
Modularity-based Sparse Soft Graph Clustering (Supplementary
Material)

Alexandre Hollocou Thomas Bonald Marc Lelarge
INRIA, Paris Telecom Paristech INRIA & ENS, Paris

A Proof of Theorem 4.1

Theorem 4.1. The function J is convex if and only
if the second lowest eigenvalue λ2 of the normalized
Laplacian L verifies λ2 ≥ 1.

Proof. The cost function J can be written as J(p) =
1
w

∑
k J̃(p·k) where J̃(q) =

∑
i

∑
j(Wij−wiwj/w)qiqj .

So J is convex if and only if J̃ is convex. Moreover,
the function J̃ is convex iff its hessian matrix H is
semi-definite positive. An expression of H is given
by H = −2

(
W − wwT

w

)
, where w denotes the vector

(wi)i∈V .
Let x be a vector of Rn, and y = D1/2x. Then we
have:

xTHx = −2
(
yTD−1/2WD−1/2y − ‖uT

1 y‖2
)

= 2(yT (L− I)y + ‖uT
1 y‖2)

where u1 = (1/
√
w)D−1/2w. It is easy to verify that

u1 is a normalized eigenvector associated with the first
eigenvalue λ1 = 0 of the normalized Laplacian L. We
use u1, . . . ,un to denote the orthonormal basis of eigen-
vectors corresponding to the eigenvalues (λ1, . . . , λn).
Thus, we can write:

xTHx = 2(

n∑
k=1

(λk − 1)‖uT
k y‖2 + ‖uT

1 y‖2)

= 2(

n∑
k=2

(λk − 1)‖uT
k y‖2)

We see that xTHx ≥ 0 for all x if and only if 1 ≥
λ2 ≥ . . . ≥ λn, which concludes the proof.

B Proof of Proposition 4.2

Proposition 4.2. If the graph does not contain any
self loops, i.e. if Wii = 0 for all node i, the function
p 7→ J(p) is convex with respect to variable pi· for all
i ∈ V .

Proof. Let i be a given node. We have for all k, k′ ∈
J1, nK,

∂J

∂pik
= − 2

w

∑
j∈V

(Wij − wiwj/w)pjk,

∂J

∂pik∂pik′
=

2

w
(w2

i /w −Wii)δ(k, k
′),

where δ(k, k′) = 1 if k = k′ and 0 otherwise. IfWii = 0,
the hessian matrix Hi of J with respect to pi· can be
written Hi = 2(wi/w)2I. It is thus definite positive,
which proves the convexity of J in pi·.

C Proof of Theorem 4.3

Theorem 4.3. The soft modularity objective function
Q(p) is non-decreasing under the update rule

pi· ← πY

pi· +
2t

w

∑
j∈V

(
Wij −

wiwj

w

)
pj·


for all node i ∈ V if the step size t verifies t < (w/wi)

2.
Q(p) is invariant under all these update rules iff pi·
minimizes Q(p) with fixed pj·, j 6= i, for all node i ∈ V .

Proof. Let i be a given node of V and p ∈ X be a
feasible solution of the relaxation of the soft modular-
ity optimization problem. We define p+ with p+

i· =

πY

[
pi· +

2t
w

∑
j∈V

(
Wij − wiwj

w

)
pj·

]
, and p+

j· = pj· for
all j 6= i.

The objective function J(p) = −Q(p) is quadratic in
pik, k ∈ J1, nK, so we have:

J(p+) = J(p) +∇iJ(p)T (pi·
+ − pi·)

+
1

2
(pi·

+ − pi·)Hi(pi·
+ − pi·) (1)

= J(p)− t∇iJ(p)TGi(p) +

(
wit

w

)2

‖Gi(p)‖2

where ∇iJ(p) is the gradient of J with respect to pi·,
Hi is the hessian matrix of J with respect to pi· whose

Modularity-based Sparse Soft Graph Clustering (Supplementary Material)

expression was given in the proof of Proposition 4.2,
and Gi(p) = (pi· − pi·

+)/t.

Besides, by definition of πY , and using the expression
of ∇iJ(p) given in the proof of Proposition 4.2, we
have

p+
i· = arg min

q∈Y

{
‖q − (pi· − t∇iJ(p))‖2

}
= arg min

q∈Y

{
2t∇iJ(p)T (q − pi·) + ‖q − pi·‖2

}
(2)

= arg min
q∈Rn

{
∇iJ(p)T (q − pi·) +

‖q − pi·‖2

2t
+ h(q)

}
where h(q) = 0 if q ∈ Y, and h(q) = +∞ otherwise.

Y is a convex set, so h is a convex function. Note that
h is non-differentiable. We use ∂h(q) to denote the
subdifferential of h at q i.e. the set of all its subgradients.
Remember that a vector v is defined as a subgradient of
h at q if it verifies, for all q′, h(q′)−h(q) ≥ vT (q′−q).

Equation (2) can be written p+
i = arg minq L(q), where

L is a non-differentiable convex function. The optimal-
ity of p+

i· gives us 0 ∈ ∂L(p+
i·). Therefore, there exists

a v ∈ ∂h(p+
i·), such that

∇iJ(p) +
1

t
(pi·

+ − pi·) + v = 0.

Using this result in equation (1), we obtain

J(p+) = J(p)+tvTGi(p)−t
(

1− t
(wi

w

)2)
‖Gi(p)‖2.

We have tvTGi(p) = vT (pi·−pi·
+) ≤ h(pi·)−h(pi·

+)
because v ∈ ∂h(p+

i·). Both pi· and p+
i· belongs to Y,

thus vTGi(p) ≤ 0.

Finally, we obtain

J(p+) ≤ J(p)− t
(

1− t
(wi

w

)2)
‖Gi(p)‖2.

We have Q(p+) ≥ Q(p) if t < (w/wi)
2. The inequality

becomes an equality if and only if Gi(p) = 0, which
gives us ∇iJ(p) + v = 0. This is equivalent to say that
p is an optimum of J + h with respect to pi·.

D Proof of Theorem 4.4

Theorem 4.4. The algorithm converges to a local max-
imum of the soft modularity function p 7→ Q(p) which
is a fixed point of the updates of Theorem 4.3.

Proof. The sequence of matrices p built by the al-
gorithm converges to a limit p∗ ∈ Y, since the soft
modularity Q is non-decreasing under each update, Y

is a compact, and p 7→ Q(p) is continuous and upper
bounded. From the proof of Theorem 4.3, we have for
all i ∈ V , Gi(p) = 0, which gives us (p∗i·)

+ = p∗i·, thus
p∗ is a fixed point for the update relative to node i.
Moreover, we have for all node i ∈ V , ∇iJ(p∗) + v = 0
for some v ∈ ∂h(p∗i·), which proves that p∗ is a local
optimum of the function p 7→ J(p) = −Q(p).

E Proof of Proposition 5.1

Proposition 5.1. In order to compute πY(p̂i·), we
only need to sort the components k ∈ suppi(p) of p̂i·
to determine ρ and θ. All components k /∈ suppi(p) of
πY (p̂i·) are set to zero.

Proof. First note that

n∑
k=1

p̂ik =
∑
k

pik +
2t

w

∑
j

Wij

(∑
k

pik −
∑
k

p̄k

)
= 1

since
∑

k

∑
j

wj

w pjk =
∑

j
wj

w

∑
k pjk = 1.

Let j0 be defined by j0 = max{j : µj ≥ 0}. The
function j 7→

(∑j
r=1 µr − 1

)
increases for j ≤ j0 and

then decreases to 0 when j = n. In particular, this
function is non-negative for j ≥ j0. This implies that
ρ ≤ j0 and θ ≥ 0.

Now, for k /∈ suppi(p), we have p̂ik = − 2twi

w p̄k ≤ 0 so
that the k-th component of πY (p̂i·) will be zero since
θ ≥ 0. Moreover, since ρ ≤ j0, the value of p̂ik is not
used for the determination of ρ and θ.

F Proof of Proposition 6.1

Proposition 6.1. Let p ∈ X be a membership matrix.
If p ∈ {0, 1}n2

, if the hypothesis (H) is verified, and if
t > w/δ where
δ = min

C,C′⊂V
i∈V
C 6=C′

∣∣∣(wi(C)−wiVol(C)
w

)
−
(
wi(C

′)−wiVol(C′)
w

)∣∣∣,
then the update rule of Theorem 4.3 for node
i ∈ V reduces to ∀k, pik ← 1 if k =

arg max
l:j∈Cl,j∼i

[
wi(Cl)− wi

Vol(Cl)
w

]
, and pik ← 0 otherwise,

where Ck denotes the kth cluster defined by p.

Proof. Given p ∈ X ∩{0, 1}n2

and i ∈ V , we use p+ to
denote the vector obtained by applying the update rule
of Theorem 4.3 for node i. We have, for all k ∈ J1, nK,
p+ik = max(p̂ik − λ, 0) where p̂ik = pik + 2t

w [wi(Ck) −
wiVol(Ck)/w] and λ is chosen so that

∑
k p

+
ik = 1.

Alexandre Hollocou, Thomas Bonald, Marc Lelarge

Let k∗ = arg maxk[wi(Ck)−wiVol(Ck)/w]. We assume
that (H) is verified and that t > w/δ. Thus, for all
k ∈ J1, nK s.t. k 6= k∗,

p̂ik∗ − p̂ik ≥ pik∗ − pik +
2t

w
δ

≥ −1 +
2t

w
δ > 1. (3)

In particular, this implies p+ik∗ > p+ik. Now, note that
if we had p+ik > 0 for a certain k 6= k∗, we would have
p+ik∗ ∈ (0, 1], p+ik ∈ (0, 1], and therefore p+ik∗ − p

+
ik < 1.

Yet, we would also have p+ik∗ −p
+
ik = (p̂ik∗ −λ)− (p̂ik−

λ) = p̂ik∗ − p̂ik, which leads to a contradiction with
(3).

Therefore, we have ∀k 6= k∗, p+ik = 0, which immedi-
ately gives us p+ik∗ = 1.

Finally, we see have seen in our simplification of the pro-
jection onto the probability simplex that the arg max in
the definition of k∗ can be taken over the communities
in the neighborhood of i.

G Proposition 6.2

Proposition 6.2. The update performed by
LouvainUpdate(i) is equivalent to transferring
node i to the cluster C∗k such that:

k∗ = arg max
k∈NeiCom(i)

[
wi(Ck)− wi

Vol(Ck)

w

]

Proof. The variation of hard modularity when node
i ∈ V joins cluster Ck can be written as

∆Q(i→ Ck) =
1

w

[
2

(
wi(Ck)− wi

Vol(Ck)

w

)
− w2

i

w

]
.

(4)
Therefore, arg maxk ∆Q(i → Ck) =

arg maxk

(
wi(Ck)− wiVol(Ck)

w

)
.

H Algorithm pseudo-code

We give the pseudo-code of the algorithm as working
python code in in Algorithm 1. The algorithm only
requires one parameter, the learning rate lr, which
corresponds to the 2t

w factor in the previous section.

The algorithm stores two variables p and avg_p. The
variable p corresponds to the membership matrix p, i.e.
the output of our algorithm, and is stored as a dictio-
nary of dictionary, so that each p[i][k] corresponds to
a positive coefficient of p, pik. The variable avg_p is a
dictionary used to store the average cluster membership
vector p̄, so that avg_p[k] corresponds to p̄k.

Algorithm 1 Soft-modularity optimization
Require: nodes, edges, degree, w, lr (learning rate)

Initialization
p = dict ()
avg_p = dict ()
for node in nodes :

p [node] = {node : 1 .}
avg_p [node] = (1 . /w) ∗ degree [node]

One epoch (update the membership matrix p)
for node in nodes :

new_p = dict ()
Gradient descent s tep
for com in p [node] :

new_p [com] = p [node] [com]
for neighbor in edges [node] :

weight = edges [node] [ne ighbor]
for com in p [ne ighbor] :

i f com not in new_p :
new_p [com] = 0 .

new_p [com] += l r ∗ weight ∗ p [ne ighbor] [com]
for com in new_p :

new_p [com] −= l r ∗ degree [node] ∗ avg_p [com]
Project ion s tep
new_p = pro j e c t (new_p)
Updating average membership vector
for com in p [node] :

avg_p [com] −= (1 . /w) ∗ degree [node] ∗ p [node] [com]
p [node] = dict ()
for com in new_p :

avg_p [com] += (1 . /w) ∗ degree [node] ∗ new_p [com]
p [node] [com] = new_p [com]

Sub-routine project

def p ro j e c t (in_dict) :
Sort the va lues of in_dict in decreasing order
va lues = sorted (in_dict . va lues () , r e v e r s e=True)
Find the value of lambda
cum_sum = 0 . ; lamb = 0 .
i = 1
for va l in va lues :

cum_sum += val
new_lamb = (1 . / i) ∗ (cum_sum − 1 .)
i f va l − new_lamb <= 0 . :

break
else :

lamb = new_lamb
i += 1

Create the output d ic t ionary
out_dict = dict ()
for key in in_dict :

out_dict [key] = max(in_dict [key] − lamb , 0)
return out_dict

Modularity-based Sparse Soft Graph Clustering (Supplementary Material)

The graph is given to the algorithm as four variables:
nodes, edges, degree and w. The variable nodes con-
tains the list of the nodes. The variable edges is a
dictionary of dictionary, where edges[i][j] contains the
weight Wij . The variable degree is a dictionary con-
taining the node degrees, and w is the total weight of
the graph.

One epoch in our algorithm corresponds to the applica-
tion of all the update rules of Theorem 4.3, each update
rule corresponding to the update of the membership
probabilities of one node. Several strategies can be
adopted regarding the choice of the number of epochs.
A fixed number of epoches can be given in advance as
an additional parameter to the algorithm, or the soft-
modularity can be computed at the end of each epoch,
and be used as a stopping criterion. For instance, we
can stop the algorithm when the modularity increase
becomes smaller than a given precision factore ε > 0.
This later strategy is the equivalent of the strategy
used by the Louvain algorithm for the hard modularity
problem. In practice, in some cases, it proves more
efficient to consider the more general update rule

pi· ← πY

bpi· + t′
∑
j∼i

Wij(pj· − p̄)


where b ≥ 0 is a bias parameter. In future work, we
would like to understand the impact of a b 6= 1 on the
solution.

	Proof of Theorem 4.1
	Proof of Proposition 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Proposition 5.1
	Proof of Proposition 6.1
	Proposition 6.2
	Algorithm pseudo-code

