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Assumptions and examples
No algorithm can achieve arbitrarily good performance across all possible distributions [11].
In order to obtain meaningful theoretical results, we must place conditions on the underlying
distribution, as well as the model and objective functions used. We give concrete examples to
illustrate that these assumptions are reasonable, and that they include scenarios that allow for
both sub-Gaussian and heavy-tailed data.

A0. W is a closed, convex subset of Rd, with diameter ∆ ..= sup{‖u− v‖ : u,v ∈ W} <∞.

A1. Loss function l( · ; z) is λ-smooth on W.

A2. R(·) is λ-smooth, and continuously differentiable on W.

A3. There exists w∗ ∈ W at which g(w∗) = 0.

A4. R(·) is κ-strongly convex on W.

A5. There exists v <∞ such that Eµ(l′j(w; z))2 ≤ v, for all w ∈ W, j ∈ [d].

Of these assumptions, assuredly A0 is simplest: any ball (here in the `2 norm) with finite
radius will suffice, though far more exotic examples are assuredly possible. The remaining
assumptions require some checking, but hold under very weak assumptions on the underlying
distribution, as the following examples show.
Example 1 (Concrete example of assumption A1). Consider the linear regression model y =
〈w∗,x〉+ η, where x is almost surely bounded (say P{‖x‖ ≤ c} = 1), but the noise η can have
any distribution we desire. Consider the squared loss l(w; z) = (〈w,x〉−y)2, and observe that
for any w,w′ ∈ W, we have

l′(w; z)− l′(w′; z) = 2(〈w −w′,x〉)x

and thus

‖l′(w; z)− l′(w′; z)‖ ≤ 2‖x‖2‖w −w′‖ ≤ 2c2‖w −w′‖.

Thus we have smoothness with λ = 2c2, satisfying A1.
Example 2 (Concrete example of assumptions A2 and A3). Consider a similar setup as in
Example 1, but instead of requiring x to be bounded, weaken the assumption to E ‖x‖2 <∞.
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Since taking the derivative under the integral we have g(w) = E l′(w; z) = 2(〈w−w∗,x〉−η)x.
Clearly, g(w∗) = 0, satisfying A3. Furthermore, it follows that

g(w)− g(w′) = E
(
l′(w; z)− l′(w′; z)

)
= 2 E(〈w −w′,x〉)x.

We thus have

‖g(w)− g(w′)‖ ≤ 2 E ‖x‖2‖w −w′‖ ≤ 2c2‖w −w′‖,

meaning smoothness of the risk holds with λ = 2 E ‖x‖2, satisfying A2.
Example 3 (Concrete example of assumption A5). Again consider a setting similar to Examples
1–2, but with added assumptions that E x = 0, that the noise η and input x are independent,
and that the components of x = (x1, . . . , xd) are independent of each other. Some straightfor-
ward algebra shows that

E(l′j(w; z))2 = 4
(
Ex2

j 〈w −w∗,x〉2 + E η2 Ex2
j

)
≤ 4

(
‖w −w∗‖2 Ex2

j‖x‖2 + E η2 Ex2
j

)
.

It follows that as long as the noise η has finite variance (E η2 <∞), and all inputs have finite
fourth moments Ex4

j <∞, then using assumption A0, we get

E(l′j(w; z))2 ≤ 4
(
∆2 Ex2

j‖x‖2 + E η2 Ex2
j

)
<∞.

This holds for all w ∈ W, satisfying A5.
Example 4 (Concrete example of assumption A4). Consider the same setup as Example 3.
Since Exjη = (Exj)(E η) = 0 for each j ∈ [d], it follows that the risk induced by the squared
loss under this model takes a convenient quadratic form,

R(w) = E l(w; z) = (w −w∗)TA(w −w∗) + b2,

with A = E xxT and b2 = E η2. For concreteness, say all the components of x have variance
Ex2

j = σ2, recalling that Exj = 0 by assumption. Then the Hessian matrix of R(·) is R′′(w) =
E xxT = σ2Id, for all w ∈ W. For any w,w′ ∈ W, taking an exact Taylor expansion, we have
that

R(w) = R(w′) + 〈g(w),w −w′〉+ 1
2〈w −w′, R′′(u)(w −w′)〉

for some appropriate u on the line segment between w and w′. Since the Hessian is positive
definite with factor σ2, the last term on the right-hand side can be no smaller than ‖w −
w′‖2σ2/2. This implies a lower bound,

R(w) ≥ R(w′) + 〈g(w),w −w′〉+ σ2

2 ‖w −w′‖2.

The exact same inequality holds for any choice of w and w′. This is precisely the definition of
strong convexity of R(·) given in (5), with convexity parameter κ = σ2, satisfying A4.
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Experimental setup

For controlled tests (see section 4.1, main text)

Noisy convex minimization We begin with a “noisy convex risk minimization” task, de-
signed as follows. The risk function itself takes a quadratic form, as R(w) = 〈Σw,w〉/2 +
〈w,u〉 + c, where Σ ∈ Rd×d, u ∈ Rd, and c ∈ R are constants set in advance. The learn-
ing task is to find a minimizer of R(·), without direct access to R, rather only access to n
random function data r1, . . . , rn, with r : Rd → R mapping from parameter space to a nu-
merical penalty. This data is generated independently from a common distribution, and are
centered at the true risk, namely E r(w) = R(w) for all w ∈ Rd. More concretely, we generate
ri(w) = (〈w∗ −w,xi〉 + εi)2/2, i ∈ [n], with x and ε independent. The true minimum is de-
noted w∗, and Σ = E xxT . The inputs x are set to have a d-dimensional Gaussian distribution
with all components uncorrelated. This means that Σ is positive definite, and R is strongly
convex.

We make use of three metrics for evaluating performance here: average excess empirical
risk (averaging of r1, . . . , rn), average excess risk (computed using true R), and variance of the
risk. The latter two are computed by averaging over trials; each trial means a new independent
random sample. In all tests, we conduct 250 trials.

Regarding methods tested, we run three representative procedures. First is the idealized
gradient descent procedure (1, main text), denoted oracle, which is possible here since R
is designed by us. Second, as a de facto standard for most machine learning algorithms, we
use ERM-GD, written erm. Here the update direction is simply the sample mean of the loss
gradient. Finally, we compare our Algorithm 1 (main text), written rgdmult, against these
two procedures. Variance bounds v(t) are computed using the simplest possible procedure,
namely the empirical mean of the second moments of l′(ŵ(t); z), divided by two.

Our first inquiry is a basic proof of concept: are there natural problem settings under which
using rgdmult over ERM-GD is advantageous? How does this procedure perform when ERM-
GD is known to be effectively optimal? Under Gaussian noise, ERM-GD is effectively optimal
[7, Appendix C]. As a baseline, we start with Gaussian noise (mean 0, standard deviation 20),
and then consider centered log-Normal noise (log-location 0, log-scale 1.75) as a representative
example of asymmetric, heavy-tailed data. Performance results are given in Figure 2.

Comparison with robust loss minimizer Our next inquiry in the main text is a compar-
ison with the robust loss minimizer approach of Brownlees et al. [1], which chiefly considered
theoretical analysis of a robust learning procedure that minimizes a robust objective, in con-
trast to our use of a robust update direction. Our proposed procedure enjoys essentially the
same theoretical guarantees, and we have claimed that it is more practical. Here we attempt to
verify this claim empirically. Denote the method of Brownlees et al. [1] by bjl. To implement
their approach, which does not specify any particular algorithmic technique, we implement bjl
using the non-linear conjugate gradient method of Polak and Ribière [10]. This can be found
as part of the the optimize module of the SciPy scientific computation library, called fmin_cg,
with default parameter settings. We believe that using this standard first-order solver makes
for a fair comparison between bjl and our Algorithm 1 (main text), again denoted rgdmult,
and again with variance bound v(t) set to the empirical second moments of l′(ŵ(t); z), mul-
tiplied by 1/

√
d. For our routine, we have fixed the number of iterations to be T = 30 for

all settings. We compute the time required for computation using the Python time module.
Multiple independent trials of each learning task (analogous to those previous) are carried out,
with the median time taken over trials (for each d setting) used as the final time record. We
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consider settings of d = 2, 4, 8, 16, 32, 64. These times along with performance results are given
in Figure 3.

Regression application Finally, we look at a more general regression task, under a variety
of data distributions. We then compare Algorithm 1 with well-known procedures specialized
to regression, both classical and recent. In each experimental condition, and for each trial,
we generate n observations of the form yi = xTi w∗ + εi, i ∈ [n] for training. Each condition
is defined by the setting of (n, d) and µ. Throughout, we have inputs x which are generated
from a d-dimensional Gaussian distribution, with each coordinate independent of the others.
As such, to set µ requires setting the distribution of the noise, ε. We consider several families
of distributions, each with 15 distinct parameter settings, or “noise levels.” These settings are
carried out such that the standard deviation of ε increases over the range 0.3–20.0, in a roughly
linear fashion as we increase from level 1 (lowest) to 15 (highest).

A range of signal/noise ratios can be captured by controlling the norm of the vector w∗ ∈ Rd
determining the model. For each trial, we generate w∗ randomly as follows. Considering the
sequence wk ..= π/4 + (−1)k−1(k − 1)π/8, k = 1, 2, . . ., sample i1, . . . , id ∈ [d0] uniformly, with
d0 = 500. The underlying vector is then set as w∗ = (wi1 , . . . , wid). The signal to noise ratio
SNµ = ‖w∗‖22/ varµ(ε) then varies over the range 0.2 ≤ SNµ ≤ 1460.6. Here we consider four
noise families: log-logistic (denoted llog in figures), log-Normal (lnorm), Normal (norm), and
symmetric triangular (tri_s).

Here we do not compute the risk R exactly, but rather use off-sample prediction error as
the key metric for evaluating performance. This is computed as excess root mean squared
error (RMSE) computed on an independent testing set. Performance is averaged over in-
dependent trials. For each condition and trial, a test set of m independent observations is
generated identically to the n-sized training set that precedes testing. All competing methods
use common samples for training and testing, for each condition and trial. In the kth trial,
each algorithm outputs an estimate ŵ(h). Using RMSE to approximate the `2-risk, com-
pute ek(ŵ) ..= (m−1∑m

i=1(ŵTxk,i − yk,i)2)1/2, outputting prediction error as the excess error
ek(ŵ(k))−ek(w∗(k)), averaged over K trials. In all experiments, we have K = 250, m = 1000.

We consider several methods against which we compare the proposed Algorithm 1 (main
text). As classical choices, we have ordinary least squares (ERM under the squared error, ols)
and least absolute deviations (ERM under absolute error, lad). For more recent methods, as
described in section 1, we consider robust regression routines as given by Minsker [8] (geomed)
and Hsu and Sabato [4] (hs). In the former, we partition the data, obtaining the ols solution
on each subset, and these candidates are aggregated using the geometric median in the `2 norm
[12]. The number of partitions is set to max{2, bn/(2d)c}. In the latter, we used source code
published online by the authors. To compare our Algorithm 1 (main text) with these routines,
we initialize rgdmult to the analytical ols solution, with step size α(t) = 0.01 for all iterations,
and δ = 0.005. Variance bounds v(t) are set to the empirical second moments of l′(ŵ(t), z),
divided by 2. In total, the number of iterations is constrained by a fixed budget: we allow for
40n gradient evaluations in total. Representative results are provided in Figure 4.

For application to real-world benchmarks (see section 4.2, main text)

All methods use a common model, here multi-class logistic regression. If the number of classes
is C, and we have F input features, then the dimension of the model will be d = (C − 1)F .
A basic property of this model is that the loss function is convex in the parameters, with
gradients that exist, thus placing the model firmly within our realm of interest. Furthermore,
for all of these tests we shall add a squared `2-norm regularization term a‖w‖2 to the loss,
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where a varies depending on the dataset. Once again, each algorithm is given a fixed budget,
this time of 20n, where n is the size of the training set available, which again depends on the
dataset (details below).

Here we give results for two well-known data sets used for benchmarking: the forest cover
type dataset from the UCI repository,1 and the protein homology dataset used in a previous
KDD Cup.2 For each dataset, we execute 10 independent trials, with training/testing subsets
randomly sampled without replacement as is described shortly. For all datasets, we normalize
input features to the unit interval [0, 1] in a per-feature fashion. For the cover type dataset,
we consider binary classification of the second type against all other types. With C = 2 and
F = 54, we have d = 54 and a = 0.001, with a training subset of size n = 4d. The protein
homology dataset has highly unbalanced labels, with only 1296 positive labels our of over
145,000 examples. We balance out training and testing data, randomly selecting 296 positive
examples and the same number of negative examples, yielding a test set of 592 points. As for
the training set size, we use all positive examples not used for testing (1000 points each time),
plus a random selection of 1000 negatively labeled examples, so n = 2000. With C = 2 and
F = 74, the dimension is d = 74, and a = 0.001. In all settings, initialization is done uniformly
over the interval [−0.05, 0.05].

We investigate the utility of a random mini-batch version of Algorithm 1 (main text) here.
We try mini-batch sizes of 10 and 20. Variance bounds v(t) are set to k times the empirical mean
of the second moments of l′(ŵ(t), z), with k ranging over {1/10, 1/5, 1/2, 1, 5, 25, 125, 625}.
Furthermore, for the high-dimensional datasets, we consider a mini-batch in terms of ran-
dom selection of which parameters to robustly update. At each iteration, we randomly
choose min{100, d} indices, running Algorithm 1 (main text) for the resulting sub-vector,
and the sample mean for the remaining coordinates. We compare our proposed algorithm
with stochastic gradient descent (SGD), and stochastic variance-reduced gradient descent
(SVRG) proposed by Johnson and Zhang [5]. For each method, pre-fixed step sizes rang-
ing over {0.0001, 0.001, 0.01, 0.05, 0.10, 0.15, 0.20} are tested. SGD has mini-batches of size 1,
just as the SVRG inner loop. The inner loop of SVRG has n/2 iterations, and all methods
continue running until the fixed budget of gradient evaluations is spent. Representative results
are given in Figure 5.

A Technical appendix

A.1 Preliminaries

Consider two probability measures P and Q on measurable space (X ,A). We say that Q is
absolutely continuous with respect to P , written Q� P , whenever P (A) = 0 implies Q(A) = 0
for all A ∈ A. The Radon-Nikodym theorem guarantees that there exists a measurable function
g ≥ 0, such that

Q(A) =
∫
A
g dP, for all A ∈ A.

Furthermore, this g is unique in the sense that if another f exists satisfying the above equality,
we have f = g almost everywhere [P ]. It is common to call this function g the Radon-Nikodym
derivative of Q with respect to P , written dQ/dP . The relative entropy, or Kullback-Leibler

1http://archive.ics.uci.edu/ml/datasets/Covertype
2http://www.kdd.org/kdd-cup/view/kdd-cup-2004/Tasks
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divergence, between two probability measures P and Q on measurable space (X ,A) is defined

K(P ;Q) ..=

−
∫

log
(
dQ

dP

)
dP, if Q� P

+∞, else.
(1)

The key property of the ψ truncation function utilized by Catoni and Giulini [3], defined
in (4, main text), is that for all u ∈ R, we have

− log
(

1− u+ u2

2

)
≤ ψ(u) ≤ log

(
1 + u+ u2

2

)
. (2)

Let f : Rd → R be a continuously differentiable, convex, λ-smooth function.

f(u)− f(v) ≤ λ

2 ‖u− v‖2 + 〈f ′(v),u− v〉 (3)
1

2λ‖f
′(u)− f ′(v)‖2 ≤ f(u)− f(v)− 〈f ′(v),u− v〉 (4)

for all u,v ∈ Rd.

Terminology For a function F :W → R, we say that F is λ-Lipschitz if, for all w1,w2 ∈ W
we have |F (w1)−F (w2)| ≤ λ‖w1−w2‖. If F is differentiable, and the derivative w 7→ F ′(w)
is λ-Lipschitz, then we say that F is λ-smooth.

If F is a convex function on convex set W, then we say F is κ-strongly convex if for all
w1,w2 ∈ W,

F (w1)− F (w2) ≥ 〈F ′(w2),w1 −w2〉+ κ

2‖w1 −w2‖2. (5)

This definition can be made for any valid norm space, but we shall be assuming W ⊆ Rd
throughout, and use the Euclidean norm. If there exists w∗ ∈ W such that F ′(w∗) = 0, then
it follows that w∗ is the unique minimum of F on W.

A.2 Proofs of results in the main text

Proof of Lemma 2 (main text). Let P(R) denote all probability measures on R, with an ap-
propriate σ-field tacitly assumed. Consider any two measures ν, ν0 ∈ P(R), and h : R → R a
measurable function. By Catoni [2, p. 159–160], it is proved that a Legendre transform of the
mapping ν 7→K(ν; ν0) takes the form of a cumulant generating function, namely

sup
ν

(∫
h(u) dν(u)−K(ν; ν0)

)
= log

∫
exp(h(u)) dν0(u), (6)

where the supremum is taken over ν ∈ P(R). This identity is a technical tool, and the choice
of h and ν0 are parameters that can be adjusted to fit the application.

In actually setting these parameters, we adapt the general argument of Catoni and Giulini
[3] to our setting. Recalling the estimator (3, main text), we start with a quasi average of
the points x1, . . . , xn, modified by some data-sensitive additive noise, and passed through a
truncation function. The expectation of this sum is then taken over the noise distribution.
The ν in the definition of (3, main text) will correspond to ν here, and thus to reflect the
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whole estimator within (6), it makes sense to include the data-dependent sum in our choice of
h. Note that the summands in the estimator definition

ψ

(
xi + εixi

s

)
, i ∈ [n]

depend on two random quantities, namely the data xi, and the artificial noise εi (since s > 0
is assumed pre-fixed). Reflecting dependence on these quantities directly, we write

f(ε, x) ..= ψ

(
x+ εx

s

)
, ε, x ∈ R.

Note that by definition of ψ in (4, main text), the function f : R2 → R is measurable and
bounded. With this cleaner notation, let us now set

h(ε) =
n∑
i=1

f(ε, xi)− c(ε)

where c(ε) is a term to be determined shortly. Plugging this in to (6) yields the following
quantity:

B ..= sup
ν

(∫
h(ε) dν(ε)−K(ν; ν0)

)
= log

∫
exp

(
n∑
i=1

f(ε, xi)− c(ε)
)
dν(ε).

Taking the exponential of this B and then taking expectation with respect to the sample, we
have

Eµ exp(B) = Eµ

∫ (exp (
∑n
i=1 f(ε, xi))

exp(c(ε))

)
ν(ε)

=
∫ (∏n

i=1 Eµ f(ε, xi)
exp(c(ε))

)
ν(ε).

The first equality comes from simple log/exp manipulations, and the second equality from
taking the integration over the sample inside the integration with respect to ν, valid via
Fubini’s theorem. It will be useful to have Eµ exp(B) ≤ 1. This can be achieved easily by
setting

c(ε) = n log Eµ exp(f(ε, x)),

which yields

Eµ exp(B) =
∫ (∏n

i=1 Eµ exp(f(ε, xi))
(Eµ exp(f(ε, xi)))n

)
ν(ε) = 1. (7)

With this preparation done, we can start on the high-probability upper bound of interest:

P{B ≥ log(δ−1)} = P{exp(B) ≥ 1/δ}
= Eµ I{δ exp(B) ≥ 1}
≤ Eµ δ exp(B)
= δ.
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The inequality follows immediately since δ exp(B) ≥ 0, and the final equality holds due to (7).
Note that since our setting of c(ε) is such that c(·) is measurable (via measurability of f), the
resulting h(·) is indeed measurable, as required. Of importance here is the fact that

sup
ν

(∫
h(ε) dν(ε)−K(ν; ν0)

)
≤ log(δ−1) (8)

with probability no less than 1−δ, noting that the event is uniform in ν. Using (6) once again,
and dividing both sides by n, we have that with high probability, for any choice of ν, we can
bound this generic empirical mean as follows:

1
n

n∑
i=1

∫
f(ε, xi) dν(ε) ≤

∫
log Eµ exp (f(ε, x)) dν(ε) + K(ν, ν0) + log(δ−1)

n
. (9)

Bridging the gap between these preparatory facts and the estimator of interest is now easy;
since the noise terms ε1, . . . , εn are assumed to be independent copies of ε ∼ ν, it follows
immediately that

x̂ = s

n

n∑
i=1

∫ (
ψ

(
xi + εixi

s

))
dν(εi)

= s

n

n∑
i=1

∫
f(ε, xi) dν(ε).

That is to say, we have

x̂ ≤ s
∫

log Eµ exp
(
ψ

(
x(1 + ε)

s

))
dν(ε) + s

n

(
K(ν; ν0) + log(δ−1)

)
(10)

on the high-probability event, uniformly in choice of ν. Let us work step by step through each
of the terms in the upper bound.

Starting with the first term, recall the definition of the truncation function ψ given in (4,
main text), and in particular the logarithmic upper/lower bounds given in (2). These bounds
will be convenient because it offers us polynomial bounds when passing ψ through exp(·), which
is precisely what occurs in (10) above. To get the first term in (10) in a more useful form, we
can bound it as∫

log Eµ exp
(
ψ

(
x(1 + ε)

s

))
dν(ε) ≤

∫
log

(
1 + (1 + ε) Eµ x

s
+ (1 + ε)2 Eµ x

2

2s2

)
dν(ε)

≤
∫ ((1 + ε) Eµ x

s
+ (1 + ε)2 Eµ x

2

2s2

)
dν(ε)

= Eν(1 + ε) Eµ x

s
+ Eν(1 + ε)2 Eµ x

2

2s2

= Eµ x

s
+ Eµ x

2

2s2

( 1
β

+ 1
)
.

The first inequality follows from (2), and the second from the fact that log(1 + u) ≤ u for all
u > −1. As for the final equality, note that with ε ∼ ν = N(0, β−1), it follows immediately
that

Eν(1 + ε)2 = 1
β

+ (Eν(1 + ε))2 = 1
β

+ 1.
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Moving on to the second term, evaluating K(ν; ν0) depends completely on how we define
the pre-fixed ν0. One approach is to set ν0 such that the KL divergence is easily computed;
for example, ν0 = N(1, β−1). In this case, simple computations show that

K(ν; ν0) =
∫ ∞
−∞

log
(

exp
(
β(u− 1)2

2 − βu2

2

))√
β

2π exp
(
−βu

2

2

)
du

=
∫ ∞
−∞

(1− 2u)β
2

√
β

2π exp
(
−βu

2

2

)
du

= β

2 .

With this computation done, an upper bound is complete, taking the form

x̂ ≤ Eµ x+ Eµ x
2

2s

( 1
β

+ 1
)

+ s

n

(
β

2 + log(δ−1)
)
. (11)

Optimizing this upper bound with respect to s > 0, we have

s2 =
(

1 + 1
β

)
nEµ x

2

2

(
β

2 + log(δ−1)
)−1

and with respect to β > 0, we have

β2 = nEµ x
2

s2 . (12)

Plugging this setting of β in to the setting of s yields

s2 = nEµ x
2

2 log(δ−1) . (13)

With this setting of s, the upper bound (11) can be cleaned up to the form

x̂ ≤ Eµ x+

√
2 Eµ x2 log(δ−1)

n
+

√
Eµ x2

n
.

To get lower bounds on x̂−Eµ x, we can equivalently seek out upper bounds on (−1)x̂+ Eµ x.
This can be easily done via

−x̂ ≤ s
∫

log Eµ exp
(
−ψ

(
x(1 + ε)

s

))
dν(ε) + s

n

(
K(ν; ν0) + log(δ−1)

)
. (14)

Only the first term on the right-hand side is different from before. Note that by the lower
bound of (2), we have

log Eµ exp
(
−ψ

(
x(1 + ε)

s

))
≤ (−1)(1 + ε) Eµ x

s
+ (1 + ε)2 Eµ x

2

2s2 .

The rest plays out analogously to the upper bound, yielding

(−1)x̂ ≤ (−1) Eµ x+

√
2 Eµ x2 log(δ−1)

n
+

√
Eµ x2

n
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which implies, as desired,

x̂−Eµ x ≥

√
2 Eµ x2 log(δ−1)

n
+

√
Eµ x2

n
. (15)

Since −ψ(u) = ψ(−u), both of these settings can be interpreted as different settings of the
distribution of the noise factor: (1 + ε) in the upper bound case, and −(1 + ε) in the lower
bound case, both with ε ∼ ν. Since the inequality (8) is uniform in the distribution of this
noise, both bounds hold on the same event, which has probability no less than 1 − δ. We
may thus conclude that with probability at least 1 − δ over the random draw of the sample
x1, . . . , xn, the estimator x̂ satisfies

|x̂−Eµ x| ≤

√
2 Eµ x2 log(δ−1)

n
+

√
Eµ x2

n
.

In practice, since Eµ x
2 will typically be unknown, this factor can be replaced by any valid

upper bound v ≥ Eµ x
2. The only impact to the final upper bound is that the unknown Eµ x

2

factors are replaced by the known v, concluding the proof.

Proof of Lemma 4 (main text). Consider two data sets, the original x1, . . . , xn and a perturbed
version x′1, . . . , x′n. For clean notation, organize these into vectors x = (x1, . . . , xn) and x′ =
(x′1, . . . , x′n). Taking the difference between the estimator evaluated on these distinct data sets,
we have

x̂(x)− x̂(x′) =
∫
s

n

n∑
i=1

(
ψ

((1 + ε)xi
s

)
− ψ

((1 + ε)x′i
s

))
dν(ε)

≤
∫
s

n

n∑
i=1

∣∣∣∣1 + ε

s

∣∣∣∣ ∣∣xi − x′i∣∣ dν(ε)

= Eν |1 + ε| 1
n

n∑
i=1

∣∣xi − x′i∣∣
= Eν |1 + ε|

n
‖x− x′‖1.

The first equality follows by linearity and the definition of the estimators. The subsequent
inequality follows from the 1-Lipschitz property of ψ defined in (4, main text), which is that
for all u, v ∈ R, we have that |ψ(u)− ψ(v)| ≤ |u− v|.

Evaluating Eν |1 + ε| is straightforward under the assumption that ε ∼ ν = N(0, 1/β),
since the random variable |1 + ε| follows a Folded Normal distribution. More generally, if
X ∼ N(a, b2), then Y = |X| follows a folded normal distribution, with expected value

EY = a

(
1− 2Φ

(−a
b

))
+ b

√
2
π

exp
(
−a2

2b2

)
.

Since in our case, we have a = 1 and b2 = 1/β, it follows that

Eν |1 + ε| = 1− 2Φ
(
−
√
β
)

+
√

2
βπ

exp
(−β

2

)
.

Reflecting this factor in the above inequalities concludes the proof.
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Proof of Lemma 5 (main text). In order to obtain bounds that hold uniformly over the choice
of w, we adopt a rather standard strategy utilizing covering numbers of W. Using assumption
A0, since W is closed and bounded, the Heine-Borel theorem implies that W is compact. This
means the number of balls of radius ε required to cover W (denoted Nε) is bounded above3 as

Nε ≤ (3∆/2ε)d. (16)

Denote the centers of this ε-net by {w̃1, . . . , w̃Nε}. Given an abitrary w ∈ W and center
w̃ ∈ {w̃1, . . . , w̃Nε}, we break the quantity to be controlled into three error terms, each to be
tackled separately, as

‖ĝ(w)− g(w)‖ ≤ ‖ĝ(w)− ĝ(w̃)‖+ ‖g(w)− g(w̃)‖+ ‖ĝ(w̃)− g(w̃)‖. (17)

Let us start with the first term, ‖ĝ(w)− ĝ(w̃)‖. Using Lemma 4 (main text), we have that

‖ĝ(w)− ĝ(w̃)‖2 ≤
d∑
j=1

(
cν
n

n∑
i=1
|l′j(w; zi)− l′j(w̃; zi)|

)2

≤
d∑
j=1

(cνλ‖w − w̃‖)2

= dc2
νλ

2‖w − w̃‖2.

The first inequality is via Lemma 4 (main text), and the second via smoothness of the loss (via
A1). We may thus control the first error term as

‖ĝ(w)− ĝ(w̃)‖ ≤ cνλ
√
d‖w − w̃‖. (18)

Moving on to the second error term in the upper bound, this follows easily by smoothness
of the risk (via A2), namely a Lipschitz property of the risk gradient. It immediately follows
that

‖g(w)− g(w̃)‖ ≤ λ‖w − w̃‖ (19)

for any choice of w ∈ W and ε-ball center w̃.
Finally for the third error term, given any center w̃, as long as Eµ l

′
j(w̃; z)2 <∞, then we

can apply Lemma 2 (main text), implying

|ĝj(w)− gj(w)| ≤ εj ..=

√
2vj log(δ−1)

n
+
√
vj
n

where vj > 0 is an upper bound on Eµ |l′j(w; z)|2 used in the setting of sj , in accordance with
Lemma 2 (main text). For any pre-fixed w, then for any ε > 0 we have

P {‖ĝ(w)− g(w)‖ > ε} = P
{
‖ĝ(w)− g(w)‖2 > ε2

}
≤

d∑
j=1

P
{
|ĝj(w)− gj(w)| > ε√

d

}
.

3This is a basic property of covering numbers for compact subsets of Euclidean space [6].
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Using εj just defined, taking the maximum over j ∈ [d], it follows that

P
{
‖ĝ(w)− g(w)‖ >

(
max
k

εk

)√
d

}
≤

d∑
j=1

P
{
|ĝj(w)− gj(w)| > max

k
εk

}

≤
d∑
j=1

P {|ĝj(w)− gj(w)| > εj}

≤ dδ.

Note that the second inequality follows immediately from εj ≤ maxk εk and monotonicity of
probability measures. Writing V ..= maxj vj , it follows immediately that fixing any w ∈ W,
the nearest center w̃ ..= w̃(w) can be determined, and the event

E(w̃) ..=

‖ĝ(w̃)− g(w̃)‖ >

√
2V d log(dδ−1)

n
+

√
V

n


has probability no greater than δ. The whole reason for utilizing a ε-cover of W in the first
place is to avoid having to take a supremum over w ∈ W, which spoils union bounds, and
instead to simply take a maximum over a finite number of ε-covers. The critical fact for our
purposes is that

sup
w∈W

‖ĝ(w̃(w))− g(w̃(w))‖ = max
k∈[Nε]

‖ĝ(w̃k)− g(w̃k)‖

holds. The “good event” of interest is the one in which the bad event E(·) holds for none of
the centers on our ε-cover. In other words, the event

E+ =

 ⋂
k∈[Nε]

E(w̃k)

c ,
which taking a union bound, occurs with probability no less than 1 − δNε. To get a 1 − δ
guarantee, simply pay the price of an extra logarithmic factor in the upper bound; that is to
say, we equivalently have

‖ĝ(w̃(w))− g(w̃(w))‖ ≤

√
2dV log(dNεδ−1)

n
+

√
dV

n
(20)

with probability no less than 1− δ, uniformly in the choice of w ∈ W.
Taking these intermediate results together, we can form a useful uniform upper bound on

(17), taking the form

sup
w∈W

‖ĝ(w)− g(w)‖ ≤ sup
w∈W

(
cνλ
√
d‖w − w̃‖+ λ‖w − w̃‖+ ‖ĝ(w̃)− g(w̃)‖

)
≤ cνλ

√
dε+ λε+ max

k∈[Nε]
‖ĝ(w̃k)− g(w̃k)‖

≤ λε(1 + cν
√
d) +

√
2dV log(dNεδ−1)

n
+

√
dV

n

with probability no less than 1 − δ over the random draw of the sample. The bounds on
the first, second, and third terms in the original upper bound come from (18), (19), and (20)
respectively, with the ε factors following immediately from the definition of an ε-cover. To
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obtain the desired result, simply bound Nε as in (16), and set ε = 1/
√
n, yielding updates to

two of the terms, as

λε(1 + cν
√
d) = λ(1 + cν

√
d)√

n√
2V d log(dNεδ−1)

n
≤

√
2V d(log(dδ−1) + d log(3∆

√
n/2))

n

which, when plugged into the bound just obtained, concludes the proof.

Proof of Lemma 6 (main text). Given ŵ(t), running the approximate update (2, main text),
we have

‖ŵ(t+1) −w∗‖ = ‖ŵ(t) − α(t)ĝ(ŵ(t))−w∗‖
≤ ‖ŵ(t) − α(t)g(ŵ(t))−w∗‖+ α(t)‖ĝ(ŵ(t))− g(ŵ(t))‖.

The first term looks at the distance from the target given an optimal update, using g. Using
the κ-strong convexity of R, via Nesterov [9, Thm. 2.1.15] it follows that

‖ŵ(t) − α(t)g(ŵ(t))−w∗‖2 ≤
(

1−
2α(t)κλ

κ+ λ

)
‖ŵ(t) −w∗‖2.

Writing γ ..= 2κλ/(κ+ λ), the coefficient becomes (1− α(t)γ).
To control the second term simply requires unfolding the recursion. By hypothesis, we can

leverage (6, main text) to bound the statistical estimation error by ε for every step, all on
the same 1 − δ “good event.” For notational ease, write a(t)

..=
√

1− α(t)γ. Unfolding the
recursion, on the good event, we have

‖ŵ(t+1) −w∗‖ ≤ ‖ŵ(0) −w∗‖
t∏

k=0
a(k) + ε

α(t) +
t−1∑
k=0

α(k)

t∏
l=k+1

a(l)

 . (21)

In the case of α(t) = α/γ, things are very simple. We have a(t) = a ..=
√

1− α for all t. The
above inequality simplifies to

‖ŵ(t+1) −w∗‖ ≤ ‖ŵ(0) −w∗‖at+1 + εα

γ

(
1 + a+ · · ·+ at

)
= ‖ŵ(0) −w∗‖at+1 + εα

γ

(1− at+1)
(1− a) .

To clean up the second summand in (21),

αε

γ

(1− at+1)
1− a ≤ αε

γ

(1 + a)
(1− a)(1 + a)

= αε

γ

(1 +
√

1− α)
α

≤ 2ε
γ
.

This gives us the first statement as desired. For the case of α(t) = 1/((2 + t)γ), things are only
slightly more complicated. First observe that

M∏
m=2

(
1− 1

m

)
=

M∏
m=2

m− 1
m

= 1
M
, (22)
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where the last equality follows by simply cancelling terms. We can now handle the first
summand in (21) as(

t∏
k=0

a(k)

)2

=
t∏

k=0

(
1− α(k)γ

)
=

t∏
k=0

(
1− 1

2 + k

)
=

t+2∏
k=2

(
1− 1

k

)
= 1
t+ 2 ,

where the final equality uses (22). As for the second summand in (21), first note that for any
k ≥ 1, we have

α(k)
a(k)α(k−1)

= (2 + k − 1)
(2 + k)

(
1− 1

(2+k)

) = 1.

Then recalling the second term on the right-hand side of (21), consider any two consecutive
summands within the parentheses, say

α(k)a(k+1) · · · a(t) and α(k−1)a(k) · · · a(t) (23)

for any 1 ≤ k < t. Dividing the first term by the second term, note that almost all the factors
cancel, yielding

α(k)a(k+1) · · · a(t)
α(k−1)a(k) · · · a(t)

=
α(k)

a(k)α(k−1)
= 1,

by what we just proved in (23). It follows that all terms inside the parentheses next to ε are
identical, and indeed equal to α(t), which is to say

ε

α(t) +
t−1∑
k=0

α(k)

t∏
l=k+1

a(l)

 = (t+ 1)α(t)ε = (t+ 1)ε
(t+ 2)γ ≤

ε

γ
.

Plugging these two new forms into the original inequality (21) yields our second desired result,
and concludes the proof.

Proof of Theorem 7 (main text). Using the strong convexity of R (via A4) and (3), it follows
that

R(ŵ(T ))−R∗ ≤
λ

2 ‖ŵ(T ) −w∗‖2

≤ λ(1− α)T ‖ŵ(0) −w∗‖2 + 4λε2

γ2 .

The latter inequality holds by direct application of Lemma 6 (main text) under fixed step size,
followed by the elementary fact (a + b)2 ≤ 2(a2 + b2). The particular value of ε under which
Lemma 6 (main text) is valid (i.e., under which (6, main text) holds) is given by Lemma 5 as
ε̃. Setting ε = ε̃ yields the desired result.

Proof of Theorem 9 (main text). We construct an upper bound using

E ‖ŵ(t+1) − ŵ(t)‖2 = α2
(t) E ‖ĝ(ŵ(t))‖2

≤ α2
(t) E

(
‖ĝ(ŵ(t))− g(ŵ(t))‖+ ‖g(ŵ(t))‖

)2

≤ 2α2
(t)

(
E ‖ĝ(ŵ(t))− g(ŵ(t))‖2 + ‖g(ŵ(t))‖2

)
.
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Now, if we condition on ŵ(t), by assumption the loss gradients l′(ŵ(t); z1), . . . , l′(ŵ(t); zn) are
iid. With independence, just as in the proof of Lemma 5 (main text), we have

‖ĝ(ŵ(t))− g(ŵ(t))‖ ≤

√
2dV log(dδ−1)

n
+

√
dV

n
,

with probability no less than 1−δ. Setting the right-hand side of this equation to ε and solving
for δ, we have exponential tails of the form

P
{
‖ĝ(ŵ(t))− g(ŵ(t))‖ > ε

}
≤ d exp

(
−(ε− a)2

2a2

)

with constant defined a ..=
√
dV/n. Controlling moments using exponential tails can be done

as follows. For random variable X ∈ Lp for p ≥ 1, recall the classic inequality

E |X|p =
∫ ∞

0
P{|X|p > t} dt.

Our setting of interest is X = ‖ĝ(ŵ(t))− g(ŵ(t))‖, with p = 2. It follows that

E |X|2 =
∫ ∞

0
P{|X|2 > u} du

=
∫ ∞

0
P{X >

√
u} du

=
∫ ∞

0
P{X > u}u2 du

≤ d

2

∫ ∞
0

exp
(
−(u− a)2

2a2

)
u du.

The third equality uses substitution of variables, and the inequality at the end uses the expo-
nential tail inequality given above. This integral is the expectation of the Normal distribution
N(a, a2) taken over just the positive half-line. A simple upper bound can be constructed by∫ ∞

0
exp

(
−(u− a)2

2a2

)
u du =

∫ ∞
−∞

I{u ≥ 0} exp
(
−(u− a)2

2a2

)
u du

≤
∫ ∞
−∞

exp
(
−(u− a)2

2a2

)
|u| du,

easily recognized (after rescaling by 1/
√

2πa2) as the expectation of a Folded Normal random
variable, induced by N(a, a2). Recalling the proof of Lemma 4 (main text), the expected value
of this Folded Normal random variable is∫ ∞

−∞

1√
2πa

exp
(
−(u− a)2

2a2

)
|u| du = a

(
1− 2Φ

(−a
a

))
+ a

√
2
π

exp
(
−a2

2a2

)

=

√
dV

n
(1− 2Φ (−1)) +

√
2dV
nπ

e−2

≤

√
dV

n

(
1 + e−2

√
2
π

)
.
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Taking into account the normalization factor, our upper bound takes the form

E |X|2 ≤ d
√

2πa
2

√dV

n

(
1 + e−2

√
2
π

)
= d2V

n

(√
π

2 + 1
e2

)
.

Plugging this in for X = ‖ĝ(ŵ(t)) − g(ŵ(t))‖ in the upper bound constructed at the start of
this proof yields the desired result.

Computation

From Catoni and Giulini [3], Lemma 3.2, it follows that the correction term C(a, b) used in (5,
main text) can be computed as follows. First, some preparatory definitions to keep notation
clean.

V− ..=
√

2− a
b

, V+ ..=
√

2 + a

b

F− ..= Φ(−V−), F+ ..= Φ(−V+)

E− ..= exp
(
−
V 2
−
2

)
, E+ ..= exp

(
−
V 2

+
2

)
.

As seen in other parts of the text, Φ denotes the standard Normal CDF. With these atomic
elements defined to keep things a bit cleaner, we break the final quantity into five terms to be
summed:

T1 ..= 2
√

2
3 (F− − F+)

T2 ..= −
(
a− a3

6

)
(F− + F+)

T3 ..= b√
2π

(
1− a2

2

)
(E+ − E−)

T4 ..= ab2

2

(
F+ + F− + 1√

2π
(V+E+ + V−E−)

)
T5 ..= b3

6
√

2π

(
(2 + V 2

−)E− − (2 + V 2
+)E+

)
.

With these terms in hand, the final computation is just summation, as

C(a, b) = T1 + T2 + T3 + T4 + T5.
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