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Abstract

We propose a novel probabilistic approach
to multilevel clustering problems based on
composite transportation distance, which is a
variant of transportation distance where the
underlying metric is Kullback-Leibler diver-
gence. Our method involves solving a joint
optimization problem over spaces of prob-
ability measures to simultaneously discover
grouping structures within groups and among
groups. By exploiting the connection of our
method to the problem of finding composite
transportation barycenters, we develop fast
and efficient optimization algorithms even
for potentially large-scale multilevel datasets.
Finally, we present experimental results with
both synthetic and real data to demonstrate
the efficiency and scalability of the proposed
approach.

1 Introduction

Clustering is a classic and fundamental problem in ma-
chine learning. Popular clustering methods such as K-
means and mixture models have been the workhorses
of exploratory data analysis. However, the underlying
model for such methods is a simple flat partition or a
mixture model, which do not capture multilevel struc-
tures (e.g., words are grouped into documents, doc-
uments are grouped into corpora) that arise in many
applications in the physical, biological or cognitive sci-
ences. The clustering of multilevel structured data
calls for novel methodologies beyond classical cluster-
ing.
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One natural approach for capturing multilevel struc-
tures is to use a hierarchy in which data are clustered
locally into groups, and those groups are partitioned in
a “global clustering.” Attempts to develop algorithms
of this kind can be roughly classified into two cate-
gories. The first category makes use of probabilistic
models, often based on Dirichlet process priors. Exam-
ples in this vein include the Hierarchical Dirichlet Pro-
cess (HDP) [23], Nested Dirichlet Process (NDP) [19],
Multilevel Clustering with Context (MC?) [15], and
Multilevel Clustering Hierarchical Dirichlet Process
(MLC-HDP) [26]. Despite the flexibility and solid sta-
tistical foundation of these models, they have seen lim-
ited application to large-scale datasets, given concerns
about the computational scaling of the sampling-based
algorithms that are generally used for inference under
these models.

A second category of multilevel methods is based on
tools from optimal transport theory, where algorithms
such as Wasserstein barycenters provide scalable com-
putation [, [5]. These methods trace their origins to
a seminal paper by Pollard [I8] which established a
connection between the K-means algorithm and the
problem of determining a discrete probability measure
that is close in Wasserstein distance [24] to the empiri-
cal measure of the data. Based on this connection, it is
possible to use Wasserstein distance to develop a com-
bined local/global multilevel clustering method [7].

The specific multilevel clustering method proposed
in [7] has, however, its limitations. Most notably, as
that method uses K-means as a building block, it is
only applicable to continuous data. When being used
to cluster discrete data, it yields poor results. In this
work, we make use of a novel form of transportation
distance, which is termed as composite transportation
distance [16], to overcome this limitation, and to pro-
vide a more general multilevel clustering method. The
salient feature of composite transportation distance is
that it utilizes Kullback-Leibler (KL) divergence as the
underlying metric of optimal transportation distance,
in contrast to the standard Euclidean metric that has
been used in optimal transportation approaches to
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clustering to date.

In order to motivate our use of composite transporta-
tion distance, we start with a one-level structure data
in which the data are generated from a finite mixture
model, e.g., a mixture of (multivariate) Gaussian dis-
tributions or multinomial distributions. Unlike tra-
ditional estimators such as maximum likelihood esti-
mation (MLE), the high-level idea of using composite
transportation distance is to determine optimal pa-
rameters to minimize the KL cost of moving the like-
lihood from one cluster to another cluster. Intuitively,
with such a distance, we can employ the underlying
geometric structure of parameters to perform efficient
clustering with the data. Another advantage of com-
posite transportation distance is its flexibility to gen-
eralize to multilevel structure data. More precisely, by
representing each group in a multilevel clustering prob-
lem by an unknown mixture model (local clustering),
we can determine the optimal parameters, which can
be represented as local (probability) measures, of each
group via optimization problems based on composite
transportation distance. Then, in order to determine
global clustering among these groups, we perform a
composite transportation barycenter problem over the
local measures to obtain a global measure over the
space of mixture models, which serves as a partition of
these groups. As a result, our final method, which we
refer to as multilevel composite transportation (MCT),
involves solving a joint optimal transport optimization
problem with respect to both a local clustering and a
global clustering based on the cost matrix encoding
KL divergence among atoms. The solution strategy
involves using the fast computation method of Wasser-
stein barycenters combined with coordinate descent.

In summary, our main contributions are the follow-
ing: (i) A new optimization formulation for clustering
based on a variety of multilevel data types, including
both continuous and discrete observations, based on
composite transportation distance; (ii) We provide a
highly scalable solution strategy for this optimization
formulation; (iii) Although our approach avoids the
use of the Dirichlet process as a building block, the
approach has much of the flexibility the hierarchical
Dirichlet process in its ability to share atoms among
local clusteringdl We thus are able to borrow strength
among clusters, which improves statistical efficiency
under certain applications, e.g., image annotation in
computer vision.

The paper is organized as follows. Section [2| provides

Although our model focuses on the finite mixture case,
one can add a regularization term to control the complex-
ity of the model (aka the number of clusters) similar to
DP-means [12] or use the (Poisson) prior as a regulariza-
tion [14].

preliminary background on composite transportation
distance and composite transportation barycenters.
Section [3] formulates the multilevel composite trans-
portation optimization model, while Section [4] presents
simulation studies with both synthetic and real data.
Finally, we conclude the paper with a discussion in
Section Technical details of proofs and algorithm
development are provided in the Supplementary Ma-
terial.

2 Composite transportation distance

Throughout this paper, we let © be a bounded sub-
set of R? for a given dimension d > 1. Additionally,
{f(z|0), 6 € O} is a given exponential family of dis-
tributions with natural parameter 6:

f(]0) == h(z)exp ((T () ,0) — A(0)),

where A (0) is the log-partition function which is con-
vex. We define Py to be the probability distribution
whose density function is f(z]0). Given a fixed number
of K components, we denote a finite mixture distribu-
tion as follows:

K
PUJK,@K ::Zwkpeka (1)
k=1

., wr) € AK which is a probabil-
ity simplex in K — 1 dimensions, and @y = {Hk}le €
O©K are the weights and atoms. Then, the probability
density function of mixture model can be expressed

K
Pur.ox (@) =Y wif(x|0h).
k=1

where wi = (wy, ..

We also use Qu @, to denote a finite mixture of at
most K components to avoid potential notational clut-
ter.

2.1 Composite transportation distance

For any two finite mixture probability distributions
P, e, and Pw/K”@/K/ and any two given numbers K
and K’, we define the composite transportation dis-
tance between P, e, and Pw/K”G),K’ as follows

W (P,

P, @/K,) = inf (m, M), (2)

KO0 K ﬂEH(wK,w’K,)

where the cost matrix M = (M;;) satisfies M;; =
KL(f(x[6:), f(x]0})) for 1 <i < K and 1 < j < K.
Here, (.,.) denotes the dot product (or Frobenius in-
ner product) of two matrices and II(wg,w'/) is the
set of all probability measures (or equivalently trans-
portation plans) 7 on [0, 1]E*X " that have marginals
wg and w’., respectively.
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Detailed form of cost matrix Since f(z|6)
is an exponential family, we can compute
L (f(z|0), f(x]€")) in closed form as follows [27] [IT,
Ch.g8]}

L (f(x|0), f(x]0))

where Dy (+,-) is the Bregman divergence associated
with log-partition function A (-) of f, i.e.,

DA(8,6) = A(9) — A(6) — (VA(®)),(6 - 9)).

= DA (9,9/),

Therefore, the cost matrix M has an explicit form
My = A0) ~ A@) ~ (VA®). (6.~ 6)) (3
forl<i<Kand1<j<K'

Composite transportation distance on the
space of finite mixtures of finite mixtures We
can recursively define finite mixtures of finite mixtures,
and define a suitable version of composite transporta-
tion distance on this abstract space. In particular, con-
sider a collection of N finite mixture probability dis-

N
K3
Ok }1:1

and a collection of N finite mixture probability distri-

tributions with at most K components {Pwi(

N
butions with at most K components {P ppe—, } .

Sk [,
We define two finite mixtures of these distributions as
follows

N
P = ZTi
i=1

where 7 = (71,...,

N
P . ] — TP —
w’K,@}(7 Q ;_1 7 w;?7®;?7

75) € AN and T = (7y,...,7y) €
AN . Then, the composite transportation distance be-
tween P and Q is

W(P,Q):= inf

well(r,T)

(m, M),

where the cost matrix M = {M;;} is defined as

JfW( ®Z’PU';;<,6£’(),

for 1 <i < N and 1< j<N. Note that, in a slight
notational abuse, W {(.,.) is used for both the finite
mixtures and finite mixtures of finite mixtures.

2.2 Learning finite mixtures with composite
transportation distance

X, are i.i.d.
0@ (¥) =
ZZ LW f(x|69), where ko < oo is the true number of

components. Since kg is generally unknown, we fit this
model by a mixture of K distributions where K > k.

In this section, we assume that Xi,...,
samples from the mixture density p,,

Note that the order of parameters is reversed in KL
and Bregman divergence.

2.2.1 Inference with composite
transportation distance

Denote P, := %Z;;l dx, as an empirical measure
with respect to samples X1,..., X,. To facilitate the
discussion, we define the following composite trans-
portation distance between an empirical measure P,
and the mixture probability distribution P,

K,OK

W(Py, Pogoy) =  inf (7, M), (4)
/ ﬂGH(%ln,wK)

where M = (M;;) € R"™¥ is a cost matrix defined

as M;; == —log f(X;|0;) for 1 <i <n,1<j<K.

Furthermore, II (-, -) is the set of transportation plans

between 1,,/n and wg.

To estimate the true weights w? k, and true components
09 as 1 < i < ko, we perform an optimization with

transportation distance W as follows:

(@i Op i) = argmin W(Py, Puyoy).  (5)

wk,OK

The estimator (&, k, @)n K ) is usually referred to as
the Minimum Kantorovitch estimator [I].

Algorithm 1 Composite Transportation Distance
with Mixtures

Input: Data D = {X;}._,; the number of clusters K
the regularized hyper-parameter A > 0.
Output: Optimal weight-atoms {w;, 94}K

Initialize weights {wj} _, and atoms {6; }
while not converged do
1. Update weights w;:
for j =1to K do
Compute transportation plan m;; as
K

g = (f(Xilo;)' / <n2(f(xiej))1/*>
k=1

for1<i<n
Update weight w; = Y1 | ;.

end for

2. Update atoms 0;:

for j=1to J do
Update atoms 6; as solution of equation
VA(6;) = Y, T (X,).

end for

end while

2.2.2 Regularized composite transportation
distance

As is the case with the traditional optimal trans-
portation distance, the composite transportation dis-
tance W does not have a favorable computational
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complexity. Therefore, we consider an entropic reg-
ularizer to speed up its computation [4]. More pre-
cisely, we consider the following regularized version of
VV(ZDH7 PwK7@K):

inf (e, M) — NH (7r) ,
7\'61'[(%17“‘01()

where A > 0 is a penalization term and H (w) =
— i mijlogmy; is an entropy of w € II(1,/n, wk).
Equipped with this regularization, we have a regular-
ized version of the optimal estimator in :

min inf (m, M) — MH (7). (6)
WK,OK WEH(%]«/”WK)

We summarize the algorithm for determining local so-
lutions of the above objective function in Algorithm
The details for how to obtain the updates of weight and
atoms in Algorithm [I] are deferred to the Supplemen-
tary Material. Given the formulation of Algorithm [T}
we have the following result regarding its convergence
to a local optimum.

Theorem 1. The Algorithm monotonically de-
creases the objective function (@ of the regularized
composite transportation distance for finite miztures.

2.3 Composite transportation barycenter for
mixtures of exponential families

In this section, we consider a problem of finding com-
posite transportation barycenters for a collection of
mixtures of exponential family. For J > 1, let

J
{PJ P } be a collection of J mixtures of expo-
w (C)
Ki? 7K ) j=1

nential families as described in (), and let {a; }‘j]:1 €
A’ be weights associated with these mixtures. The
transportation barycenter of these probability mea-
sures is a mixture of exponential family with at most
L components, and is defined as an optimal solution
of the following problem:

J
argmin ZajW (QWLﬂI’L;Pi;(J@;(‘) ) (7)

wLo¥r =1

where wy, = {w}_, € AL and ¥ = {y;}, € OF
are unknown weights and parameters that we need to
optimize. Recall that, to avoid notational clutter, we
use Qw,,w, to denote a finite mixture with at most

L components. Since P’;, _;
wi. ,©
C

and Qw, w, are mix-
tures of exponential families, Eq. can be rewritten
as
J
argmin E a; min <7rJ,M]> ,

wr ¥, 7j=1 I ell w‘}(.,wL
J

where the cost matrices M? = (MJ,) satisfy MJ, =
KL(f(x]67), f(z|1,)) for 1 < j < J, which has the
closed form defined in Eq. since f is from an ex-
ponential family of distributions.

2.3.1 Regularized composite transportation
barycenter

We incorporate regularizers in the composite trans-
portation barycenter. In particular, we write the ob-
jective function to be minimized as

J
argmin Z a; min <7rj7 Mj> — AH (ﬂj) . (8)
wr, ¥, j=1 7 €Il wjkj ,wL>

We call this objective function the regularized com-
posite transportation barycenter. Due to space con-
straints, we present the detailed algorithm for deter-
mining local solutions of this objective function in the
Supplementary Material.

3 Probabilistic clustering with
multilevel structural data

Assume that we have J groups of independent data,
Xji, wherel < j < Jand1 <¢ < nyjie., the data are
presented in a two-level grouping structure. Our goal
is to find simultaneously the local clustering for each
data group and the global clustering across groups.

3.1 Multilevel composite transportation
(MCT)

To facilitate the discussion, for each 1 < j < J, we
denote the empirical measure associated with group j
as

P
] 1 J
P%j = ; E 6Xj,i'
J

i=1

Additionally, we assume that the number of local and
global clusters are bounded. In particular, we al-
low local group j to have at most K clusters, which
can be represented as a mixture of exponential fami-

lies P’ ; » while we have at most C' global clusters
wj,G)Kj

among J given groups. Here, each global cluster can
be represented as a finite mixture distribution szn o
with at most L clusters, where w}* = (w(",...,w]")
and OT' = (Y7, ..., YT are global weights and atoms
for 1 < m < C, respectively.

3.1.1 Local clustering and global clustering

With the local clustering, we perform composite trans-
portation distance optimization for group j, which can
be expressed as in . More precisely, this step can be
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viewed as finding optimal local weights w];(j and local
atoms @j}(j to minimize the composite transportation
distance W(P,{,Pwi(j’ei(j) forall 1 < j < J. Re-

garding the global clustering with J given groups, we

can treat the finite mixture probability distribution

P i of each group as observations in the space
KOk

of distributions over probability distributions. Thus
we achieve a clustering of these distributions by means
of an optimization with the following composite trans-
portation distance on the space of finite mixtures of
finite mixtures:

inf W (P
inf (P,9Q),

1 J
where we denote P := 72j:1 6ij and Q :=

7
Kj Kj

C

3.1.2 MCT formulation

Since the finite mixture probability distributions

P ; g in each group are unobserved, we determine
K. ©O%.
J J

them by minimizing the objective cost functions in the
local clustering and global clustering simultaneously.
In particular, we consider the following objective func-
tion:

inf Zw< o >+<W(P,g), (9)
“’ZK , j, K;'CK;
where ¢ > 0 serves as a penalization term between the
global cluster and local cluster. We call this problem
Multilevel Composite Transportation (MCT).

3.2 Regularized version of MCT

To obtain a favorable computation profile with MCT,
we consider a regularized version of the composite
transportation distances in both the local and global
structures. To simplify the discussion, we denote
€ H(ilnj,w]K ) as local transportation plans be-

tween Pj and PJ ol for all < j < J. Thus, the
following formulatlon holds
W Pl P, ; = mf ™, MY,
( i ""i(j’@JKj) miell(- ln ,wK )< ’ >
where M7 is the cost matrix between P,Zj and
J iq ]
ijkj o that is defined as

[M]up = —log f(X;.ul62),

for 1 <u < mnj and 1 < v < Kj. Therefore, we can
consider the regularized version of composite trans-
portation distance at each group j as follows:

W (ng,Pik,ejI.() — NH(w), (10)

where A\; > 0 is a penalization term for each group.
Regarding the global structure, according to the defi-
nition of composite transportation distance for proba-
bility measure of measures, we have

E m
a; j i v
b) ]m A}@;KjszL,\Il’L' )’

.7 J

W(P, Q)= inf

acll( lJ,

where @ = (a,,,) in the above infimum is a global trans-
portation plan between P and Q. Here, we can further
rewrite W(P] o1 @um ym) as

w; Ok, prr
W(Pij e anvzzz\I:m) = 1nf

Jim J,m
L (7™ ),
KOk Timell(w? K ,wm)

where the cost matrix 4™ is defined as KL divergence
between two exponential family atoms in Eq. :

= A (0]) - 4 o))

To facilitate the discussion later, we denote 7™ the
partial global transportation plan between P _; q;
K" OK

and Qv"‘}zz’q,zz.
posite transportation distance with global structure as

C
> HE(EP™), (1)

1m=1

(i) = (VA @), (6] -

Therefore, we can regularize the com-

W (P, Q) —

>
Q

o,

i M“

where A, corresponds to a penalization term for global
structure while )\, represent a penalization term for
a partial global transportation plan. Combining the
results from Eqgs. and , we obtain the overall
objective function of MCT:

inf ZW(

va 7Q] 1

%)wW(P?Q)

J' J

— R(mw,7,a), (12)

where R (mw,T,a) = X\ ijl H(w7) + ¢[A\H(a) +
Ag Z}]:1 S _ H(79™)] is a combination of all reg-
ularized terms for the local and global clustering. We
call this objective function regularized MC'T.

3.3 Algorithm for regularized MCT

We now describe our detailed strategy for obtaining
a locally optimal solution of reqularized MCT. In par-
ticular, our algorithm consists of two key steps: local
clustering updates and global clustering updates. For
simplicity of presentation, we assume that at step t of
our algorithm, we have the following updated values
of our parameters: w’, ,@% w7 W for1<j<J
and 1 ; m<C. o T ’
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Algorithm 2 Probabilistic Multilevel Clustering

Input: Data D = {Xj,l}]j ”{Z 13 the number of local
clusters K; and global clusters C; the number of
components in each global cluster L; the penaliza-
tion term (; the regularized hyper-parameters \;, A,.

Output: local and global parameters
%,@;{j7wf,@? forl<j<Jand1<m<C.
Initialize these local and global parameters.
while not converged do

1. Update local parameters:.
for j =1to J do
Update w’ K, @JK as optimal solutions of .
end for
2. Update global parameters:
for m =1 to C do
Update w7', ®7" as optimal solutions of (14).
end for
end while

Local clustering updates To obtain updates for
local weights w’, K, and local atoms @7, , we solve the

following combined regularized compos1te transporta-
tion barycenter problem:

inf W <P5j7pjj o > — NH(7?) (13)
“"ijv@i(]- ij’ Kj
c C
+ Z aij(Pji( ,@Q’Qazl’%n) Y Z H(T"™),
m=1 J 7 m=1

where 77 is the local transportation plan between
P,Z]_ and P] ol at step t while a and 7™ are re-
spectively thé glojbal transportation plan and partial
global transportation plans at this step. The idea of
obtaining local solution of the above objective func-
tion is identical to that of ; therefore, we defer the
detailed presentation of this algorithm to the Supple-
mentary Material.

Global clustering updates In order to update the
global weights w7 and global atom parameters W7,
we consider the following optimization problem:

a) + A ZZH Imy)(14)

j=1m=1

1an(P Q) — (A

The algorithm for obtaining the local solutions of
this objective is based on bacycenter computation al-
gorithms in [5] for updating barycenter weights w7’
and the partial global transportation plan 77, The
natural parameters of global atoms of the barycenters
are weighted averages of local atoms from all group j:

Z] 1Zu 17T] 9]

ST S

-1 7ruv

© ] © ©

-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5

Figure 1: Synthetic multilevel Gaussian data (orange
at top) and inferred clusters (blue at bottom).

The detailed derivation of this algorithm is deferred to
the Supplementary Material. In summary, the main
steps of updating the local and global clustering up-
dates are summarized in Algorithm 2] We have the
following result guaranteeing the local convergence of
this algorithm.

Theorem 2. Algorithm[q monotonically decreases the
objective function of reqularized MCT until local
convergence.

4 Experimental studies

We first evaluate the model via simulation studies,
then demonstrate its applications on text and image
modeling using two real-world datasets.

4.1 Simulated data

We evaluate the effectiveness of our proposed cluster-
ing algorithm by considering two types (discrete and
continuous) of synthetic data generated from multi-
level processes as follows.

Continuous data We start with six clusters of data,
each of which is a mixture of three Gaussian compo-
nents. Figure [I| depicts the ground truth of the six
mixtures we generate the data from. We uniformly
generated 100 groups of data, each group belonging
to one of the six aforementioned clusters. Once the
cluster index of a data group was defined, we gener-
ated 500 data points from the corresponding mixture
of Gaussians.

Discrete data Data was generated from five clus-
ters of 25-dimensional bar topics, each of which is a
mixture of four bar topics out of total ten topics as
shown in Figure [2| (second row). Each cluster shares
two topics with any other cluster. We then generated
500 groups of data, each group belonging to one of the
five aforementioned clusters. Once the cluster index of
a data group is defined, we generate 100 data points
from the mixture of bar topics of that cluster.
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’ Datasets ‘#groups(J)H#dim“#points(nj)"#Clusters(C)‘ ’ Datasets ‘#groups(J)‘#dim‘#clusters(C)‘
Continuous data 100 2 500 6 LabelMe 1,800 30 8
Discrete data 500 25 100 5 NUS-WIDE| 1,040 238 13

(a) Statistics of synthetic datasets

(b) Statistics of real-world datasets

Table 1: Summarization of synthetic and realworld datasets

topics in

each cluster

genereated data

rediscovered data

Figure 2: Synthetic multilevel bar topic data (two top
rows) and rediscovered output (bottom row)

Clustering results We ran the proposed method
with synthetic continuous data using the following lo-
cal and global penalization hyper-parameters: A; and
Ag are set equal to 1.3 and 10, respectively. We model
each atom in the (local and global) mixture models
as an isotropic multivariate Gaussian. As shown in
the bottom row of Figure[I} the model is able to redis-
cover the clustering structure in the generated dataset.
Comparing with the top row of the figure, there is per-
mutation in the order of discovered mixture models
due to the label switching. Similarly, we use Categor-
ical distribution to model each atom in the mixture
models of the proposed model. Each observation Xj;
now is a one-hot vector. We simulated from ten topics
including five horizontal and five vertical bars. The
top row of Figure [2] depicts a collection of four bar
topics that data of a cluster may be generated from:;
i.e., the first cluster contains data simulated from a
mixture of four horizontal bar topics. In the middle
row, we depict the histogram plot of all data gener-
ated from each cluster while the bottom row shows
the plot of clusters discovered by our proposed model.
There is only a slight difference in the plot between
ground truth and the inferred mixture of bar topicq
These results demonstrate the effectiveness and flex-
ibility of our algorithms in learning both continuous
and discrete data.

We also measured the NMI (Normalized Mutual In-
formation) between the ground truth labels and learned
groups and obtained around 0.98.

[ Methods | NMI | ARI | AMI |

K-means 0.37 0.282 | 0.365
SVB-MC2 | 0.315 | 0.206 | 0.273
W-means | 0.423 0.35 0.416

MCT 0.485 | 0.412 | 0.477

Table 2: Clustering performance on LabelMe (contin-
uous) dataset.

[ Methods | NMI | ARI | AMI |

K-means 0.35 0.093 0.22
SVB-MC2 | 0.295 | 0.139 | 0.249
W-means | 0.356 | 0.089 | 0.203

MCT 0.423 | 0.255 | 0.39

Table 3: Clustering performance on NUS-WIDE (dis-
crete) dataset.

4.2 Real-world data

We now demonstrate our proposed model on two real-
world datasets: the LabelMe dataset |20 [17] with con-
tinuous observations and the NUS-WIDE [2] with dis-
crete observations. Statistics for these datasets are
presented in Table

LabelMe dataset This consists of 2,688 annotated
images which are classified into eight scene categories
including tall buildings, inside city, street, highway,
coast, open country, mountain, and forest [20]. Each
image contains multiple annotated regions. Each re-
gion, which is annotated by users, represents an ob-
ject in the imagd We remove the images containing
less than four annotated regions and obtained totally
1,800 images. We then extract GIST features [13], a
visual descriptor to represent perceptual dimensions
and oriented spatial structures of a scene, for each re-
gion in an image. We use PCA to reduce the number
of dimensions to 30.

NUS-WIDE dataset We used a subset of the orig-
inal NUS-WIDE dataset [2] which contains images of

Sample images and annotated regions can be found at
http://people.csail.mit.edu/torralba/code/spatialenvelope/
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elephant
bravo

sky

explore

Cd ttiger

animal

Figure 3: Tag cloud of six clusters discovered by the
proposed model with the NUS-WIDE dataset.

13 kinds of animalg] comprising 2,054 images in train-
ing subset. Each image is annotated with several tags
out of 1,000 tags. We filtered out images with less
than three tags and obtained 1,040 images with the
remaining number tags of 238. After preprocessing,
we have a dataset with 1,040 groups; each data point
in a group is a one-hot vector of 238 dimensions repre-
senting a tag word annotated for that group (image).

Baseline methods We quantitatively compare our
proposed method to baseline approaches discussed
in [7], including K-means, W-means, and SVB-MC2
without context [9]. We use three popular metrics:
NMI (Normalized Mutual Information) [21, 16.3], ARI
(Adjusted Rand Index) [§], and AMI (Adjusted Mu-
tual Information) [25] to evaluate the clustering per-
formance.

Experimental results We conducted experiments
on the LabelMe dataset with the number of local
atoms set equal to K = 5, the number of global atoms
set to L = 15, and the number of clusters set to
C = 8. We ran 10-fold cross-validation to choose the
best hyper-parameters for penalized terms which are
Ar =3 and Ay = 3. As shown in Table[2] our proposed
method is superior to the baseline methods in terms
of clustering performance.

We also compared clustering performance using the
discrete real-world dataset NUS-WIDE. We chose K =
2, L =4, and C = 13 with the 10-fold cross-validation
hyper-parameters A\; = 1 and A\; = 1.6. Results are
presented in Table|3] Since baseline methods are appli-
cable only to continuous data, we have normalized the
discrete data for each image and then applied the base-
line methods to cluster the dataset. The results show
that the clustering performance of K-means and W-
means is inferior to that of our proposed model which

including squirrel, cow, cat, zebra, tiger, lion, elephant,
whales, rabbit, snake, antlers, hawk and wolf

directly models discrete data. Moreover, the Adjusted
Rand Index (ARI) and Adjusted Mutual Information
(AMI) of these model show that their clustering out-
comes are not robust.

To illustrate the qualitative results of the proposed
model, we selectively choose six out of thirteen clus-
ters discovered and computes the proportion of tags
presented in each cluster. Figure [3| depicts tag-clouds
of these clusters. Each tag-cloud consistently mani-
fests the cluster content. For example, the top-left
tag-cloud denote the cluster of rabbits, which is one of
the ground-truth subsets of images.

5 Discussion

We have proposed a probabilistic model that uses
a novel composite transportation distance to cluster
data with potentially complexed hierarchical multi-
level structures. The proposed model is able to handle
both discrete and continuous observations. Experi-
ments on simulated and real-world data have shown
that our approach outperforms competing methods
that also target multilevel clustering tasks. Our de-
veloped model is based on the exponential family as-
sumption with data distribution and thereby applies
naturally to other data types; e.g., a mixture of Pois-
son distributions [I0]. Finally, there are several possi-
ble directions for extensions from our work. First, it is
of interest to extend our approach to richer settings of
hierarchical data similar to those considered in MC?
[15]; e.g., when group-level context is available in the
data. Second, our method requires knowledge of the
upper bounds with the numbers of clusters both in lo-
cal and global clustering. It is of practical importance
to develop methods that are able to estimate these car-
dinalities efficiently. Third, regarding computational
scalability, we can leverage the recent development
of stochastic computation [3] and distributed/parallel
computation [22] [6] of Wasserstein barycenter into our
algorithm development which allows us to scale up our
learning problem for millions of data groups.
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