function can be rewritten as

global Zajm <Pj @ j aQw \Ilm)
J C 1
_AaH(a’) +Kfaz <Z Qjm — J) ’
m=1

j=1
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The function Fglonal has the partial derivative with
respect to aj,, as follows

0F, global

—wlp
aajm < W

)
Kj

o aQZ}ﬁ,\IﬂT) + Aq log Ajm + Kq

. J.m jm
—ZTM Yy +AaInajm, + K.

Setting the above derlvatlve to 0 and invoking the con-
straint that Zm L @jm = ¥, we find that

m_j,m 1/Xa
1 ©Xp (‘Zkﬂm Vit )

7 g\
> €XP (*Zk,z Tt Vi )

forl<j<Jand1<m<L.

(23)

Ajm =

3.3 Global clustering updates

Given the updates with local weights and atoms as well
as the global transportation plan, we are now ready to
develop an update for global weights w7 and global
atoms W7 for 1 < m < C. In particular, the objective
function for updating these global parameters are as

follows

{wml?l{n‘llm};;lajm jjj) J ,’QWL,\I””)
J C
—Xg D) H(r™
j=1m=1

The above objective function can be rewritten as

{wmr?l{nqlm} Z Z jm inf

o’ Timell(w W)

+ Ag ZTM (log Tk’m — 1))
k,l

(T

Given the above objective function, for each m, to up-
date the global weights w7 and global atoms W7,
we consider the following composite transportation
barycenter

Ir "pm E @jm inf
w : . ,
i=

J m
-rﬂvaH(ij W

2, 3 (tog i 1)).
Kl

(e )

Update global weights: Given the above objective
function, the idea for updating the global weights w7’
is similar to Algorithm 1 in [1].

Update partial transportation plans: Once

global weights are obtained, we can use Algorithm

3 in [1] to update the optimal partial transportation

plans 7™ between local measure P 1 @ and global
K" O K

measure Qlm ym-
Tk

Update global atoms: With the updates for the
global weight w'", to obtain the update equation for
global atoms ¥7', we minimize the following objective
function

J

Jjm_ j,m
E Ajm E :Tkl Vil

Jj=1

> am D" (A (1) - A
j=1 k1
- wf”})-

Taking the derivative of F, global With respect to ;"
and setting it to zero, we find that
o) =o.

ZaymZngMVQA (I )(%m—

Since the log-partition function A(:) is convex,
V2A(¢,) is a positive-semidefinite matrix. There-

; : ,
fore, we can choose 77 ajm D), ;™ (z/)lm 0%) =0,

which means that

er—global

<

— (VA6

8‘/—"p global
8@/]7”

J K; J,m pnd
Zj:l D okl1 GimTiy Oy,
J K; jm
Ej:l Dokl AmTi

Yt =

3.4 Proof for local convergence of
Algorithm 2

Equipped with the above updates with local and
global parameters of regularized MCT, we are ready
to demonstrate the convergence of Algorithm 2 to lo-
cal solution of objective function (12) of regularized
MCT in Theorem 2. To simplify the argument, we
only provide proof sketch for this theorem.

In particular, we denote w%;gt) and @%;gt) as the up-
dates of local weights and local atoms in step t of
Algorithm 2 for ¢ > 0. Similarly, we denote WT’(t)

and \IﬂLn ®) as the updates of global weights and global
atoms at step t. Furthermore, we denote

g{wi b AORT AW
ZW( i wK®K> +(W (P, Q)

—R(m,7,a).

SRR T



Probabilistic Multilevel Clustering via Composite Transportation Distance: Supplementary Material

Then, according to local clustering updates step, we
would have

g({w;’((]t)}, {@‘?((]t)}’ {Wzn7(t)}7 {lIl"Ln7(t)})
> (i L AORT ) e ) 1o ),

On the other hand, invoking the global clustering up-
dates step, we achieve

j,(t+1 i (t+1 m, m,
g({"“’;(gt+ )},{@i(iw )}, {w} (t)},{\IfL (t)})
> g({w%tﬂ)}’ {eié(jtﬂ)}’ {WT,(tH)L {lI’zz,(t—&-l)})

Governed by the above results, for any ¢ > 0, the fol-
lowing holds

O A RCHOR RN YA
> gAY (i D {w ),

As a consequence, we achieve the conclusion of Theo-
rem 2.
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