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Abstract

In this work, we propose a novel robust gra-
dient descent procedure which makes use of
a smoothed multiplicative noise applied di-
rectly to observations before constructing a
sum of soft-truncated gradient coordinates.
We show that the procedure has competitive
theoretical guarantees, with the major advan-
tage of a simple implementation that does not
require an iterative sub-routine for robustifi-
cation. Empirical tests reinforce the theory,
showing more efficient generalization over a
much wider class of data distributions.

1 Introduction

The risk minimization model of learning is ubiquitous
in machine learning, and it effectively captures the key
facets of any effective learning algorithm: we must
have reliable statistical inference procedures, and prac-
tical implementations of these procedures. Formulated
using the expected loss, or risk R(w) ..= E l(w; z), in-
duced by a loss l, where w is the parameter (vector,
function, set, etc.) to be learned, and expectation is
taken with respect to z. In practice, all we are given is
data z1, . . . ,zn, and based on this the algorithm out-
puts some candidate ŵ. If R(ŵ) is small with high
confidence over the random sample, it provides some
evidence for good generalization, subject to the as-
sumptions placed on the underlying distribution. The
statistical side is important because the risk R is al-
ways unknown, and the implementation is important
since the only ŵ we ever have in practice is one we can
actually compute given finite data, time, and memory.

The vast majority of popular algorithms used today
can be viewed as different implementations of em-
pirical risk minimization (ERM), which admits any
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minimizer of n−1∑n
i=1 l(·; zi). From an algorithmic

perspective, ERM is ambiguous; there are countless
ways to implement the ERM procedure, and impor-
tant work in recent years has highlighted the fact that
a tremendous gap exists between the quality of good
and bad ERM solutions (Feldman, 2016), for tasks as
simple as multi-class pattern recognition (Daniely and
Shalev-Shwartz, 2014), let alone tasks with unbounded
losses. Furthermore, even tried-and-true implementa-
tions such as ERM by gradient descent (ERM-GD)
only have appealing guarantees when the data is dis-
tributed sharply around the mean in a sub-Gaussian
sense, as demonstrated in important work by Lin and
Rosasco (2016). These facts are important because
ERM is ubiquitous in modern learning algorithms, and
heavy-tailed data by no means exceptional (Finken-
städt and Rootzén, 2003). Furthermore, these works
suggest that procedures which have been designed to
deal with finite samples of heavy-tailed data may be
much more efficient than traditional ERM-based ap-
proaches, and indeed the theoretical promise of ro-
bust learning algorithms is being studied rigorously
(Lecué and Lerasle, 2017; Lugosi and Mendelson, 2016,
2017a,b).

Review of related work Here we review the tech-
nical literature most closely related to our work. The
canonical benchmark to be compared against is ERM-
GD, for which Lin and Rosasco (2016) in pathbreak-
ing work provide generalization guarantees under sub-
Gaussian data. There are naturally two points of inter-
est: (1) How do competing algorithms perform in set-
tings when ERM is optimal? (2) What about robust-
ness to settings in which ERM is sub-optimal? Many
interesting robust learning algorithms have been stud-
ied in the past few years. One important procedure
is from Brownlees et al. (2015), based on fundamen-
tal results due to Catoni (2012). The basic idea is to
minimize an M-estimator of the risk, namely

ŵ = arg min
w

l̂(w)

l̂(w) = arg min
θ∈R

n∑
i=1

ρ (l(w; zi)− θ) .
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While the statistical guarantees are near-optimal un-
der weak assumptions on the data, and the proxy loss l̂
can be computed accurately by an iterative procedure,
its definition is implicit, and leads to rather significant
computational roadblocks. Even if l and R and con-
vex, the proxy loss need not be, and the non-linear
optimization required by this method can be both un-
stable and costly in high dimensions.

Another important body of work looks at generaliza-
tion of the classical “median of means” technique to
higher dimensions. From Minsker (2015) and Hsu and
Sabato (2016), the core idea is to partition the data
into k disjoint subsets D1∪· · ·∪Dk = {1, 2, . . . , n}, ob-
tain ERM solutions on each subset, and then robustly
aggregate these solutions such that poor candidates
are effectively ignored. For example, using the geo-
metric median approach of aggregation, we have

ŵ = arg min
w

k∑
m=1
‖w − w̃m‖

w̃m = arg min
w

∑
i∈Dm

l(w; zi), m = 1, . . . , k.

These robust aggregation methods can be imple-
mented (Vardi and Zhang, 2000), and have appealing
formal properties. An application of this technique to
construct a robust loss was very recently proposed by
Lecué et al. (2018). The main limitation of all these
approaches is practical: when sample size n is small
relative to the number of parameters to be determined,
very few subsets can be created, and significant error
due to bias occurs; conversely, when n is large enough
to make many candidates, cheaper and less sophisti-
cated methods often suffice. Furthermore, in the case
of Lecué et al. (2018) where an expensive sub-routine
must be run at every iteration, the computational over-
head is substantial.

Also in the recent literature, interesting work has be-
gun to appear looking at “robust gradient descent” al-
gorithms, which is to say steepest descent procedures
which utilize a robust estimate of the gradient vector
of the risk (Chen et al., 2017a,b; Prasad et al., 2018).
The basic idea is as follows. Assuming partial deriva-
tives exist, writing g(w) ..= (∂1R(w), . . . , ∂dR(w)) for
the risk gradient, we could iteratively solve this task
by the following update:

w∗(t+1) = w∗(t) − α(t) g(w∗(t)) (1)

Naturally, this procedure is ideal, since the underly-
ing distribution is never known in practice, meaning
R is always unknown. As such, we must approximate
this objective function and optimize it with incomplete
information. In taking a steepest descent approach,
all that is required is an accurate approximation of

g. Instead of first approximating R and then using
that approximation to infer g, computational resources
are better spent approximating g directly with some
data-dependent ĝ constructed using the loss gradients
l′(w; z1), . . . , l′(w; zn), and plugging this in to the it-
erative update, as

ŵ(t+1) = ŵ(t) − α(t) ĝ(ŵ(t)). (2)

Once again here, the median-of-means idea pops up
in the literature, with Prasad et al. (2018) using a
robust aggregation of empirical mean estimates of the
gradient. That is, after partitioning the data into k
subsets as before, the estimate vector ĝ is constructed
as

ĝ(w) = arg min
u

k∑
m=1
‖u− g̃m(w)‖

g̃m(w) = 1
|Dm|

∑
i∈Dm

l′(w; zi), m = 1, . . . , k.

and substituted within the gradient update (2). While
conceptually a very appealing new proposition, com-
puting ĝ via a geometric median sub-routine intro-
duces the exact same overhead and bias issues as the
procedures of Hsu and Sabato (2016) just discussed,
only that this time these costs are incurred at each
step of the gradient descent procedure, and thus these
costs and errors accumulate, and can propagate over
time. Iterative approximations at each update take
time and are typically distribution-dependent, while
fast approximations leave a major gap between the es-
timators studied in theory and those used in practice.

Our contributions To address the limitations of
both ERM-GD and the robust alternatives discussed
above, we take an approach that allows us to obtain
a robust gradient estimate directly, removing the need
for iterative approximations, without losing the the-
oretical guarantees. In this paper, we provide both
theoretical and empirical evidence that using the pro-
posed procedure, paying a small price in terms of bias
and computational overhead is worth it when done cor-
rectly, leading to a large payout in terms of distribu-
tional robustness. Key contributions are as follows:

• A practical learning algorithm which can closely
mimic ERM-GD when ERM is optimal, but which
performs far better under heavy-tailed data when
ERM deteriorates.

• Finite-sample risk bounds that hold with high
probability for the proposed procedure, under
weak moment assumptions on the distribution of
the loss gradient.
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Figure 1: Illustration of the key elements of our proposed algorithm. From the far left, points represent loss
gradient coordinates evaluated at different observations in our sample. To each point, we consider multiplication
by Gaussian noise centered at 1. This noise is smoothed out by integration over the noise distribution, and
applied to each gradient coordinate to generate a robust update direction.

• We demonstrate the ease of use and flexibility
of our procedure in a series of experiments, test-
ing performance using both controlled simulations
and real-world datasets, and compared with nu-
merous standard competitors.

2 Overview of proposed algorithm

Our proposed procedure can be derived in a few simple
steps. Let us begin with a one-dimensional example,
in which for random variable x we try to estimate Ex
based on sample x1, . . . , xn. Our problem of interest is
the setting in which the underlying distribution may
be heavy-tailed, but it also may not be, and this in-
formation is not available to the learner a priori.

Scaling and truncation The first step involves a
very primitive technique for ensuring the bias is small
under well-behaved data, all while constraining the im-
pact of outlying points. We re-scale, apply a soft trun-
cation ψ, and then put the truncated arithmetic mean
back in the original scale, namely

s

n

n∑
i=1

ψ
(xi
s

)
≈ Ex.

Here ψ should have the symmetry of an odd function
(ψ(−u) = −ψ(u)), be non-decreasing on R, with a
slope of ψ′(u) → 1 as u → 0, and be bounded on
R. A simple example is the hyperbolic tangent func-
tion, tanh(u), but we shall consider other examples
shortly. If the scale s > 0 is set such that |xi|/s is
near zero for all but errant observations, the impact
of the non-deviant terms to the arithmetic mean will
be approximately equal, while the deviant points will
have a disproportionately small impact.

Noise multiplication The second step involves ap-
plying multiplicative noise, albeit the purpose is rather

unique. Let ε1, . . . , εn be our independent random
noise, generated from a common distribution ε ∼ ν
with Eν ε = 0. We multiply each datum by 1 + ε, and
then pass each modified datum xi(1 + εi) = xi + xiεi
through the truncation function as above, yielding

x̃(ε) = s

n

n∑
i=1

ψ

(
xi + εixi

s

)
.

Multiplicative noise has received much attention in re-
cent years in the machine learning literature, in par-
ticular with “dropout” in deep neural networks via
Bernoulli random variables (Srivastava et al., 2014),
and more recent investigations using Gaussian multi-
plicative noise (Nalisnick et al., 2015). In using multi-
plicative noise with mean 1, the basic idea is as follows.
For typical points, an increase or decrease of a certain
small fraction should not change the estimator output
much. On the other hand, for wildly deviant points,
a push further in the wrong direction is likely to be
harmless due to ψ, while a push in the right direction
could earn an additional valid point for the estimator.

Noise smoothing In the third and final step, we
smooth out the multiplicative noise by taking the ex-
pectation of this estimator with respect to the noise
distribution. This smoothed version of the estimator,
still a random variable dependent on the original sam-
ple, is the final estimator of interest, defined

x̂ ..= E x̃(ε) = s

n

n∑
i=1

∫
ψ

(
xi + εixi

s

)
dν(εi). (3)

Computationally, in order to obtain x̂ to approximate
Ex, we will not actually have to generate the εi and
multiply the xi by (1 + εi), but instead will have to
evaluate the integral.

Computational matters Before we move to the
high-dimensional setting of interest, how can we ac-
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tually compute this x̂? Numerical integration is not
appealing as the overhead will be too much for a sub-
routine to be repeated many times. Naturally, the
computational approach will depend on the noise dis-
tribution ν, and the truncation function ψ. Using re-
cent results in the statistical literature from Catoni
and Giulini (2017), if we set the truncation function
to be

ψ(u) ..=


u− u3/6, −

√
2 ≤ u ≤

√
2

2
√

2/3, u >
√

2
−2
√

2/3, u < −
√

2
(4)

and set the noise distribution to be ν = N(0, 1/β),
then the integral of interest can be given in an explicit
form that is simple to compute, requiring no numerical
integration or approximation. Written in a general
form with shift parameter a ∈ R and scale parameter
b > 0, we can express the integral as

Eν ψ
(
a+ b

√
βε
)

= a

(
a− b2

2

)
− a3

6 + C(a, b) (5)

where C(a, b) is a correction term that is complicated
to write, but extremely simple to implement (see sup-
plement for exact form).

Proposed learning algorithm Let us now return
to the high-dimensional setting of interest. At any can-
didate w, we can evaluate the l(w; zi) and l′(w; zi)
for all points i = 1, . . . , n. The heart of our pro-
posal: apply the sub-routine specified in (3) to each
coordinate of the loss gradients, which can be com-
puted directly using (5), and plug the resulting “robust
gradient estimate” into the usual first-order update
(2). Pseudocode for the proposed procedure is pro-
vided in Algorithm 1. All operations on vectors in the
pseudo-code are element-wise, e.g., u2 = (u2

1, . . . , u
2
d),

|u| = (|u1|, . . . , |ud|), u/v = (u1/v1, . . . , ud/vd), and
so forth. For readability, we abbreviate l′i(w) ..=
l′(w; zi).

As a simple example of the guarantees that are avail-
able for this procedure, assuming just finite variance
of the gradients, and setting α(t) = α for simplicity,
we have that R(ŵ(T ))−R∗ is bounded above by

O

(
d(log(dδ−1) + d log(∆n))

n

)
+O

(
(1− αγ)T

)
with probability at least 1 − δ over the random draw
of the sample, where d is the dimension of the space
the gradient lives in, ∆ is the diameter of W, and
the constant γ depends only on R(·). Theoretically,
these results are competitive with existing state of the
art methods cited in the previous section, but with
the computational benefits of zero computational er-
ror, direct computability, and the fact that per-step

computation time is independent of the underlying dis-
tribution.

3 Theoretical analysis

In this section, we carry out some formal analysis of
the generalization performance of Algorithm 1. More
concretely, we provide guarantees in the form of high-
probability upper bounds on the excess risk achieved
by the proposed procedure, given a finite sample of n
observations, and finite budget of T iterations. Our
approach can be broken down into three straightfor-
ward steps: (a) Obtain pointwise error bounds for
ĝ(w) ≈ g(w). (b) Extend step (a) to obtain error
bounds uniform in w ∈ W. (c) Control distance of
ŵ(t) from minimizer at each step. All detailed proofs
are given in the supplemental materials.

Notation Here we organize the key notation used
in the remainder of our theoretical analysis and as-
sociated proofs (some are re-statements of definitions
above). The observable loss is l : W ×Z → R, where
W is the model from which the learning machine can
select parameters w ∈ W, and Z is the space housing
the data sample, z1, . . . ,zn. The data distribution is
denoted z ∼ µ, and the noise distribution featured in
our algorithm is ε ∼ ν. The risk to be minimized is
R(w) ..= Eµ l(w; z). The risk and loss gradients are
respectively g and l′. Estimates of g based on ob-
servations of l′ are denoted ĝ. We frequently use P
to denote a generic probability measure, typically the
product measure induced by the sample, which should
be clear from the context. Unless specified otherwise,
‖·‖ shall denote the usual `2 norm on Euclidean space.
For integer k > 0, write [k] ..= {1, . . . , k}.

Assumptions No algorithm can achieve arbitrarily
good performance across all possible distributions. To
obtain meaningful results, we must place conditions on
the data and algorithm. We give concrete examples to
illustrate that these assumptions are reasonable, and
that they include scenarios that allow for both sub-
Gaussian and heavy-tailed data.

A0. W is a closed, convex subset of Rd, with diameter
∆ ..= sup{‖u− v‖ : u,v ∈ W} <∞.

A1. Loss function l( · ; z) is λ-smooth on W.

A2. R(·) is λ-smooth, and continuously differentiable
on W.

A3. There exists w∗ ∈ W at which g(w∗) = 0.

A4. R(·) is κ-strongly convex on W.
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Algorithm 1 Outline of robust gradient descent learning algorithm
inputs: ŵ(0), T > 0, δ ∈ (0, 1), β =

√
2 log(δ−1)

for t = 0, 1, . . . , T − 1 do

Scale set to minimize error bound, via Remark 3 and Lemma 5.

s(t) =
√
nv(t)/2 log(δ−1), where v(t) ≥ Eµ l

′
i(ŵ(t))2

Corrected gradient estimate, via (3) and (5):

ĝ(t) = 1
n

n∑
i=1

(
l′i(ŵ(t))

(
1−

l′i(ŵ(t))2

2s2
(t)β

)
−
l′i(ŵ(t))3

6s2
(t)

)
+ 1
n

n∑
i=1

C

(
l′i(ŵ(t))
s(t)

,
|l′i(ŵ(t))|
s(t)
√
β

)
Plug in to gradient-based update (2).

ŵ(t+1) = ŵ(t) − α(t) ĝ(t)(ŵ(t))

end for
return: ŵ(T )

A5. There exists v < ∞ such that Eµ(l′j(w; z))2 ≤ v,
for all w ∈ W, j ∈ [d].

Of these assumptions, assuredly A0 is simplest: any
ball (here in the `2 norm) with finite radius will suffice,
though far more exotic examples are assuredly possi-
ble. The remaining assumptions require some check-
ing, but hold under very weak assumptions on the un-
derlying distribution (additional examples in the sup-
plement).
Example 1 (Concrete example of assumption A5).
Consider a linear regression model y = 〈w∗,x〉 + η,
under squared error l(w; z) = (〈w,x〉 − y)2. Assume
that Ex = 0, that the noise η and input x are inde-
pendent, and that the components of x = (x1, . . . , xd)
are independent of each other. Some straightforward
algebra shows that

E(l′j(w; z))2 = 4
(
Ex2

j 〈w −w∗,x〉2 + E η2 Ex2
j

)
≤ 4

(
‖w −w∗‖2 Ex2

j‖x‖2 + E η2 Ex2
j

)
.

It follows that as long as the noise η has finite variance
(E η2 <∞), and all inputs have finite fourth moments
Ex4

j <∞, then using assumption A0, we get

E(l′j(w; z))2 ≤ 4
(
∆2 Ex2

j‖x‖2 + E η2 Ex2
j

)
<∞.

This holds for all w ∈ W, satisfying A5.

In the analysis that follows, A0–A5 are assumed to
hold.

Analysis of Algorithm 1 with discussion Here
we consider the learning performance of the proposed
procedure given by Algorithm 1. Almost every step of
the procedure is given explicitly, save for the means of
setting the moment bound v(t) (see section 4), and the

step size setting of α(t). In the subsequent analysis of
section 3, we shall specify exact settings of α(t), and
show how these settings impact the final guarantees
that can be made.

We begin with a general fact that shows the sub-
routine used to estimate each element of the risk gra-
dient has sharp guarantees under weak assumptions.
Lemma 2 (Pointwise accuracy). Consider data
x1, . . . , xn, with distribution x ∼ µ. Assume finite sec-
ond moments, and a known upper bound Eµ x

2 ≤ v <
∞. With probability no less than 1 − δ, the estima-
tor x̂ defined in (3) using ν = N(0, 1/β) with β =√

2 log(δ−1), and scaled with s =
√
nv/(2 log(δ−1))

satisfies

|x̂−Eµ x| ≤
√

2v log(δ−1)
n

+
√
v

n
.

Remark 3 (Scaling in Lemma 2). Note that the scale
setting s > 0 in the above lemma depends on the sam-
ple size n and the second moment of the underlying
distribution. This can be derived from an exponential
tail bound on the deviations of this estimator, namely
we have that for any choice of s > 0,

P
{
|x̂−Eµ x| ≤

v

2s + s log(δ−1)
n

+
√
v

n

}
≥ 1− δ.

Choosing s to minimize this upper bound yields the
final results given in the lemma. Details are given in
the proof. As for the setting of β given, this is also
described in the proof; an optimal setting dependent
on s can be derived in the form β2 = nv/s2, which
simplifies to the final form given in the above lemma.

Of critical importance is that Lemma 2 only assumes
finite variance, nothing more. Higher-order moments
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may be infinite or undefined, and the results still hold.
This means the results hold for both Gaussian-like
well-behaved data, and heavy-tailed data which are
prone to errant observations. Next, we show that this
estimator has a natural continuity property.
Lemma 4 (Estimator is Lipschitz). Considering the
estimator x̂ defined in (3) as a function of the data
x ..= (x1, . . . , xn) ∈ Rn, it satisfies the following Lips-
chitz property:

|x̂(x)− x̂(x′)| ≤ cν
n
‖x− x′‖1, for all x,x′ ∈ Rn

where the factor cν takes the form

cν = 1− 2Φ
(
−
√
β
)

+
√

2
βπ

exp
(
−β2

)
where Φ(u) ..= P{N(0, 1) ≤ u}, the cumulative distri-
bution function of the standard Normal distribution.

At each step in an iterative procedure, we have some
candidatew, at which we can evaluate the loss l(w; zi)
and/or the gradient l′(w; zi) over some or all data
points i ∈ [n]. In traditional ERM-GD, one simply
uses the empirical mean of the loss gradients to ap-
proximate g(w). In our proposed robust gradient de-
scent procedure, instead of just doing summation, we
feed the loss gradients as data into the robust proce-
dure (3), highlighted in Lemma 2. Running this sub-
routine for each dimension results in a novel estimator
ĝ(w) of the risk gradient g(w), to be plugged into (2),
constructing a novel steepest descent update. Since
the candidate w at any step will depend on the ran-
dom draw of the data set z1, . . . ,zn, upper bounds on
the estimation error must be uniform in w ∈ W in
order to capture all contingencies. More explicitly, we
require for some bound 0 < ε <∞ that

P
{

max
t≤T
‖ĝ(ŵ(t))− g(ŵ(t))‖ ≤ ε

}
≥ 1− δ. (6)

Using the following lemma, we can show that such a
bound does exist, and its form can be readily charac-
terized.
Lemma 5 (Uniform accuracy). Consider the risk gra-
dient approximation ĝ = (ĝ1, . . . , ĝd), defined at w (for
j ∈ [d]) with s2

j = nvj/2 log(δ−1) as

ĝj(w) ..= sj
n

n∑
i=1

∫
ψ

(
l′j(w; zi)(1 + εi)

sj

)
dν(εi) (7)

with vj any valid bound satisfying vj ≥ Eµ |l′j(w; z)|2,
for all w ∈ W. Then, with probability no less than
1− δ, for any choice of w ∈ W, we have that

‖ĝ(w)− g(w)‖ ≤ ε̃√
n
,

where writing V ..= maxj∈[d] vj, the error ε̃ is

ε̃ ..=
√

2dV (log(dδ−1) + d log(3∆
√
n/2))

+ λ(1 + cν
√
d) +

√
dV .

We now have that (6) is satisfied by our underlying
routine, as just proved in Lemma 5. The last remain-
ing task is to disentangle the underlying optimization
problem (minimization of unknown R(·)) from the sta-
tistical estimation problem (approximating g with ĝ),
in order to control the distance between the output of
Algorithm 1 after T iterations, denoted ŵ(T ), and the
minimizer w∗ of R(·).
Lemma 6 (Distance control). Consider the general
approximate GD update (1), and assume that (6) holds
with bound 0 < ε <∞. Then, with probability no less
than 1− δ, the following statements hold.

1. Setting α(t) = α/γ, with 0 < α < 1, we have

‖ŵ(T ) −w∗‖ ≤ (1− α)T/2‖ŵ(0) −w∗‖+ 2ε
γ
.

2. Setting α(t) = 1/((2 + t)γ), we have

‖ŵ(T ) −w∗‖ ≤
1√
t+ 2

‖ŵ(0) −w∗‖+ ε

γ
.

Our preparatory lemmas are now complete, and we
can finally focus on the risk itself. We are consider-
ing bounds on the excess risk, namely the difference
between the risk achieved by our procedure R(ŵ(T )),
and R∗ ..= inf{R(w) : w ∈ W} = R(w∗), namely the
best possible performance using W.
Theorem 7 (Excess risk bounds, fixed step size).
Write ŵ(T ) for the output of Algorithm 1 after T it-
erations, assuming step size α(t) = α/γ, and moment
bounds v(t) ≤ V for all t. It follows that

R(ŵ(T ))−R∗ ≤ (1− α)Tλ‖ŵ(0) −w∗‖2 + 4λε̃
κ2n

= O
(
(1− α)T

)
+O

(
d(log(dδ−1) + d log(∆n))

n

)
with probability no less than 1 − δ over the random
draw of the sample z1, . . . ,zn, where ε̃ and V are as
defined in Lemma 5.
Remark 8 (Comparison with other RGD). An imme-
diate observation is that if we let T scale with n such
that T →∞ as n→∞, we have convergence in prob-
ability, and indeed to get arbitrarily good generaliza-
tion at confidence 1 − δ, one requires on the other of
d2 log(δ−1) observations. These rates are directly com-
parable to those of Chen et al. (2017b) under similar
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Figure 2: Performance metrics as a function of itera-
tive updates. Top row: Normal noise. Bottom row:
log-Normal noise. Settings: n = 500, d = 2, α(t) = 0.1
for all t.

assumptions. The rates in Prasad et al. (2018) are of
order Ω(d), but their sample-splitting argument means
error terms depend on T , leading to much slower rates
when T grows with n.

One would expect that with robust estimates of the
risk gradient that over a wide variety of distributions,
that the updates of Algorithm 1 should have small
variance given enough observations. The following re-
sult shows that this is true, with the procedure stabi-
lizing to the best level available under the given sample
as the procedure closes in on a valid solution.
Theorem 9 (Control of update variance). Run Algo-
rithm 1 under the same assumptions as Theorem 7,
except with step-size α(t) left arbitrary. Then, for any
step t ≥ 0, taking expectation with respect to the sam-
ple {zi}ni=1 conditioned on ŵ(t), we have

E ‖ŵ(t+1) − ŵ(t)‖2 ≤

2α2
(t)

(
d2V

n

(√
π

2 + 1
e2

)
+ ‖g(ŵ(t))‖2

)
.

4 Empirical analysis

In the numerical experiments that follow, our primary
goal is to elucidate the relationship that exists between
factors of the learning task (e.g., sample size, model
dimension, initial value, underlying data distribution)
and the performance of the robust gradient descent
procedure proposed in Algorithm 1. We are interested
in how these factors impact algorithm behavior in an
absolute sense, as well as performance relative to well-
known competitors. Details of the experimental setup
are given in the supplementary materials.
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Figure 3: Comparison of our robust gradient-based
approach with the robust objective-based approach.
Top: Normal noise. Bottom: log-Normal noise. Per-
formance is given as a function of the number of d, the
number of parameters to optimize, given in log2 scale.
Settings: n = 500, α(t) = 0.1 for all t.

4.1 Controlled tests

Noisy convex minimization Our first inquiry is
a basic proof of concept: are there natural problem
settings under which using rgdmult over ERM-GD is
advantageous? How does this procedure perform when
ERM-GD is known to be effectively optimal? In lin-
ear regression under Gaussian noise, ERM-GD is effec-
tively optimal (Lin and Rosasco, 2016, Appendix C).
As a baseline, we start with Gaussian noise (mean 0,
standard deviation 20), and then consider centered log-
Normal noise (log-location 0, log-scale 1.75) as a rep-
resentative example of asymmetric, heavy-tailed data.
Performance results are given in Figure 2.

Comparison with robust loss minimizer In sec-
tion 1, we cited the important work of Brownlees et al.
(2015), which chiefly considered theoretical analysis of
a robust learning procedure that minimizes a robust
objective, in contrast to our use of a robust update
direction. Our proposed procedure enjoys essentially
the same theoretical guarantees, and we have claimed
that it is more practical. Here we attempt to verify
this claim empirically. Denote the method of Brown-
lees et al. (2015) by bjl. Computation times along
with performance results are given in Figure 3.

Regression application For our next class of ex-
periments, we look at a more general regression task,
under a diverse collection of data distributions. We
then compare Algorithm 1 with well-known proce-
dures specialized to regression, both classical and re-
cent. Here we consider four noise families: log-logistic
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Figure 4: Top: Prediction error over sample size
12 ≤ n ≤ 122, fixed d = 5, noise level = 8. Noise
distributions are Normal, symmetric triangular, log-
logarithmic, and log-Normal.

(denoted llog in figures), log-Normal (lnorm), Nor-
mal (norm), and symmetric triangular (tri_s). Even
with just these four, we have representative distribu-
tions with both bounded and unbounded sub-Gaussian
noise, and heavy-tailed data both with and without fi-
nite higher-order moments. We consider several meth-
ods against which we compare the proposed Algorithm
1. As classical choices, we have ordinary least squares
(ERM under the squared error, ols) and least absolute
deviations (ERM under absolute error, lad). For more
recent methods, as described in section 1, we consider
robust regression routines as given by Minsker (2015)
(geomed) and Hsu and Sabato (2016) (hs). In the for-
mer, we partition the data, obtaining the ols solution
on each subset, and these candidates are aggregated
using the geometric median in the `2 norm (Vardi and
Zhang, 2000). In the latter, we used source code pub-
lished online by the authors. To compare our Algo-
rithm 1 with these routines, we initialize rgdmult to
the analytical ols solution, with step size α(t) = 0.01
for all iterations, and δ = 0.005. Variance bounds v(t)
are set to the empirical second moments of l′(ŵ(t), z),
divided by 2. In total, the number of iterations is con-
strained by a fixed budget: we allow for 40n gradient
evaluations in total. Representative results are pro-
vided in Figure 4.
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Figure 5: Test error (misclassification rate) over bud-
get spent, as measured by gradient computations, for
the top two performers within each method class. Each
plot corresponds to a distinct dataset.

4.2 Application to real-world benchmarks

We investigate the utility of a random mini-batch
version of Algorithm 1 here, compared with vanilla
SGD, and stochastic variance-reduced gradient de-
scent (SVRG) proposed by Johnson and Zhang (2013).
The model used is standard logistic regression, com-
mon across all methods. We consider binary classifica-
tion based on the Covertype dataset (UCI respository)
and the protein homology dataset (KDD Cup). For
each dataset and each method, we chose the top two
parameters settings, written *_1 and *_2 here. Here
the “top two” refers to performance as measured by
the median test error for the last five iterations. Rep-
resentative results are given in Figure 5.

5 Looking ahead

We are particularly interested in moving beyond per-
coordinate robustification, and considering operations
that operate on the loss gradient vectors themselves
as atomic units. The per-coordinate technique is easy
to implement and theoretical analysis is also more
straightforward, but the risk bounds have an extra d
factor that should be removable given more sophisti-
cated procedures. Indeed, the high-dimensional mean
estimation discussed by Catoni and Giulini (2017) has
such a vector estimator, but unfortunately there is no
way to actually compute the estimator they analyze.
Bridging this gap is an important next step, from the
perspective of both learning theory and machine learn-
ing practice.
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