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Abstract

In likelihood-free settings where likelihood
evaluations are intractable, approximate
Bayesian computation (ABC) addresses the
formidable inference task to discover plausi-
ble parameters of simulation programs that
explain the observations. However, they de-
mand large quantities of simulation calls.
Critically, hyperparameters that determine
measures of simulation discrepancy crucially
balance inference accuracy and sample effi-
ciency, yet are difficult to tune. In this pa-
per, we present kernel embedding likelihood-
free inference (KELFI), a holistic framework
that automatically learns model hyperparam-
eters to improve inference accuracy given lim-
ited simulation budget. By leveraging likeli-
hood smoothness with conditional mean em-
beddings, we nonparametrically approximate
likelihoods and posteriors as surrogate densi-
ties and sample from closed-form posterior
mean embeddings, whose hyperparameters
are learned under its approximate marginal
likelihood. Our modular framework demon-
strates improved accuracy and efficiency on
challenging inference problems in ecology.

1 Introduction

Scientific understanding of complex phenomena are
deeply reliant on the study of probabilistic generative
models and their match with real world data. Often,
latent and convoluted interactions result in intractable
likelihood evaluations, making the setting likelihood-
free. Instead, generative models are expressed as a
stochastic forward model simulator. Inference on la-
tent variables in this setting is particularly challenging.
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Approximate Bayesian computation (ABC) methods
are the state-of-the-art in simulation-based Bayesian
inference with intractable likelihoods (Marin et al.,
2012). They infer posterior distributions of simulator
parameters that aim to explain observed data. The
posterior is of interest in its own right for understand-
ing the complex phenomena, and also useful in forming
predictions of future observations. They are popular
due to their simplicity and applicability, and have been
used extensively in the biological sciences (Beaumont,
2010; Toni et al., 2009). Nevertheless, complex mod-
els are often prohibitively expensive to simulate. Evo-
lutionary processes of ecological systems, vibrational
modes of a mechanical structure, and fluid flow across
surfaces are all examples that result in formidable in-
ference problems with demanding forward simulations.
It is thus imperative for inference algorithms to per-
form under the constraint of limited simulation calls,
posing an exceptionally challenging task.

Often, ABC methods rely on discrepancy mea-
sures between simulations and observations that are
parametrized by hyperparameters such as ε. The re-
sulting posterior approximation is highly sensitive to
the choice of hyperparameters, yet appropriate hyper-
parameter tuning strategies remain to be established.

To address these issues, we present kernel embedding
likelihood-free inference (KELFI), a holistic frame-
work consisting of (1) a consistent surrogate likelihood
model that modularizes queries from simulation calls,
(2) a Bayesian learning objective for hyperparameters
that improves inference accuracy, and (3) a posterior
surrogate density and a super-sampling inference algo-
rithm using its closed-form posterior mean embedding.

KELFI is based on approximating likelihoods with
simulation samples using conditional mean embed-
dings (CMEs). CMEs encode conditional expecta-
tions empirically by leveraging smoothness within a
reproducing kernel Hilbert space (RKHS) with only a
small number of examples. This modularizes inference
away from simulation calls. Consequently, scientists
can proceed with posterior analysis after any number
of simulations. Furthermore, KELFI infers both ap-
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proximate posterior densities and samples. Critically,
our learning algorithm tunes hyperparameters directly
for the inference problem, including adapting ε to the
number of simulations used. This removes the need
for practitioners to arduously select hyperparameters.
Finally, it can be extended to automatically learn the
relevance and usefulness of each summary statistic.

2 Likelihood-Free Inference

In the likelihood-free setting, we begin with a stochas-
tic forward model simulator which synthesizes simula-
tions x given a parameter setting θ. Let θ ∈ ϑ denote
a realization of the latent variable or parameter Θ,
where we use upper cases to denote random variables.
Let x ∈ X and y ∈ Y where X ,Y ⊆ D denote realiza-
tions of simulation output X and observations Y re-
spectively. We represent the simulator as p(x|θ) from
which we can only simulate or sample, but not query
its density, making likelihood evaluations intractable,
thus likelihood-free. To begin inference we posit a prior
density p(θ) that encodes prior knowledge about plau-
sible parameter settings to guide the inference. The
goal is to infer a posterior distribution on the param-
eters θ that could generate simulations x similar to
our observations y by some comparison measure. This
measure could be done by a standard ε-kernel or ABC
kernel pε(y|x) = κε(y,x), such as a Gaussian density
N (y|x, ε2I) (Price et al., 2017; Moreno et al., 2016).

Based on this formulation, the true full likelihood of
our model can be written as follows,

pε(y|θ) =

∫
X
pε(y|x)p(x|θ)dx = E[κε(y,X)|Θ = θ].

(2.1)
The corresponding posterior of interest is pε(θ|y) =
pε(y|θ)p(θ)/pε(y) where pε(y) =

∫
ϑ
pε(y|θ)p(θ)dθ.

Due to the presence of a non-zero ε, even a perfect
approximation to the soft posterior pε(θ|y) will not
be the exact posterior pε=0(θ|y) unless ε is annealed
to zero. This is the necessary trade-off we make with
limited simulations, where a non-zero ε is essential for
tractable inference because no simulations will match
the observations exactly in practice. If y is only avail-
able as a summary statistic, then this soft posterior
pε(θ|y) that we are targeting is only an approximation
to the posterior given the full data even with ε = 0.

So far, the notation x and y denote either the full
dataset or their summary statistics. This is because
the summary operation can be appended to the sim-
ulator program to output summary statistics directly.
In either case, we let the target posterior be pε(θ|y),
so the inference problem remains structurally identi-
cal. For simplicity however, from here on x and y will
denote summary statistics unless stated otherwise.

Since p(x|θ) is intractable, so is the likelihood (2.1).
Instead, approximations are required. Markov chain
Monte Carlo (MCMC) ABC use empirical means,

pε(y|θ) ≈ 1
S

∑S
s=1 pε(y|x(s)) = 1

S

∑S
s=1 κε(y,x

(s))
(Andrieu et al., 2009). Synthetic likelihood ABC (SL-
ABC) and adaptive SL-ABC (ASL-ABC) alternatively
use Gaussian approximations pε(y|θ) ≈ N (y|µθ,Σθ+
ε2I) and estimate the mean and covariance from sim-
ulations (Wood, 2010). These approaches require gen-
erating S new simulations {x(s)}Ss=1 corresponding to
θ every time the likelihood is queried.

Not only are synthetic likelihoods parametric Gaussian
approximations, they also approximate separately at
each θ. Instead, surrogate likelihood approaches like
KELFI use consistent nonparametric approximations
so that (1) only one new simulation is required at each
new parameter θ and (2) likelihood queries do not need
to be at parameters where simulations are available.

3 Kernel Embedding
Likelihood-Free Inference

We present KELFI in three stages. In the model stage,
we build a surrogate likelihood model by leveraging
smoothness properties of CMEs. In the learning stage,
we derive a differentiable marginal surrogate likelihood
to drive hyperparameters learning. In the inference
stage, we propose an algorithm to sample from the
resulting mean embedding of the surrogate posterior.

When the prior is an anisotropic Gaussian p(θ) =∏D
d=1N (θd|µd, σ2

d), closed form solutions for KELFI
exists. We will present this setting since, for many
common continuous priors, the likelihood-free infer-
ence (LFI) problem can be transformed into an equiv-
alent problem that involves a Gaussian prior. See ap-
pendix F for more detail. When this is not possible
or preferred, KELFI can be approximated arbitrarily
well by using arbitrarily many prior samples.

3.1 Conditional Mean Embeddings

We begin with an overview of CMEs in the context
of KELFI. Kernel mean embeddings (KMEs) are an
arsenal of techniques used to represent distributions
in a RKHS (Muandet et al., 2017). The key object is
the mean embedding of a distribution X ∼ P under a
positive definite kernel k via µX :=

∫
X k(x, ·)dP(x) =∫

X k(x, ·)p(x)dx ∈ Hk, where the last equality assumes
a density p for P exists andHk denotes the RKHS of k.
They encode distributions in the sense that function
expectations can be written as E[f(X)] = 〈µX , f〉Hk if
f ∈ Hk. When µX can only be estimated empirically
in some form denoted as µ̂X , the expectation can be
approximated by E[f(X)] ≈ 〈µ̂X , f〉Hk .
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CMEs are KMEs that encode conditional distribu-
tions. We specifically focus on their empirical es-
timates as we assume we only have the resource to
obtain m sets of simulation data due to budget con-
straints. This results in joint samples {θj ,xj}mj=1 from
p(x|θ)π(θ) by sampling from a proposal prior π for
θj ∼ π(θ) and simulating xj ∼ p(x|θj) at each θj .
Note these samples are not necessarily from the origi-
nal joint distribution p(x|θ)p(θ) if π 6= pΘ.

We define positive definite and characteristic kernels
(Sriperumbudur et al., 2010) k : D × D → R and
` : ϑ×ϑ→ R. When relevant, we denote the hyperpa-
rameters of k and ` with α and β, and refer to them
as kα = k(·, ·;α) and `β = `(·, ·;β). An useful exam-
ple of such a kernel is an anisotropic Gaussian kernel
`(θ,θ′;β) = exp

(
− 1

2

∑D
d=1(θd − θ′d)2/β2

d

)
whose hy-

perparameters are length scales β = {βd}Dd=1 for each
dimension d ∈ [D] := {1, . . . , D}, and similarly for k.

For any function f ∈ Hk, we construct an approx-
imation to E[f(X)|Θ = θ] by the inner product
〈f, µ̂X|Θ=θ〉Hk with an empirical CME µ̂X|Θ=θ. Im-
portantly, µ̂X|Θ=θ is estimated from the joint samples
{θj ,xj}mj=1, even though it is encoding the correspond-
ing conditional distribution p(x|θ). This approxima-
tion admits the following form (Song et al., 2009),

E[f(X)|Θ = θ] ≈ fT (L+mλI)−1`(θ), (3.1)

where f := {f(xj)}mj=1, L := {`(θi,θj)}mi,j=1, `(θ) :=
{`(θj ,θ)}mj=1, and λ ≥ 0 is a regularization parameter.

This approximation is known to converge at Op(m
− 1

4 )

if λ is chosen to decay at Op(m
− 1

2 ) or better under
appropriate assumptions on p(x|θ) (Song et al., 2013).

3.2 Model: Kernel Means Likelihood

We begin by presenting our surrogate likelihood
model. Since the likelihood (2.1) is an expectation un-
der p(x|θ), we propose to approximate it via an inner
product with the CME of p(x|θ). Specifically, if we
choose k such that κε(y, ·) ∈ Hk, then pε(y|θ) can be
approximated by q(y|θ) := 〈κε(y, ·), µ̂X|Θ=θ〉Hk . We
refer to q(y|θ) as the kernel means likelihood (KML).
While the KML provides an asymptotically correct
likelihood surrogate, for finitely many simulations it
is not necessarily positive nor normalized. By using
f = κε(y, ·) in (3.1) where κε(y) := {κε(y,xj)}mj=1

and v(y) := (L+mλI)−1κε(y), the KML becomes

q(y|θ) =

m∑
j=1

vj(y)`(θj ,θ). (3.2)

The KML converges at the same rate as the CME. See
theorem A.3 for proof. It is worthwhile to note that
the assumption `(θ, ·) ∈ image(CΘΘ) is common for

CMEs, and is not as restrictive as it may first appear,
as it can be relaxed through introducing the regular-
ization hyperparameter λ (Song et al., 2013).

Theorem 3.1. Assume `(θ, ·) ∈ image(CΘΘ). The
kernel means likelihood (KML) q(y|θ) converges to the

likelihood pε(y|θ) uniformly at rate Op((mλ)−
1
2 + λ

1
2 )

as a function of θ ∈ ϑ and y ∈ Y.

To satisfy κε(y, ·) ∈ Hk, we choose the standard Gaus-
sian ε-kernel κε(y,x) = N (y|x, ε2I) and let kα = kε
be a Gaussian kernel with length scale α = ε. Since
κε(y,x) and kε(y,x) are scalar multiples of each other,
we have that κε(y, ·) ∈ Hk. In fact, any positive defi-
nite kernel κε can be used, since we can simply choose
kα to be its scalar multiple to form the RKHS.

When the raw data is iid and no sufficient summary
statistics are available, we can employ a kernel on
the empirical distributions of the two datasets via
κε,α(y,x) ∝ kε,α(y,x) = exp

(
− 1

2ε2 ‖µ̂Y − µ̂X‖2Hk
)
,

where µ̂Y = 1
n

∑n
i=1 k̄α(yi, ·), µ̂X = 1

n

∑n
i=1 k̄α(xi, ·)

are empirical mean embeddings of the observed and
simulated raw data. Here k̄ is another kernel with hy-
perparameters α. This was also used in double kernel
ABC (K2-ABC) (Park et al., 2016) and distribution
regression ABC (DR-ABC) (Mitrovic et al., 2016) to
remove the requirement of summary statistics.

3.3 Learning: Hyperparameter Learning
with Marginal Kernel Means Likelihood

We now propose a hyperparameter learning algorithm
for our surrogate likelihood model. The main advan-
tage of using an approximate surrogate likelihood sur-
rogate model is that it readily provides a marginal sur-
rogate likelihood quantity that lends itself to a hyper-
parameter learning algorithm. We define the marginal
kernel means likelihood (MKML) as follows,

q(y) :=

∫
ϑ

q(y|θ)p(θ)dθ =

m∑
j=1

vj(y)µΘ(θj), (3.3)

where µΘ :=
∫
ϑ
`(θ, ·)p(θ)dθ is the mean embedding

of pΘ. If we choose ` to be an anisotropic Gaus-
sian kernel with length scales β = {βd}Dd=1, then µΘ

is closed-form for anisotropic Gaussian priors p(θ) =∏D
d=1N (θd|µd, σ2

d). Let ν2
d := β2

d + σ2
d, then we have

µΘ(θ) = `ν(θ,µ)

D∏
d=1

βd
νd
. (3.4)

Similar to the KML, the MKML converges at the same
rate as the CME. See theorem A.4 for proof.

Theorem 3.2. Assume `(θ, ·) ∈ image(CΘΘ). The
marginal kernel means likelihood (MKML) q(y) con-
verges to marginal likelihood pε(y) uniformly at rate

Op((mλ)−
1
2 + λ

1
2 ) as a function of y ∈ Y.



Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference

Algorithm 3.1 KELFI: Kernel Embedding Likelihood-Free Inference

1: Input: Data y, simulations {θj ,xj}mj=1 ∼ p(x|θ)π(θ), query parameters {θ?r}Rr=1, KML hyperparameters

(ε,β, λ), prior hyperparameters (µ,σ) or samples {θ̃t}Tt=1, number of samples S, kernel ` and ε-kernel κ
2: Compute v← (L+mλI)−1κε(y) where L← {`β(θi,θj)}mi,j=1 and κε(y)← {κε(y,xj)}mj=1

3: Compute q(y)← vTµΘ where µΘ ← {µΘ(θj)}mj=1 using (3.4) or µΘ ← 1
T L̃1T where L̃← {`β(θj , θ̃t)}m,Tj,t=1

4: Compute H ← {h(θj ,θ
?
r )}m,Rj=1,r=1 using (3.6) or H ← 1

T L̃L̃
? where L̃? = {`β(θ̃t,θ

?
r )}T,Rt,r=1

5: Compute posterior mean embedding µ← HTv/q(y) ∈ RR and initialize a← 0 ∈ RR

6: for s ∈ {1, . . . , S} do

7: Obtain super-sample θ̂s ← θ?r? where r? ← argmaxr∈{1,...,R} µr − (ar/s)

8: Update kernel sum a← a + {`β(θ?r , θ̂s)}Rr=1

9: end for
10: Output: Posterior super-samples {θ̂s}Ss=1

Consequently, the MKML q(y) = q(y; ε,β, λ) approx-
imates the true marginal likelihood pε(y) of the infer-
ence problem defined by our likelihood-prior pair. It
is a function of the hyperparameters (ε,β, λ) of the ε-
kernel and KML model. As pε(y) is unavailable, we in-
stead maximize the MKML for hyperparameter learn-
ing. Furthermore, prior hyperparameters µ and σ can
also be included and learned jointly. Since the map
(ε,β, λ) 7→ q(y; ε,β, λ) is differentiable, optimization
can be done in an auto-differentiation environment.
The learning objective to be optimized is computed in
line 3 of algorithm 3.1. Each automatic gradient up-
date has complexity dominated by O(m3) due to the
Cholesky decomposition in line 2. However, since we
are addressing scenarios where simulations are limited
so that m is small, this optimization is relatively fast.

Importantly, if we use an anisotropic Gaussian den-
sity for the ε-kernel κε where ε = {εi}ni=1 are the
length scales corresponding to each summary statis-
tic y = {yi}ni=1, we can perform automatic relevance
determination (ARD) to learn the relevance and use-
fulness of each summary statistic, where a small length
scale indicate high relevance for that statistic. This
is because ε are also the length scales of the kernel
k which defines the RKHS Hk. Since the anistropic
Gaussian kernel is learned, we also refer to it as an
ARD kernel. We can also learn the length scales
β = {βd}Dd=1 for the kernel `β on θ, although we
found that it is more useful to let β = β0σ where
σ = {σd}Dd=1 are the standard deviations of the Gaus-
sian prior. By doing this, we make better use of the
scale differences within θ from the prior, and let β0

learn the overall scale that is most useful for the KML.

For general non-Gaussian kernels and priors, µΘ in
(3.3) can be approximated using T independent prior

samples θ̃t ∼ p(θ), t ∈ [T ], as µ̃Θ = 1
T

∑T
t=1 `(θ̃t, ·).

By formulating a learning objective directly for the
inference problem, KELFI provides a way to automat-
ically tune ε and its own model hyperparameters.

3.4 Inference: Kernel Means Posterior and
Posterior Embedding Super-Sampling

We finally present an approach for posterior inference
by super-sampling directly from the equivalent poste-
rior mean embedding defined by the KML model and
the prior. Our approach begins by defining a surrogate
density to approximate the posterior pε(θ|y) in anal-
ogy to the Bayes’ rule, q(θ|y) := q(y|θ)p(θ)/q(y). We
refer to q(θ|y) as the kernel means posterior (KMP).
Importantly, q(θ|y) is unaffected even if κε is unnor-
malized, so that ε-kernels on distributions can be read-
ily used. The KMP has the following convergence
properties. See theorem A.5 for proof.

Theorem 3.3. Assume `(θ, ·) ∈ image(CΘΘ) and
that there exists δ > 0 such that q(y) ≥ δ for all
m ≥ M where M ∈ N+. The kernel means pos-
terior (KMP) q(θ|y) converges pointwise to the pos-

terior pε(θ|y) at rate Op((mλ)−
1
2 + λ

1
2 ) as a func-

tion of θ ∈ ϑ and y ∈ Y. If supθ∈ϑ p(θ) < ∞ and
supθ∈ϑ pε(y|θ) < ∞, then the convergence is uniform
in θ ∈ ϑ. If supy∈Y pε(θ|y) <∞, then the convergence
is uniform in y ∈ Y.

Importantly, the requirement for a δ > 0 such that
q(y) ≥ δ for all m ≥ M where M ∈ N+ provides an
intuition for why high MKML values are favorable for
learning a good approximate posterior. This require-
ment is an reflection on the capability of the simulator
to recreate the observations y relative to the scale ε.
Intuitively, the more capable the simulator p(x|θ) is at
generating simulations x that is close to y with respect
to ε, the higher pε(y) > 0 will be relatively. Since the-
orem 3.2 guarantees that, for large m > M , q(y) will
be close to pε(y), we have that q(y) > 0 for all large
m > M with increasing probability. In this situation,
theorem 3.3 guarantees that the KMP will converge to
the posterior of interest. However, consider the case
when the simulator is ill-designed to recreate y such
that the true marginal likelihood pε(y) ≈ 0 is small.
As q(y) tends to pε(y) ≈ 0 due to theorem 3.2, it may
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struggle to always stay strictly positive even for large
m > M since it is stochastically converging to approx-
imately zero. In this case, convergence is difficult since
the simulator was ill-designed. However, by learning
ε through maximizing q(y), we adapt the threshold ε
to make pε(y) as high as possible, leading to a more
stable posterior pε(θ|y) for the KMP to converge to.

We now define kernel means posterior embedding
(KMPE), the mean embedding of the KMP, as
µ̃Θ|Y=y(θ?) :=

∫
ϑ
`(θ,θ?)q(θ|y)dθ. This becomes

µ̃Θ|Y=y(θ?) =
1

q(y)

m∑
j=1

vj(y)h(θj ,θ
?), (3.5)

where h(θ,θ?) :=
∫
ϑ
`(θ, θ̃)`(θ̃,θ?)p(θ̃)dθ̃. Impor-

tantly, since the KMPE is constructed from the CME
used to form the KML, it converges in RKHS norm at
the same rate. See theorem A.6 for proof.

Theorem 3.4. Assume `(θ, ·) ∈ image(CΘΘ) and
that there exists δ > 0 such that q(y) ≥ δ for all
m ≥ M where M ∈ N+. The kernel means poste-
rior embedding (KMPE) µ̃Θ|Y=y converges in RKHS
norm to the posterior mean embedding µΘ|Y=y at rate

Op((mλ)−
1
2 + λ

1
2 ).

If we choose ` to be an anisotropic Gaussian kernel
with length scales β = {βd}Dd=1, h exhibits the follow-
ing closed-form under anisotropic Gaussian priors,

h(θ,θ?) =

D∏
d=1

sd
σd

exp

[
− 1

2s2
d

(
ad − b2d

)]
, (3.6)

where ad := (θ2
d+θ?d

2 +γ2
dµ

2
d)/(2+γ2

d), bd := (θd+θ?d+
γ2
dµd)/(2 + γ2

d), γ2
d := β2

d/σ
2
d and s−2

d := 2β−2
d + σ−2

d .
For general non-Gaussian kernels and priors, h can be
approximated as h̃(θ,θ?) = 1

T

∑T
t=1 `(θ, θ̃t)`(θ̃t,θ

?).

The KMP q(·|y) is bounded and normalized but po-
tentially non-positive. Consequently, it can be seen as
a surrogate density corresponding to a signed measure.
This suggests that the map q(·|y) 7→ µ̃Θ|Y=y is injec-
tive for characteristic kernels `, analogous to mean em-
beddings (Sriperumbudur et al., 2011). Furthermore,
as the integral (3.5) is a linear operator on `(θ?, ·), the
surrogate posterior mean embedding µ̃Θ|Y=y ∈ H` is
in the RKHS of `. With a surrogate embedding that is
injective to our surrogate posterior and in the RKHS,
we can apply kernel herding (Chen et al., 2010) on
µ̃Θ|Y=y (3.5) using kernel ` to obtain S super-samples

{θ̂s}Ss=1 from the surrogate density q(θ|y). That is,
for each s ∈ [S], the samples are obtained by

θ̂s = argmax
θ∈ϑ

µ̃Θ|Y=y(θ)− 1

s

s−1∑
s′=1

`(θ̂s′ ,θ). (3.7)

The inference algorithm is presented in algorithm 3.1.

4 Related Work

The simplest ABC algorithm is arguably the rejection
ABC (REJ-ABC) sampler (Pritchard et al., 1999). It
posits a set of prior parameters and rejects those whose
simulations do not match the observations within a
fixed threshold ε > 0 under a distance measure.

Instead of sampling from the prior, MCMC-ABC
and sequential Monte Carlo ABC (SMC-ABC) sam-
ple from proposal distributions iteratively and care-
fully accepts or discards each proposal stochastically
based on approximate likelihood ratios (Sisson et al.,
2007; Marjoram et al., 2003). They can however suf-
fer from slow mixing, where it is difficult to escape a
lucky sample with a high likelihood. They also do not
leverage likelihood smoothness and thus require new
simulations every iteration, which are then discarded
and may still not result in an accepted sample.

Another branch of study include stochastic variational
inference (SVI) approaches to ABC, which treats the
likelihood approximation as another source of stochas-
ticity in the stochastic gradient. This includes AV-
ABC (Moreno et al., 2016), VBIL (Tran et al., 2017b),
and VBSL (Ong et al., 2018). In contrast, likelihood-
free variational inference (LFVI) (Tran et al., 2017a)
uses density ratio estimation to approximate the varia-
tional objective, emphasizing inference on local latent
variables. Nevertheless, SVI approaches posit para-
metric approximations that may have asymptotic bias.

Kernel-based approaches that leverage likelihood
smoothness have been studied recently to reduce sim-
ulation requirements. The philosophy is that simula-
tions of close-by parameters are informative, thus past
results should not be discarded but remembered, even
if this introduces model bias. Kernel ABC (K-ABC)
(Nakagome et al., 2013), kernel recursive ABC (KR-
ABC) (Kajihara et al., 2018), and kernel Bayes’ rule
(KBR) (Fukumizu et al., 2013) also employ CMEs to
reduce simulation requirements. They differ to KELFI
in the three aspects of model, learning, and inference.
(Model) While they build posterior mean embeddings
directly, KELFI builds likelihood surrogates first and
make use of the full prior density to further leverage
prior information before building posterior surrogates,
which are then embedded into closed-form posterior
mean embeddings. In contrast, the prior only appears
as samples from p(θ) in K-ABC, KR-ABC, and KBR.
This both limits the prior knowledge leveraged and
prohibit the use of proposal prior samples. (Learning)
KELFI crucially addresses hyperparameter learning in
reference to the inference problem directly which was
not straightforward previously. (Inference) K-ABC
and KBR primarily infer posterior expectations, while
KR-ABC produce point estimates. Instead, we de-
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Figure 1: (Left) Comparison of approximate posteriors obtained from surrogate methods on the toy exponential-
gamma problem. (Right) The corresponding MKML surface q(y) as a function of (ε, β) with λ = 10−3β.

sign a posterior sampling algorithm, which subsumes
inferring posterior expectation. We further provide
approximate posterior density KMP, which can both
produce point estimates and quantify uncertainty.

As a consequence of theorem 3.4, the KMPE converges
at rate Op(m

− 1
4 ) in RKHS norm if the regularization

hyperparameter λ is chosen to decay at rate Op(m
− 1

2 ).
Notably, this is faster than the convergence rate of
KBR at Op(m

− 8
27α) where 0 < α ≤ 1

2 , which also re-
quires other assumptions on the cross-covariance op-
erators and for its two regularization hyperparameters
to be decayed appropriately (Fukumizu et al., 2013).

Finally, we highlight that hyperparameter learning is a
crucial aspect and differentiator of KELFI. This is es-
pecially true for learning ε, which tunes the critical bal-
ance between an accurate posterior pε(θ|y) ≈ p0(θ|y)
with small ε requiring high numbers of simulation calls,
or a less accurate posterior with large ε relaxing the
number of simulations required. This has been a chal-
lenging issue to address in the ABC literature in refer-
ence to the inference problem, even though its selection
is often pivotal to the performance of the algorithm.

In the Gaussian process (GP) literature, hyperparam-
eter learning through maximum marginal likelihood
plays an important role in the success of a GP regres-
sor (GPR). GP surrogate ABC (GPS-ABC) (Meeds
and Welling, 2014) and GP-accelerated ABC (GPA-
ABC) (Wilkinson, 2014) model the summary statis-
tics surface and log likelihood surface respectively via
a GP surrogate. In contrast, the KML model is equiv-
alent to placing a GP surrogate on the likelihood sur-
face itself. This removes the assumption that summary
statistics are independent and Gaussian distributed as
in GPS-ABC. Importantly, while GPS-ABC and GPA-
ABC apply the GP marginal likelihood to learn their
surrogate hyperparameters, it cannot learn ε or other
hyperparameters since they are not part of the surro-
gate. This is because both approaches maximize the

marginal likelihood for the GPR problem on the their
respective target surfaces, but not the marginal likeli-
hood for the overall inference problem, thus excluding
other hyperparameters in the process.

5 Experiments

The goal of the experiments is to demonstrate the in-
ference accuracy of KELFI under limited simulation
budget and the effectiveness of MKML hyperparame-
ter learning. We begin with isotropic ε and anisotropic
β = β0σ, and learn (ε, β0) by maximizing the MKML
(3.3) while keeping λ = 10−3β0 fixed for simplicity.

5.1 Toy Problem: Exponential-Gamma

The toy exponential-gamma problem is a standard
benchmark for likelihood-free inference, since the true
posterior pε(θ|y) is known and tractable even for ε = 0.

To stress-test each method, we compare inference ac-
curacy under very limited simulations of m = 100. We
focus on comparing surrogate approaches, since other
methods such as REJ-ABC, MCMC-ABC, SL-ABC,
and ASL-ABC have reported simulation requirements
several orders higher than 100 on this problem (Meeds
and Welling, 2014). We use datasets of n = 15 for
both observations and simulations, with their sample
means as the summary statistic.

For GPS-ABC only we set a simulation budget of
m ≤ 200 and run it until 10000 posterior samples are
generated. The hyperparameters of the GP surrogate
itself are learned by maximizing the marginal likeli-
hood of the GPR (Rasmussen and Williams, 2006).
For the remaining hyperparameters that are not part
of the surrogate, several configurations are compared
and the results of the best two are shown, which used
m = 130 and m = 197 simulations. For K-ABC,
K2-ABC, and KBR, we use the median heuristic to
set their length scale hyperparameters and manually
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Figure 2: (Left) Blowfly: ARD on ε for 10 summary statistics. (Mid. & Right) The MKML surface (×105) as
a function of (ε, β0) for fixed λ = 10−3β0 where β = β0σ. White intersection indicate optimum. For Blowfly, the
NMSE (in %) for the indicated hyperparameter choices are: (1)0.72±0.02, (2)1.10±0.01, (3)2.07±0.01, (4)2.15±
0.02, (5)1.11± 0.02, (6)1.11± 0.03. At (ε, β0) = (10, 10) (outside the plot) the NMSE (in %) is 6.28± 0.03.

search for the most appropriate regularization hyper-
parameters. We use kernel density estimation (KDE)
to visualize the posterior density from the unweighted
samples of GPS-ABC and normalized weighted sam-
ples of K-ABC, K2-ABC, and KBR in fig. 1 (left).

For KELFI, we show the KMPs directly in fig. 1 (left).
We first demonstrate the case when all hyperparame-
ters (ε, β, λ) are learned (All-Opt). To enable visual-
ization in 2D, we also present the case when the regu-
larization hyperparameter λ is set to 10−3β and only
length scale hyperparameters (ε, β) are learned. In this
case, we show KMPs under globally optimal (Scale-
Global-Opt), locally optimal (Scale-Local-Opt), and
arbitrarily chosen hyperparameters (Non-Opt). The
corresponding MKML surface is shown in fig. 1 (right).

In fig. 1 we compare approximate posteriors from each
algorithm against the true posterior pε=0(θ|y). While
ε = 0 for pε=0(θ|y), with only 100 simulations ε > 0 is
required for most LFI methods. Furthermore, except
for K2-ABC, they only make use of summary statis-
tics without further knowledge of the dataset size n.
Consequently, most LFI methods produce approxima-
tions wider than pε=0(θ|y). Intuitively, there is not
enough simulations and thus information to justify a
more confident and peaked posterior. Nevertheless, by
learning hyperparameters under the MKML, KELFI
determines an appropriate scale ε for 100 simulations.
As a result, KMPs are the closest to the true posterior
pε=0(θ|y), with higher MKML q(y) leading to more
accurate KMPs q(θ|y). This demonstrates the effec-
tiveness of MKML as a hyperparameter learning ob-
jective for improving inference accuracy. In contrast,
the two instances of GPS-ABC reveals that varying hy-
perparameters lead to significant changes in the result-
ing approximate posterior, yet without a similar objec-
tive like MKML it is unclear which one to use without
ground truth. This is further emphasized by the wider
posterior approximations obtained from K-ABC, K2-
ABC, and KBR, which use the median heuristic to set
hyperparameters. This is often sub-optimal since the
heuristic makes no reference to the inference problem.

5.2 Chaotic Ecological Systems: Blowfly

The Blowfly simulator describes the complex popula-
tion dynamics of adult blowflies. Across a range of
parameters it exhibits chaotic behavior that have dis-
tinct discrepancies from real observations, resulting in
a challenging inference problem. We follow the setup
of Wood (2010). There are 6 model parameters from
which the simulator generates a time series of 180 data
points that is then summarized into 10 statistics as
described in Meeds and Welling (2014), Moreno et al.
(2016), and Park et al. (2016). We similarly place a
broad diagonal Gaussian prior on log parameters.

The standard Blowfly problem has no ground truth pa-
rameters, only a set of observations. We therefore mea-
sure inference accuracy by considering mean squared
errors (MSEs) between statistics generated using the
posterior and the observed statistics. We normalize
the MSE of each statistic by the corresponding MSE
achieved under the prior, and average across the 10
statistics into a final normalized MSE (NMSE). As
simulations are expensive, in fig. 3 (left) we record av-
erage NMSE against simulations used to understand
inference efficiency. Each method is repeated 10 times
with randomized simulations before their NMSE is av-
eraged. Appendix D provides further details.

As new simulations become available, we relearn and
update the hyperparameters for KELFI by maximizing
the MKML. Figure 2 (center) shows an instance of the
MKML surface used to learn the hyperparameters for
KELFI when using m = 280 simulations. For KBR
and K-ABC we update hyperparameters by the me-
dian length heuristic. For K-ABC we also report the
case where the heurstic is scaled by a constant denoted
with (S), which achieved significantly better accuracy
and confirms that the heuristic is often sub-optimal.

Overall, the top three performers are KELFI, KBR,
and GPS-ABC. Across a range of simulation calls,
KELFI achieves the lowest error. It is also the only
method that achieved less than 1% average NMSE
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Figure 3: (Left) Blowfly: Average NMSE (in %) under posteriors against simulation calls. Shaded regions show
NMSE variability for KELFI, KBR, and GPS-ABC. (Mid.) Blowfly: Learned ε value under maximum MKML.
(Right) Lotka-Volterra: The middle 95% credible interval of the marginal posterior distribution of log θ1.

within 1000 simulations and achieves this as early as
300 simulations. The most competitive methods to
KELFI are KBR and GPS-ABC. For these three meth-
ods, we also show their variability from best to worst
case NMSEs out of the 10 repeats to visualize their sen-
sitivity to the stochasticity in randomized simulations.
This reveals that KELFI is a stable outperformer with
comparatively less variability across randomized runs.

We proceed to demonstrate and emphasize the effec-
tiveness and suitability of MKML as a hyperparameter
learning objective, using the case with 280 simulations
as an example. Figure 2 (center) illustrates that hyper-
parameters with a higher MKML (3.3) result in lower
NMSE consistently. Notably, even with suboptimal
hyperparameter choices, KELFI still achieves compet-
itive average NMSE scores of less than 2.2%. At 280
simulations, the next best average NMSE score is al-
most 3% by MCMC-ABC as shown in fig. 3 (left).

Figure 3 (center) suggests that learning the scale ε un-
der MKML reveals an automatic decay schedule which
does not have to be set a-priori. As ε controls the
scale within which discrepancies between simulations
and observations are measured, it is expected that
this scale decays as more simulation data is available.
Without the MKML, both the initialization of ε and its
decay schedule are not straight forward to determine.

In fig. 2 (left), we show that we can perform ARD
on the ABC ε-kernel κε, and hence the kernel kε, by
using a different εi for each of the 10 statistics. We
do this by initializing each εi to the isotropic solution
in fig. 2 (center) and further optimize the MKML to
learn all εi jointly. In particular, the first summary
statistic describes the average log population numbers
nears its troughs (first quartile), and is determined to
be comparatively irrelevant (high εi). Meanwhile, the
last two statistics describe the number of peaks at two
thresholds, and are determined to be comparatively
relevant (low εi). This agrees with the intuition that
Blowfly population dynamics are highly characterized
by its peaks, instead of i its troughs (Wood, 2010).

5.3 Predator-Prey Dynamics: Lotka-Volterra

The Lotka-Volterra simulator describes the time evo-
lution of the populations within a predator-prey sys-
tem. Only for a small set of parameters does the model
simulate a realistic scenario with oscillatory behavior,
making the inference task formidably challenging. We
follow the exact setup as described in Papamakarios
and Murray (2016). There are 4 parameters and 9
normalized summary statistics. We place the same
uniform prior on the log parameters and use the same
ground truth parameters. After performing inference
on all four parameters, we show in fig. 3 (right) the
marginal posterior distribution for log θ1.

KELFI achieves competitive performance using only
2500 simulations, with both posterior mean and mode
close to the true value. The MKML for hyperparame-
ter learning is shown in fig. 2 (right). Posterior mode
is obtained by maximizing the KMP. Meanwhile, the
three ABC methods used up to 100000 simulations.
While confident, LFVI (Tran et al., 2017a) tends to
have a biased posterior mean. For direct comparison,
both KELFI and mixture density network (MDN) (Pa-
pamakarios and Murray, 2016) use the original prior
as the proposal prior. KELFI achieves slightly higher
accuracy than MDN which used 10000 simulations, 4
times that used for KELFI. Finally, we also similarly
use 2500 simulations for KBR. With the same num-
ber of simulations, KELFI achieves higher accuracy in
both mean and mode with higher confidence.

6 Conclusion

KELFI provides a holistic framework for automatic
likelihood-free inference. It is a stable outperformer
compared to state-of-the-art methods, while produc-
ing interpretable automatic relevance determination of
summary statistics and automatic decay schedules for
ε. By optimizing an approximate Bayesian marginal
likelihood, it automatically learns and adapts hyper-
parameters including the ε-kernel to improve inference
accuracy when limited simulations are available.
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A Theoretical Guarantees on Convergence

We provide theoretical guarantees that establish convergence of the kernel embedding likelihood-free inference
(KELFI) framework. Appendix A.1 begins by summarizing the properties of kernels used in KELFI and in-
troducing relevant quantities. Appendices A.2 and A.3 provide an overview of conditional mean embeddings
(CMEs) and their empirical estimates respectively in the context of KELFI. Appendix A.4 establishes general
convergence theorems for estimators based on the CME. Using these results, we prove convergence guarantees for
the kernel means likelihood (KML), marginal kernel means likelihood (MKML), kernel means posterior (KMP),
and kernel means posterior embedding (KMPE) in appendices A.5, A.6, A.7 and A.8 respectively.

A.1 Kernel Properties

The KELFI framework uses a data kernel k : D × D → R where X ,Y ⊆ D. We do not assume that X and Y
are necessarily the same. For example, it is possible to record observation y in which the simulator p(x|θ) can
never generate or fully recover, such as when X ⊂ Y. Conversely, it is also possible that the simulator p(x|θ)
can generate a larger variety of simulations x than that is possible to observe, such as when Y ⊂ X . It can also
be neither of such cases such as when X an Y only have some overlap. However, since we assume X ,Y ⊆ D, the
kernel k is able to measure the similarity between simulated data x ∈ X ⊆ D and observed data y ∈ Y ⊆ D.

The KELFI framework employs bounded symmetric positive definite kernels ` and k. Because they are bounded,
we can explicitly denote the following upper bounds to their RKHS norm,

¯̀ := sup
θ∈ϑ
‖`(θ, ·)‖H` = sup

θ∈ϑ

√
`(θ,θ), (A.1)

k̄ := sup
d∈D
‖k(d, ·)‖Hk = sup

d∈D

√
k(d,d). (A.2)

When ` and k are stationary, we have ¯̀=
√
`(0,0) and k̄ =

√
k(0,0).

In the KELFI framework, we first select the ε-kernel κε. Based on this the choice of the ε-kernel, we then select
the kernel k to satisfy

κε(y,x) = cεk(y,x), (A.3)

where cε > 0 is a scaling constant to ensure that κε(y,x) = pε(y|x) is a normalized density on Y. In contrast,
the kernel k has no such restriction. Since it is a scaled version of k, κε is also bounded symmetric positive
definite as a function of x and y. In this way, κε(d, ·) ∈ Hk is always in the RKHS Hk characterized by k for all
d ∈ D. As a consequence, ε is also a hyperparameter of k, although this is not explicitly notated for brevity.

Since y ∈ Y ⊆ D, we have κε(y, ·) ∈ Hk. We can then find its RKHS norm,

‖κε(y, ·)‖Hk = cε‖k(y, ·)‖Hk = cε
√
k(y,y) =

√
cε
√
cεk(y,y) =

√
cε
√
κε(y,y), (A.4)

which is different to ‖κε(y, ·)‖Hκε =
√
κε(y,y). Therefore, while the KELFI algorithm only requires κε to be

specified and k is not explicitly used, this subtle difference is a reminder that k is the underlying kernel that
defines the RKHS, not κε. As a consequence, we have that the upper bound to the RKHS norm of κε satisfies

κ̄ε := sup
d∈D
‖κε(d, ·)‖Hk =

√
cε sup

d∈D

√
κε(d,d). (A.5)

Furthermore, if κε is stationary, then κε(d,d) = κε(0,0) for all d ∈ D. A typical example is the Gaussian
density κε(y,x) = N (y|x, ε2I). In this case, cε = 1/(

√
2πε)n and κε(y,y) = 1/(

√
2πε)n are the same, and thus

‖κε(y, ·)‖Hk = 1/(
√

2πε)n = cε. The corresponding kernel k is the isotropic Gaussian kernel

When D = Rn, the most commonly used kernel for the KELFI framework is the anisotropic Gaussian kernel
where each dimension uses a potentially different length scale σi. When its length scales are learned via some
hyperparameter learning algorithm, it is also referred to as the ARD kernel. This kernel has the following form,

k(x,x′) = exp

(
− 1

2

n∑
i=1

(xi − x′i
σi

)2
)
. (A.6)

Since κε(y,x) = cεk(y,x), this means that the length scales are simply the ABC tolerance σi = εi for i ∈ [n],
and that there can be a separate tolerance for each dimension of the data or summary statistic. Similarly, when
ϑ = RD, we also often employ the ARD kernel for `, but we use βd, d ∈ [D], to denote the length scales.
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A.2 Conditional Mean Embedding

To construct a conditional mean operator UX|Θ corresponding to the distribution p(x|θ), we first choose a kernel
` : ϑ×ϑ→ R for domain ϑ and another kernel k : D×D → R for domain D. These kernels ` and k each describe
how similarity is measured within their respective domains, and are bounded symmetric positive definite such
that they uniquely define the RKHS H` and Hk.

The conditional mean operator UX|Θ : H` → Hk is defined by the equation µX|Θ=θ = UX|Θ`(θ, ·), where µX|Θ=θ

is the CME defined by
µX|Θ=θ := E[k(X, ·)|Θ = θ]. (A.7)

In this sense, UX|Θ sweeps out a family of CMEs µX|Θ=θ ∈ Hk, each indexed by θ ∈ ϑ.

We then define cross covariance operators CXΘ := E[k(X, ·)⊗`(Θ, ·)] : H` → Hk and CΘΘ := E[`(Θ, ·)⊗`(Θ, ·)] :
H` → H`. Alternatively, they can be seen as elements within the tensor product space CXΘ ∈ Hk ⊗ H` and
CΘΘ ∈ H` ⊗H`. That is, they are second order mean embeddings.

Under the assumption that `(θ, ·) ∈ image(CΘΘ), it can be shown that UX|Θ = CXΘ(CΘΘ)−1. While this
assumption is satisfied for finite domains ϑ with a characteristic kernel `, it does not necessarily hold when ϑ is a
continuous domain (Fukumizu et al., 2004). Instead, in this case CXΘ(CΘΘ)−1 becomes only an approximation
to UX|Θ, and we instead regularize the inversion with a regularization hyperparameter λ ≥ 0 and use UX|Θ =
CXΘ(CΘΘ + λI)−1, which also serves to avoid overfitting (Song et al., 2013). This relaxation can be applied to
all subsequent results and theorems.

A.3 Empirical Estimate for the Conditional Mean Embedding

Suppose {θj ,xj} ∼ p(x|θ)π(θ) are iid across j ∈ [m]. The conditional mean operator UX|Θ is estimated by

ÛX|Θ = Φ(L+mλI)−1ΨT , (A.8)

where Φ :=
[
k(x1, ·) · · · k(xm, ·)

]
, Ψ :=

[
`(θ1, ·) · · · `(θm, ·)

]
, and L := {`(θi,θj)}mi,j=1. The CME can

then be estimated by
µ̂X|Θ=θ = ÛX|Θ`(θ, ·) = Φ(L+mλI)−1`(θ) (A.9)

where `(θ) := {`(θj ,θ)}mj=1 (Song et al., 2009).

For any function f ∈ Hk, the conditional expectation of f under p(x|θ), or g(θ) := E[f(X)|Θ = θ], can
be approximated by the inner product ĝ(θ) := 〈f, µ̂X|Θ=θ〉Hk by using an empirical CME µ̂X|Θ=θ. Letting
f := {f(xj)}mj=1, this approximation admits the following form,

ĝ(θ) = fT (L+mλI)−1`(θ). (A.10)

Importantly, µ̂X|Θ=θ is estimated from joint samples {θj ,xj}mj=1, even though it is encoding the corresponding
conditional distribution p(x|θ). It is this fact that allows for an arbitrary choice π(θ) on the marginal distribution
of Θ, which does not necessarily need to be the same as p(θ).

Under the assumption that `(θ, ·) ∈ image(CΘΘ), the empirical CME µ̂X|Θ=θ converges to the true CME µX|Θ=θ

in RKHS norm at rate Op((mλ)−
1
2 + λ

1
2 ) (Song et al., 2009, Theorem 6). That is,

∀θ ∈ ϑ, ∀ε > 0, ∃Mε > 0 s.t.

P
[∥∥µ̂X|Θ=θ − µX|Θ=θ

∥∥
Hk

> Mε

(
(mλ)−

1
2 + λ

1
2

)]
< ε.

(A.11)

Consequently, the empirical CME converges at rate Op(m
− 1

4 ) if λ is chosen to decay at rate Op(m
− 1

2 ), and often
better convergence rates can be achieved under appropriate assumptions on p(x|θ) (Song et al., 2013). Again,
the regularization hyperparameter λ relaxes the assumption that `(θ, ·) ∈ image(CΘΘ).

Finally, since µ̂X|Θ=θ = ÛX|Θ`(θ, ·) convergences to µX|Θ=θ = UX|Θ`(θ, ·) in RKHS norm at rate Op((mλ)−
1
2 +

λ
1
2 ) for all θ ∈ ϑ and `(θ, ·) does not depend on m, we also have that ÛX|Θ converges to UX|Θ in Hilbert Schmidt

(HS) norm at the same rate. That is,

∀ε > 0, ∃Mε > 0 s.t.

P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS

> Mε

(
(mλ)−

1
2 + λ

1
2

)]
< ε.

(A.12)



Kelvin Hsu and Fabio Ramos

A.4 General Convergence Theorems

We now establish some general convergence theorems for estimators based on inner products with the CME. The
aim is to provide a sense of the stochastic convergence of any estimator â to its true quantity a with respect to
some metric d(â, a). We do this by showing that either ‖µ̂X|Θ=θ −µX|Θ=θ‖Hk or ‖ÛX|Θ−UX|Θ‖HS is an upper
bound of d(â, a) up to a scaling constant.

Lemma A.1. Suppose that `(θ, ·) ∈ image(CΘΘ) and that there exists 0 ≤ γ <∞ such that for some estimator
â, target a, and metric d(â, a),

d(â, a) ≤ γ
∥∥ÛX|Θ − UX|Θ

∥∥
HS
, (A.13)

then the estimator â converges to the target a with respect to the metric d at rate Op((mλ)−
1
2 + λ

1
2 ).

Proof. Suppose that there exists 0 ≤ γ <∞ such that (A.13) is satisfied. That is, the inequality (A.13) holds for
all possible data observations {θj ,xj}mj=1. For any constant C, the implication statement

∥∥ÛX|Θ − UX|Θ
∥∥
HS
≤

C =⇒ d(â, a) ≤ Cγ holds for all possible observation events ω ∈ Ω. Writing this explicitly in event space
translates this to a statement of probability inequality,

{ω ∈ Ω :
∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤ C} ⊆ {ω ∈ Ω : d(â, a) ≤ Cγ}

=⇒ P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤ C

]
≤ P

[
d(â, a) ≤ Cγ

]
.

(A.14)

Since we assume that `(θ, ·) ∈ image(CΘΘ), statement (A.11) is valid. By letting C = Mε((mλ)−
1
2 + λ

1
2 )

in (A.14), we immediately have that the probability inequality in statement (A.12) is also true if we replace∥∥ÛX|Θ − UX|Θ
∥∥
HS

with d(â, a) and Mε with γMε,

P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS

> Mε

(
(mλ)−

1
2 + λ

1
2

)]
< ε

=⇒ 1− P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤Mε

(
(mλ)−

1
2 + λ

1
2

)]
< ε

=⇒ P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤Mε

(
(mλ)−

1
2 + λ

1
2

)]
> 1− ε

=⇒ P
[
d(â, a) ≤ γMε

(
(mλ)−

1
2 + λ

1
2

)]
> 1− ε

=⇒ 1− P
[
d(â, a) ≤ γMε

(
(mλ)−

1
2 + λ

1
2

)]
< ε

=⇒ P
[
d(â, a) > γMε

(
(mλ)−

1
2 + λ

1
2

)]
< ε,

(A.15)

where we employed statement (A.14) between the third and fourth line for C = Mε((mλ)−
1
2 + λ

1
2 ). Therefore,

since Mε is arbitrary, define M̃ε := γMε so that the following statement holds,

∀ε > 0, ∃M̃ε > 0 s.t. P
[
d(â, a) > M̃ε

(
(mλ)−

1
2 + λ

1
2

)]
< ε. (A.16)

In other words, the estimator â stochastically converges to a at a rate of at least Op((nλ)−
1
2 + λ

1
2 ) with respect

to the metric d.

Lemma A.2. Suppose that `(θ, ·) ∈ image(CΘΘ) and that there exists 0 ≤ γ <∞ such that for some estimator
â, target a, and metric d(â, a),

d(â, a) ≤ γ
∥∥µ̂X|Θ=θ − µX|Θ=θ

∥∥
Hk
, (A.17)

then the estimator â converges to the target a with respect to the metric d at rate Op((mλ)−
1
2 + λ

1
2 ).

Proof. The proof is identical to the proof for lemma A.1, where
∥∥ÛX|Θ − UX|Θ

∥∥
HS

is replaced with
∥∥µ̂X|Θ=θ −

µX|Θ=θ

∥∥
Hk

throughout. Alternatively, since
∥∥µ̂X|Θ=θ − µX|Θ=θ

∥∥
Hk

=
∥∥(ÛX|Θ − UX|Θ)`(θ, ·)

∥∥
Hk
≤
∥∥ÛX|Θ −

UX|Θ
∥∥
HS

∥∥`(θ, ·)∥∥H` =
∥∥ÛX|Θ − UX|Θ

∥∥
HS

√
`(θ,θ), ∀θ ∈ ϑ, we have d(â, a) ≤ γ`(θ,θ)

∥∥ÛX|Θ − UX|Θ
∥∥
HS
≤

γ(supθ∈ϑ
√
`(θ,θ))

∥∥ÛX|Θ − UX|Θ
∥∥
HS

= γ ¯̀
∥∥ÛX|Θ − UX|Θ

∥∥
HS

, ∀θ ∈ ϑ. Since γ ¯̀ is finite and does not depend
on m, we apply lemma A.1 to arrive at lemma A.2.

With lemmas A.1 and A.2, we are now equipped to show the convergence of various estimators based on CMEs.
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A.5 Convergence Guarantees for Kernel Means Likelihood

In all subsequent theorems and proofs, recall that the approximate surrogate densities q depend on m and ε, as
well as other kernel and regularization hyperparameters, even though this is not explicitly notated.

Theorem A.3. Assume `(θ, ·) ∈ image(CΘΘ). The kernel means likelihood (KML) q(y|θ) converges to the

likelihood pε(y|θ) uniformly at rate Op((mλ)−
1
2 + λ

1
2 ) as a function of θ ∈ ϑ and y ∈ Y.

Proof. Consider the absolute difference between the KML q(y|θ) and the likelihood pε(y|θ),

|q(y|θ)− pε(y|θ))| =|〈κε(y, ·), µ̂X|Θ=θ〉Hk − 〈κε(y, ·), µX|Θ=θ〉Hk |
=|〈κε(y, ·), µ̂X|Θ=θ − µX|Θ=θ〉Hk |
≤‖κε(y, ·)‖Hk‖µ̂X|Θ=θ − µX|Θ=θ‖Hk
≤κ̄ε‖µ̂X|Θ=θ − µX|Θ=θ‖Hk
=κ̄ε‖(ÛX|Θ − UX|Θ)`(θ, ·)‖Hk
≤κ̄ε

∥∥ÛX|Θ − UX|Θ
∥∥
HS

∥∥`(θ, ·)∥∥H`
=κ̄ε

√
`(θ,θ)

∥∥ÛX|Θ − UX|Θ
∥∥
HS

≤κ̄ε ¯̀
∥∥ÛX|Θ − UX|Θ

∥∥
HS
.

(A.18)

Since γ = κ̄ε ¯̀ is independent of m, we apply lemma A.1 to establish the convergence. Since this upper bound
does not depend on θ ∈ ϑ or y ∈ Y and the metric is the absolute difference, this convergence is uniform as a
function of both θ ∈ ϑ and y ∈ Y.

Alternatively, convergence guarantees for the KML can be established by its connection to the form of a GP re-
gressor (GPR), leveraging frameworks and properties from a regression perspective. This connection is discussed
briefly in appendix C.

A.6 Convergence Guarantees for Marginal Kernel Means Likelihood

Theorem A.4. Assume `(θ, ·) ∈ image(CΘΘ). The marginal kernel means likelihood (MKML) q(y) converges

to the marginal likelihood pε(y) uniformly at rate Op((mλ)−
1
2 + λ

1
2 ) as a function of y ∈ Y.

Proof. We begin by writing the marginalization operation as an expectation over p(θ). This gives us q(y) :=∫
ϑ
q(y|θ)p(θ)dθ = E[q(y|Θ)] and pε(y) :=

∫
ϑ
pε(y|θ)p(θ)dθ = E[pε(y|Θ)]. Consider the absolute difference

between the MKML q(y) and the marginal likelihood pε(y),

|q(y)− pε(y)| = |E[q(y|Θ)− p(y|Θ)]|
≤ E[|q(y|Θ)− p(y|Θ)|]
≤ κ̄εE[‖µ̂X|Θ=Θ − µX|Θ=Θ‖Hk ]

= κ̄εE[‖(ÛX|Θ − UX|Θ)`(Θ, ·)‖Hk ]

≤ κ̄εE[‖ÛX|Θ − UX|Θ‖HS‖`(Θ, ·)‖H` ]

= κ̄εE[‖ÛX|Θ − UX|Θ‖HS
√
`(Θ,Θ)]

= κ̄εE[
√
`(Θ,Θ)]‖ÛX|Θ − UX|Θ‖HS

≤ κ̄εE[¯̀]‖ÛX|Θ − UX|Θ‖HS
= κ̄ε ¯̀‖ÛX|Θ − UX|Θ‖HS

(A.19)

Since γ = κ̄ε ¯̀ is independent of m, we apply lemma A.1 to establish the convergence. Since this upper bound
does not depend on y ∈ Y and the metric is the absolute difference, this convergence is uniform as a function of
y ∈ Y.
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A.7 Convergence Guarantees for Kernel Means Posterior

Theorem A.5. Assume `(θ, ·) ∈ image(CΘΘ) and that there exists δ > 0 such that q(y) ≥ δ for all m ≥ M
where M ∈ N+. The kernel means posterior (KMP) q(θ|y) converges pointwise to the posterior pε(θ|y) at rate

Op((mλ)−
1
2 + λ

1
2 ) as a function of θ ∈ ϑ and y ∈ Y. If supθ∈ϑ p(θ) < ∞ and supθ∈ϑ pε(y|θ) < ∞, then the

convergence is uniform in θ ∈ ϑ. If supy∈Y pε(θ|y) <∞, then the convergence is uniform in y ∈ Y.

Proof. First, consider the density ratio between the approximate and true densities for the likelihood and marginal
likelihood, ∣∣∣∣ q(y|θ)

pε(y|θ)
− 1

∣∣∣∣ ≤ 1

pε(y|θ)

∣∣q(y|θ)− pε(y|θ)
∣∣ ≤ κ̄ε ¯̀

pε(y|θ)

∥∥ÛX|Θ − UX|Θ
∥∥
HS
, (A.20)

∣∣∣∣ q(y)

pε(y)
− 1

∣∣∣∣ ≤ 1

pε(y)

∣∣q(y)− pε(y)
∣∣ ≤ κ̄ε ¯̀

pε(y)

∥∥ÛX|Θ − UX|Θ
∥∥
HS
. (A.21)

Now, consider the absolute difference between the KMP q(θ|y) and the posterior pε(θ|y) for all m > M .

∣∣∣q(θ|y)− pε(θ|y)
∣∣∣ =

∣∣∣∣q(y|θ)

q(y)
− pε(y|θ)

pε(y)

∣∣∣∣p(θ)

=

∣∣∣∣ q(y|θ)

pε(y|θ)
− q(y)

pε(y)

∣∣∣∣pε(y|θ)p(θ)

|q(y)|

=

∣∣∣∣( q(y|θ)

pε(y|θ)
− 1
)
−
( q(y)

pε(y)
− 1
)∣∣∣∣pε(y|θ)p(θ)

|q(y)|

≤
(∣∣∣ q(y|θ)

pε(y|θ)
− 1
∣∣∣+
∣∣∣ q(y)

pε(y)
− 1
∣∣∣)pε(y|θ)p(θ)

|q(y)|

≤
(

κ̄ε ¯̀

pε(y|θ)

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

+
κ̄ε ¯̀

pε(y)

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

)
pε(y|θ)p(θ)

|q(y)|

≤
(
κ̄ε ¯̀p(θ)

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

+ κ̄ε ¯̀pε(θ|y)
∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

)
1

|q(y)|

≤κ̄ε ¯̀
(
p(θ) + pε(θ|y)

)∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

1

|q(y)|

≤
κ̄ε ¯̀
(
p(θ) + pε(θ|y)

)
δ

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS
.

(A.22)

Since γ = κ̄ε ¯̀

δ

(
p(θ)+pε(θ|y)

)
is independent of m and the upper bound holds for all m > M , we apply lemma A.1

to establish the convergence. Since this upper bound does depend on θ ∈ ϑ and y ∈ Y and the metric is the
absolute difference, this convergence is pointwise as a function of θ ∈ ϑ and y ∈ Y.

Furthermore, if p̄Θ := supθ∈ϑ p(θ) <∞ and p̄Y|Θ := supθ∈ϑ pε(y|θ) <∞, then

p(θ) + pε(θ|y) ≤ sup
θ∈ϑ

(
p(θ) + pε(θ|y)

)
≤ sup

θ∈ϑ
p(θ) + sup

θ∈ϑ
pε(θ|y)

≤ sup
θ∈ϑ

p(θ) +
supθ∈ϑ pε(y|θ) supθ∈ϑ p(θ)

pε(y)

= p̄Θ +
p̄Y|Θp̄Θ

pε(y)
.

(A.23)

So,
∣∣∣q(θ|y)− pε(θ|y)

∣∣∣ ≤ κ̄ε ¯̀

δ

(
p̄Θ +

p̄Y|Θp̄Θ

pε(y)

)∥∥∥ÛX|Θ−UX|Θ

∥∥∥
HS

. Since the upper bound does not depend on θ ∈ ϑ,

the convergence is uniform as a function of in θ ∈ ϑ.

Similarly, if p̄Θ|Y := supy∈Y pε(θ|y) <∞, then
∣∣∣q(θ|y)− pε(θ|y)

∣∣∣ ≤ κ̄ε ¯̀

δ

(
p(θ) + p̄Θ|Y

)∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

. Since

the upper bound does not depend on y ∈ Y, the convergence is uniform as a function of in y ∈ Y.
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A.8 Convergence Guarantees for Kernel Means Posterior Embedding

Theorem A.6. Assume `(θ, ·) ∈ image(CΘΘ) and that there exists δ > 0 such that q(y) ≥ δ for all m ≥ M
where M ∈ N+. The kernel means posterior embedding (KMPE) µ̃Θ|Y=y converges in RKHS norm to the

posterior mean embedding µΘ|Y=y at rate Op((mλ)−
1
2 + λ

1
2 ).

Proof. Since ` is a bounded kernel, let ¯̀̄ := supθ∈ϑ supθ′∈ϑ `(θ,θ
′) > 0. Note that this is not necessarily the same

as ¯̀ := supθ∈ϑ `(θ,θ). Consider the RKHS norm of the difference between KMPE µ̃Θ|Y=y and the posterior
mean embedding µΘ|Y=y for all m > M ,∥∥∥∥µ̃Θ|Y=y − µΘ|Y=y

∥∥∥∥2

H`

=

∥∥∥∥∫
ϑ

`(θ, ·)q(θ|y)dθ −
∫
ϑ

`(θ, ·)pε(θ|y)dθ

∥∥∥∥2

H`

=

∥∥∥∥∫
ϑ

`(θ, ·)
(
q(θ|y)− pε(θ|y)

)
dθ

∥∥∥∥2

H`

=

〈∫
ϑ

`(θ, ·)
(
q(θ|y)− pε(θ|y)

)
dθ,

∫
ϑ

`(θ′, ·)
(
q(θ′|y)− pε(θ′|y)

)
dθ′
〉
H`

=

∫
ϑ

∫
ϑ

〈`(θ, ·), `(θ′, ·)〉H`
(
q(θ|y)− pε(θ|y)

)(
q(θ′|y)− pε(θ′|y)

)
dθdθ′

=

∫
ϑ

∫
ϑ

`(θ,θ′)
(
q(θ|y)− pε(θ|y)

)(
q(θ′|y)− pε(θ′|y)

)
dθdθ′

=

∣∣∣∣ ∫
ϑ

∫
ϑ

`(θ,θ′)
(
q(θ|y)− pε(θ|y)

)(
q(θ′|y)− pε(θ′|y)

)
dθdθ′

∣∣∣∣
≤
∫
ϑ

∫
ϑ

∣∣∣`(θ,θ′)∣∣∣∣∣∣q(θ|y)− pε(θ|y)
∣∣∣∣∣∣q(θ′|y)− pε(θ′|y)

∣∣∣dθdθ′
≤
∫
ϑ

∫
ϑ

¯̀̄2
∣∣∣q(θ|y)− pε(θ|y)

∣∣∣∣∣∣q(θ′|y)− pε(θ′|y)
∣∣∣dθdθ′

= ¯̀̄2
∫
ϑ

∣∣∣q(θ|y)− pε(θ|y)
∣∣∣dθ ∫

ϑ

∣∣∣q(θ′|y)− pε(θ′|y)
∣∣∣dθ′

= ¯̀̄2
(∫

ϑ

∣∣∣q(θ|y)− pε(θ|y)
∣∣∣dθ)2

.

(A.24)

We now employ inequality (A.22) that was derived within the proof of theorem A.5,∥∥∥µ̃Θ|Y=y − µΘ|Y=y

∥∥∥
H`
≤ ¯̀̄

∫
ϑ

∣∣∣q(θ|y)− pε(θ|y)
∣∣∣dθ

≤ ¯̀̄
∫
ϑ

κ̄ε ¯̀
(
p(θ) + pε(θ|y)

)
δ

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS
dθ

= ¯̀̄
(∫

ϑ

(
p(θ) + pε(θ|y)

)
dθ

)
κ̄ε ¯̀

δ

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

=
2κ̄ε ¯̀̀̄̄

δ

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS
.

(A.25)

Since γ = 2κ̄ε ¯̀̀̄̄

δ is independent of m and the upper bound holds for all m > M , we apply lemma A.1 to establish
the convergence under the RKHS norm.
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B Surrogate Densities

Instead of modeling the posterior mean embedding directly in a fashion similar to K-ABC, KR-ABC, and KBR,
our approach begins by using CMEs to approximate the full likelihood (2.1) first as a surrogate likelihood,
the KML. While the KML provides an asymptotically correct surrogate for the likelihood, for finitely many
simulations the KML is not necessarily positive nor normalized. To make the KML compatible with MCMC-
based or variational approaches would require further amendments to the KML, ranging from simple clipping
[q(y|θ)]+ or a positivity constraint in the empirical least-squares problem for the CME weights, since CMEs
can be seen as the solution to a vector valued regression problem in the RKHS (Grünewälder et al., 2012).
These amendments would however introduce further bias to the already biased likelihood approximation. While
these biases vanishes asymptotically as the KML approaches a valid density due to theorem 3.1, the asymptotic
behavior is rarely reached under limited simulations, which is the scenario of interest. Instead, KELFI performs
inference by considering the surrogate posterior and its mean embedding defined directly from the KML.

Constructed from the KML, the KMP is also a surrogate density, although it is normalized. While the KMP
is useful for finding maximum a posteriori (MAP) solutions and visualizing posterior uncertainties, we cannot
directly sample from a surrogate density that is possibly non-positive. To address this, KELFI is motivated
by super-sampling of general CMEs with kernel herding (Chen et al., 2010). Although mean embeddings are
strictly positive for strictly positive kernels, when they are estimated from empirical CMEs, the resulting mean
embedding may not be strictly positive (Song et al., 2009). Nevertheless, kernel herding can still obtain super-
samples from CME estimates which effectively minimizes the maximum mean discrepancy (MMD) discrepancy
between the original CME estimate and the new embedding formed from super-samples. This idea has been used
to sample from conditional distributions through its empirical CME representation in kernel Monte Carlo filter
(KMCF) (Kanagawa et al., 2016) and KR-ABC (Kajihara et al., 2018). Furthermore, super-samples are more
informative than random samples, in the sense that empirical expectations under super-samples can potentially
converge faster at O(S−1) for S samples instead of O(S−

1
2 ) for random samples.

In general, surrogate densities can be seen as the “density” of a signed measure. Most of the properties of
KMEs, including injectivity between mean embeddings and distributions, remain valid for signed measures. By
defining an analogous form of mean embeddings for surrogate densities, KELFI arrives at a novel posterior mean
embedding that is associated with a marginal surrogate likelihood for hyperparameter learning.

In all experiments we found that we did not need to clip the KML or KMP even though they are not guaranteed
a-priori to be strictly positive. This is because we used an universal kernel such as a Gaussian kernel on both
ϑ and D so that their RKHS is dense in their respective L2 spaces (Carmeli et al., 2010). Because densities
and likelihoods are often square-integrable, accurate estimations can be achieved. Finally, since we use kernel
herding to super-sample the KMPE, the KMPE is not required to be positive to begin with.

C Connections and Future Work

The KML enables approximate likelihood queries at any θ ∈ ϑ, even if simulation data is not available at the
corresponding θ. By using the KML as a surrogate model for the true likelihood and accepting some modeling
bias, we avoid requiring multiple expensive simulations at each query θ that is used by many MCMC-based
ABC approaches. In fact, as a function of θ the KML q(y|·) is the predictive mean of a GPR (Rasmussen and
Williams, 2006) trained on observations {θj , κε(y,xj)}mj=1 with a GP prior GP(0, `) and Gaussian likelihood
N (0,mλI), since they admit the same resulting form. This connection could provide uncertainty estimates in
the KML approximation of the likelihood via the GP predictive variance. It is possible to then use Bayesian
optimization (BO) (Snoek et al., 2012) or active learning methods to guide the proposal prior π in a sequential
learning fashion that will result in the more accurate KML approximations for a fixed number m of simulations.

While our posterior mean embedding (3.5) is closed-form and thus exact for the surrogate density q(θ|y), it is
an approximation to the mean embedding µΘ|Y=y :=

∫
ϑ
`(θ, ·)pε(θ|y)dθ of the true soft posterior pε(θ|y) ≡

p
(ε)
Θ|Y(θ|y), and converges in RKHS norm at the same rate as the KML. This is different in a subtle way to the

CME of the posterior used by K-ABC, KR-ABC, and KBR, which in fact is an approximation to µΘ|X=y :=∫
ϑ
`(θ, ·)pΘ|X(θ|y)dθ, the mean embedding of pΘ|X(θ|y), which avoids using the ε-kernel. A key difference is

that there is no known associated marginal likelihood or approximations thereof for the direct posterior mean
embedding, so cross validation is required for selecting the remaining kernel hyperparameters in K-ABC, KR-



Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference

ABC, and KBR. K-ABC also do not address sampling, although kernel herding can be readily applied in the
same way. Kernel herding is applied to KBR in KMCF (Kanagawa et al., 2016) for resampling distributions
represented as a CME. We believe it would be an interesting direction to investigate the relationships between
the original empirical posterior mean embedding and the surrogate posterior mean embedding.

With regards to hyperparameter learning, in the KME literature, Bayesian learning of hyperparameters in
marginal mean embeddings have been addressed through a different marginal likelihood approach by placing a GP
prior on the embedding (Flaxman et al., 2016). However, a general approach for learning CME hyperparameters
in a Bayesian framework remains an open question. Our simple surrogate density approach can be an alternative
solution to the CME Bayesian hyperparameter learning problem, and may lead to interesting connections.

With regards to sampling, by super-sampling the surrogate posterior mean embedding, the number of posterior
samples is decoupled from the number of simulations. This is unlike likelihood-free MCMC methods for which
the algorithm guides the simulator queries at parameter values that is not necessarily drawn from the prior, but
rather from proposals of a Markov chain. This avoids the problem of slow mixing that is inherent in MCMC
methods, and make KELFI more suitable for multi-modal posteriors, which remains to be experimented upon.

D Experimental Details for Blowfly

Our experimental setup follows that of Wood (2010). We adopted the 10 summary statistics used in Meeds and
Welling (2014), Moreno et al. (2016), and Park et al. (2016), which are the log of the mean of each quartile of
{Nt/1000}Tt=1 (4 statistics), the mean of each quartile of first-order differences of {Nt/1000}Tt=1 (4 statistics),
and the maximal peaks of smoothed {Nt}Tt=1 with two different thresholds (2 statistics). We also use a diagonal
Gaussian prior on log θ with means [2,−1.5, 6,−1,−1, log (15)] and standard deviations [2, 0.5, 0.5, 1, 1, log(5)].
Notice that we have slightly modified the standard deviation to be broader to make the problem more challenging.

We describe the NMSE metric that is used to compare algorithms in our experiments. Before the experiments,
we first obtain 10000 parameter samples from the prior and simulate summary statistics from each of them.
We then calculate the MSEs of each simulated summary statistics against the observed summary statistic, and
average them cross the 10000 samples. This is now a vector of 10 numbers, since we have an average MSE
value for each summary statistic. Those are now the MSEs achieved under the prior. We chose 10000 parameter
samples because at this point the MSEs for the prior has stabilized without much variance.

During each experiment, we compute the MSEs by averaging MSEs scores across 1000 simulations under the
posterior mean or mode obtained from the algorithm. This also produces a vector of 10 numbers. We then divide
the MSE of each statistic from the posterior by that from the prior computed earlier. This results in a vector
of 10 numbers which is now the NMSE for the 10 summary statistics. Since now all 10 numbers are normalized
errors with respect to the prior, we average these NMSE scores across the statistics for a final single NMSE score.

In this way, each statistic is normalized in the final average and a NMSE of 100% correspond to the performance
of the prior. Hence, the NMSE measures the error as a percentage of the error achieved by the prior.

Note that this is the NMSE score for a particular experiment. For each algorithm, we further repeat the
experiment and thus this calculation process 10 times and show the average and the deviations in fig. 3.

For all algorithms except KBR, we evaluate their performance by simulating from their posterior mean. For
KBR only, we simulate from its posterior mode. This is because we noticed that KBR posterior mode decoding
consistently outperformed KBR posterior mean for the Blowfly problem. Using the posterior mode will present
KBR in its best light.

We now detail the hyperparameter choices for each algorithm other than KELFI, since most algorithms do not
have a hyperparameter learning algorithm for the inference problem. Refer to their respective papers for a
description of the meaning of each hyperparameter. For algorithms that use a MCMC proposal distribution, we
choose a Gaussian proposal distribution with a proposal standard deviations that are 10% of the prior standard
deviations. For MCMC-ABC, we used ε = 5. For SL-ABC, we used ε = 0.5 and S = 10. For ASL-ABC, we used
S0 = 10, ε = 0.5, ξ = 0.3, m = 10, and ∆S = 10. For GPS-ABC, we used S0 = 20 samples from ASL-ABC to
initialize the GP surrogate, and choose ε = 2, ξ = 0.05, m = 10, and ∆S = 5. For K-ABC and KBR, we used
median length heuristic to set length scale hyperparameters, and choose λ = 10−4. Note that KBR uses two
kernels on both the parameter and the summary statistics and have two regularization hyperparameters.
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E Experimental Details for Lotka-Volterra

For the Lotka-Volttera problem, our setup follows exactly as described in Papamakarios and Murray (2016). We
simulate data using the ground truth parameters and treat this as the observational data, and use it across all
experiments and algorithms.

In particular, the problem places a uniform prior over log θ. Since the parameters are independent from each
other in the prior, transforming the ABC task into one with a Gaussian prior is straight forward by doing it
separately for each parameter. To convert from log θ to z, denoting a realization of a Gaussian random variable,
we first offset and scale it to a uniform in [0, 1] then apply the standard normal quantile function. To convert
it back, which is required before we pass our parameter query to the simulator or to present our results, we
apply the standard normal cumulative distribution function and scale and offset the uniform back to its original
ranges. Similar to the other experiments, we do not learn the prior hyperparameters in this paper to enable
benchmarking against other methods with the same prior, so the transformed prior stay as a standard normal.

To apply the closed-form solutions for KELFI, we transform the prior samples into a standard Gaussian dis-
tributed samples, apply KELFI, and transform the posterior samples back to the original space for log θ.

With a uniform prior and a complex intractable likelihood, the posterior is unlikely to be a Gaussian. KELFI does
not assume that the posterior is a Gaussian and thus can provide more flexible and accurate posteriors. After
learning appropriate hyperparameters for KELFI under MKML, we draw 10000 super-samples from the KMPE
to compute the posterior mean, and maximize the KMP to compute the posterior mode. Finally, to compute
the 95% credible interval, we compute the empirical 2.5% and 97.5% quantile using the 10000 super-samples.

F Gaussian Prior Transformations for Likelihood-Free Inference Problems

Under certain non-exhaustive conditions, we can always transform a particular LFI problem into another
LFI problem that involves a Gaussian prior without loss of generality. These assumptions are that pΘ(θ) =∏D
d=1 pΘd(θd) is a continuous probability density function (PDF) whose entries are independent, and that its

inverse marginal cumulative distribution functions (CDFs) P−1
Θd

exists and is tractable.

In terms of notation, we denote the parameters as θ = {θd}Dd=1 ∈ ϑ for D parameters. For this section only,
multiple iid copies will be indexed by a superscript θ(j) for j ∈ [m]. Hence, the d-th parameter of the j-th

parameter values is θ
(j)
d . For densities, we use the corresponding random variable as the subscript to denote

which distribution we are referring to. For example, we used p(θ) as the shorthand for the more formal notation
of pΘ(θ) in the rest of the paper, but here we will keep the subscript to make this explicit.

Suppose the original prior pΘ(θ) is not necessarily Gaussian, but satisfies the aforementioned assumptions. Let

Z be a random variable of the same dimensionality as Θ with realization z ∈ Z. Let pZ(z) =
∏D
d=1 pZd(zd),

where pZd(zd) = N (µd, σ
2
d) so that its density is a multivariate anisotropic Gaussian. Convenient choices that

simplify transformations are µd = 0 and σd = σ for all d ∈ [D], although the general methodology remains.

Below we outline the general procedure for transforming a LFI problem into another LFI problem that involves
a Gaussian prior.

1. Generate Gaussian samples z(j) ∼ pZ(z) for j ∈ [m].

2. Convert Gaussian samples z into uniform samples u through u
(j)
d = PZd(z

(j)
d ) for j ∈ [m] and d ∈ [D].

That is, u(j) ∼ U(0, 1)D for j ∈ [m].

3. Convert uniform samples u into prior samples through θ
(j)
d = P−1

Θd
(u

(j)
d ) for j ∈ [m] and d ∈ [D].

The overall forward transformation is T(z) := {Td(zd)}Dd=1 where Td(zd) = P−1
Θd

(PZd(zd)).

Since P−1
Zd

exists, the inverse transformation is T−1(θ) = {T−1
d (θd)}Dd=1 where T−1

d (θd) = P−1
Zd

(PΘd(θd)).

Hence, we have θ(j) = T(z(j)) for j ∈ [m].

4. Run the simulator at the parameter samples x(j) ∼ pX|Θ(·|θ(j)) = pX|Θ(·|T (z(j))) = pX|Z(·|z(j)). We now

have joint samples {z(j),x(j)}mj=1.
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5. Use the KELFI framework to approximate the posterior pZ|Y(z|y) using the simulation pairs {z(j),x(j)}mj=1.

Either we obtain the KMP qZ|Y(z|y), or we obtain KMPE super-samples {ẑs}Ss=1.

6. If we have samples {ẑs}Ss=1, then to obtain the corresponding samples for qΘ|Y(θ|y), we simply pass the

samples {ẑs}Ss=1 through the transformation T so that θ̂s = T(ẑs) for s ∈ [S].

7. If we have the KMP, then to obtain the corresponding posterior density we use the standard change of
variable transformation qΘ|Y(θ|y) = qZ|Y(T−1(θ)|y)|det JT−1(θ)|.

The Jacobian of T−1 is a D ×D matrix whose (i, j)-th entry is (JT−1(θ))ij :=
∂T−1

i

∂θj
(θ).

Since the transformations of each parameter is done independently from each other, T−1
i does not

depend on θj if i 6= j. Consequently, the Jacobian is diagonal.

The diagonal entries are
∂T−1

i

∂θi
(θi) = ∂

∂θi
P−1
Zi

(PΘi(θi)) = (P−1
Zi

)′(PΘi(θi))pΘi(θi) =

[pZi(P
−1
Zi

(PΘi(θi)))]
−1pΘi(θi) = [pZi(T

−1
i (θi))]

−1pΘi(θi). In the second last equality we made use of the fact
that the computation of the derivative of the quantile function requires only the knowledge of the density
and the quantile function itself, since (P−1)′(u) = (P ′(P−1(u)))−1. Thus, the determinant of the Jacobian

is det JT−1(θ) =
∏d
i=1[pZi(T

−1
i (θi))]

−1pΘi(θi) = pΘ(θ)
[∏d

i=1 pZi(T
−1
i (θi))

]−1
= pΘ(θ)

[
pZ(T−1(θ))]−1.

The change of variable transformation becomes

qΘ|Y(θ|y) = qZ|Y(T−1(θ)|y)
pΘ(θ)

pZ(T−1(θ))
. (F.1)

Finally, the form simplifies when the form of the KMP qZ|Y(T−1(θ)|y) is substituted back in,

qΘ|Y(θ|y) =
qY|Z(y|T−1(θ))pZ(T−1(θ))

qY(y)

pΘ(θ)

pZ(T−1(θ))
=
qY|Z(y|T−1(θ))pΘ(θ)

qY(y)
. (F.2)

Note that the MKML qY(y) is still marginalized over the simpler Gaussian distribution,

qY(y) =

∫
Z
qY|Z(y|z)pZ(z)dz. (F.3)

In this way, we simplify the LFI problem into another LFI problem which involves a Gaussian prior such that
KELFI solutions are closed-form under Gaussian kernels. Once KELFI solutions have been computed in the new
parameter space Z, the solutions can be easily transformed back into the original parameter space ϑ as above.

This process is possible since the likelihood is intractable already. Hence, transformations T of variables z into
simulator parameters θ can be included as part of the simulator without changing the nature of the problem.

If simulation pairs {θ(j),x(j)}mj=1 in the original space are already provided, parameters θ(j) can be converted

into Gaussian variables via z(j) = T−1(θ(j)) for j ∈ [m] so that the pairs {z(j),x(j)}mj=1 can be used to proceed.

As an extension, instead of transforming the LFI problem with a general continuous prior into one with a
Gaussian prior, if the prior is fundamentally multi-modal, we can also transform it into one with a Gaussian
mixture model as the prior. Since the prior density is a linear combination of Gaussians, all derivations remain
closed-form from a linear combination of the results with each Gaussian component.

Finally, it is important to recognize that while there is no loss of generality to the inference problem when
performing this prior transform, the transformation do change the interpretation of the hyperparameters learned
with the MKML. Since the kernel ` is now placed in the Z space, the hyperparameters of ` cannot be interpreted
directly for the original parameter space ϑ unless the transformation between Z and ϑ is simple enough to
translate the interpretation. Nevertheless, hyperparameters can still be learned by optimizing the MKML.


