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In this supplementary material, we provide details on
the experiments setup and on algorithms mentioned
in the main text, as well as additional experiments on
multi-modal Gaussian data and proofs omitted in the
main text.

1 Experimental Details

1.1 Discrete Synthetic Data: Binary
Symmetric Channels

Explicit calculation of PICs between two given ran-
dom variables is challenging in general; however, for
some simple cases, e.g. PY |X given by a so-called dis-
crete memoryless Binary Symmetric Channel (BSC),
the PICs can be derived exactly (Calmon et al., 2017,
Section 3.5) or (O’Donnell, 2014, Section 2.4). Let
X be a binary string of length n, and consider a bi-
nary string Y of the same length, where each bit is
flipped independently with probability δ. The param-
eter δ, called the crossover probability, captures how
noisy the mapping from X to Y is. By symmetry it is
sufficient to let δ ≤ 1/2. The PICs between X and Y
are characterized below: there are

(
n
k

)
PICs of value

(1 − 2δ)k. For example, for n = 5 and δ = 0.1, there
are

(
5
0

)
= 1 PIC of value (1 − 0.2)0 = 1,

(
5
1

)
= 5

PICs of value (1− 0.2)1 = 0.8,
(
5
2

)
= 10 PICs of value

(1− 0.2)2 = 0.64, and so on.

For this experiment, we randomly generate 15000 bi-
nary strings for training and 1500 strings for testing.
The CA-NN is composed of simple neural nets with
two hidden layers with ReLU activation, and 32 units
per hidden layer. We train over the entire training
set for 2000 epochs using a gradient descent optimizer
with learning rate 0.01. The approximated PICs for
the training and test set, along with the PICs values
obtained analytically from theory are shown in Fig-
ure 1. The approximated PICs are close to the the-
oretical values, verifying that the CA-NN is valid in
this example.

We also show the factoring planes under different
crossover probability δ in Figure 2. When δ = 0.1,
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Figure 1: Theoretical and approximated PICs between
inputs and outputs of a BSC.

most bits are identical between X and Y , while when
δ = 0.9 most of the bits are flipped.

1.2 Gaussian Synthetic Data and Hermite
Polynomials

When X = Y = R, X ∼ N (0, σ1), Z ∼ N (0, σ2) and
Y = X+Z, the set of functions F and G that give the
PICs are the Hermite polynomials (Abbe and Zheng,
2012), where for x ∈ R, the Hermite polynomial Hi(x)
of degree i ≥ 0 is defined as

Hi(x) , (−1)ie
x2

2
di

dxi
e−

x2

2 . (1)

More precisely, the ith principal functions fi and gi
are H

(σ1)
i and H

(σ1+σ2)
i respectively, where H

(r)
i de-

notes the generalized Hermite polynomial, defined as

H
(r)
i (x) = 1√

i!
Hi(

x√
r
), of degree i with respect to the

Gaussian distribution N (0, r), for r ∈ (0,∞). The
PICs will then be given by the associated inner prod-

uct E[H
(σ1)
i (X)H

(σ1+σ2)
i (Y )].

We pick σ1 = σ2 = 1, and generate 5000 training sam-
ples for X and Y according to the Gaussian distribu-
tion and 1000 test samples. The CA-NN is composed
of two hidden layers with hyperbolic tangent activa-
tion, 30 units per hidden layer. We train over the
entire training set for 8000 epochs using a gradient
descent optimizer with learning rate 0.01.
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(a) Crossover probability δ = 0.1
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(b) Crossover probability δ = 0.9

Figure 2: Three-dimensional factoring planes for the BSC with uniform inputs with different crossover probability
δ.
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Figure 3: Hermite polynomials of degree 0 to 4 and
outputs of the CA-NN that approximate the 0th to
4th principal functions.

In Figure 3, we show the Hermite polynomials of de-
grees 0 to 4 and the outputs of the CA-NN that ap-
proximate the 0th to 4th principal functions. The out-
put of the CA-NN closely recovers the Hermite poly-
nomials; this can be further verified by computing
the mean square difference between the approximated
principal functions and the Hermite polynomials, i.e.

MSEf , E[(fi(X)−H(σ1)
i (X))2], (2)

MSEg , E[(gi(Y )−H(σ1+σ2)
i (Y ))2]. (3)

Table 1 provides the mean square difference, as well as
the theoretical and estimated PICs. Since the CA-NN
approximates the Hermite polynomials, the estimated
PICs are also close to their theoretical values.

Table 1: The MSE when using the FG-Net to approx-
imate the principal functions (Hermite polynomials)

1st 2nd 3rd 4th

MSEf 0.0001 0.0042 0.0213 0.0522
MSEg 0.0053 0.0197 0.0238 0.0583
True PICs 0.6977 0.4675 0.2979 0.2113
CorrA-NN 0.7007 0.4938 0.3376 0.2037

1.3 Noisy MNIST Dataset

The noisy MNIST dataset (Wang et al., 2015) consists
of 28×28 grayscale handwritten digits, with 60K/10K
images for training/testing. Each image is rotated at
angles uniformly sampled from [−π/4, π/4], and ran-
dom noise uniformly sampled from [0, 1] is added. We
let X be those images and Y be the ture labels.

The CA-NN is composed of two neural nets with differ-
ent structures. Since the inputs of the encoder F-Net
are images, we use two convolutional layers with out-
put sizes 32 and 64 with filter dimension 5 × 5 and
max pooling, a fully-connected layer with 1, 024 units,
and a readout layer with output size 10. For the G-
Net, the inputs are the one-hot encoded labels, and
we use two hidden layer with output size 128 and 64,
respecively, and a readout layer with output size 10.
We adopt ReLU activation for all hidden layers in the
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CA-NN.

We train for 200 epochs on the training set with a
batch size of 2048 using a gradient descent optimizer
with a learning rate of 0.01. To avoid numerical insta-
bility, we clip the outputs of the F-Net to the interval
[−10000, 10000]. Moreover, when back-propagating
the objective in (2), we compute Cᵀ

fg(C
−1
f + εId)Cfg

instead of C
−1/2
f Cfg, where ε = 0.001 to avoid an

invalid matrix inverse. Using the reconstitution for-
mula (3), we reconstruct the likelihood pY |X for clas-
sification, and obtain an accuracy of 99.76% on the
training set, 96.77% on the test set.

The PICs are reported in Table 4, and the factor-
ing planes drawn with the nine principal functions ex-
tracted from training and test set are shown in Figure 4
and Figure 5 respectively.

1.4 CIFAR-10 Images

The CIFAR-10 dataset contains 32×32 colored images,
each with three channels representing the RGB color
model, along with a label representing one of 10 cate-
gories. We let X be the images and Y be the labels.
In this experiment, the CA-NN is composed of two
neural nets with different structures. For the F-Net,
we use five convolutional layers with max pooling, two
fully-connected layers, and a readout layer. The con-
volutional layers have output size 128, and the filter
dimension is 3×3; the two fully-connected layers have
output sizes 384 and 192. The G-Net has the same
architecture as the one we use for training over the
noisy MNIST, see the previous Section 1.3. We train
for 200 epochs with a batch size of 256 using a gradient
descent optimizer with learning rate 0.001. The accu-
racy, once again obtained via classification using the
likelihood given by the reconstitution formula in (3),
is 93.41% on the training set and 89.75% on the test
set. The PICs are reported in Table 5, and the fac-
toring planes of the nine principal functions extracted
from training and test set are shown in Figure 6 and
Figure 7 respectively, where again each colored point
corresponds to an image (X) differentiated by color
for each class, and the black point corresponds to the
labels (Y ).

1.5 Kaggle What’s Cooking Recipe Data

We first describe how we pre-processed this dataset.
Originally the Kaggle What’s Cooking Recipe data
contains a list of detailed ingredients for each recipe,
along with the type of cuisine the dish corresponds
to. We parse the descriptions using Natural Language
Toolkit (NLTK) in Python (Bird and Loper, 2004) to
tokenize the descriptions into a vector of ingredients

Before

romaine lettuce, black olives, grape
tomatoes, garlic, pepper, purple onion,
seasoning, garbanzo beans, feta cheese
crumbles

After
onion, garlic, pepper, tomato, lettuce,
bean

Table 2: Effect of the pre-processing and removal of
ingredients on a greek recipe.

for each recipe. Next, we keep only the top 146 most
common ingredients and discard the others. This is
done for visualization purposes on the factorial planes.
The output of this process for an example recipe is
shown in Table 2.

The CA-NN is composed of two simple neural nets
with 3 hidden layers, with 30 units per hidden layers.
Both neural nets adopt hyperpolic tangent activation
functions. We train the whole dataset for 20000 epochs
by gradient descent optimizer with learning rate 0.005.
In addition to the first factoring plane shown in the
main text, we illustrate the following two factoring
planes in Figure 8 and Figure 9 respectively. Since the
PICs of this dataset are large in general, the second
and third factoring planes also contain some amount
of information. In particular the third principal func-
tion allows to separate Indian cuisine from Asian and
Western cuisine. Moroccan cuisine is between Indian
and Western cuisine on this axis. The fourth princi-
pal function separates Asian cuisines into, on one hand
Vietnamese and Thai cuisine, and on the other Chi-
nese, Korean and Japanese cuisine. Note that, in this
case, there are no signature ingredient, instead it is the
entire recipe which helps determining which family of
Asian cuisine a dish belongs to.

1.6 UCI Wine Quality Data

The CA-NN is composed of two neural nets with differ-
ent structures. For the F-Net, we use a simple neural
nets with 3 hidden layers, where the numbers of units
at each layer are 500, 100, and 30. For the G-Net, we
use a simple neural nets with 3 hidden layers, where
the numbers of units at each layer are 10, 5, and 3.
Both neural nets adopt hyperbolic tangent activation
functions. We train the whole dataset for 1000 epochs
using an Adam optimizer (Kingma and Ba, 2014) with
learning rate 0.001.

The PICs are reported in Table 6, and we illustrate
the first two and following two factoring planes in Fig-
ure 10 and Figure 11 respectively. Moreover, we plot
the minimum and maximum values of the 11 features.
In Figure 10, since we have an additional second fac-
toring plane, we observe that the interpolation path
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Table 3: Estimating the PICs with different configurations of the CA-NN.

Discrete PICs

1st PIC 2nd PIC 3rd PIC 4th PIC
Analytic value 0.8000 0.8000 0.8000 0.8000
30-30-25 0.8011 0.7942 0.7918 0.7883
30-30-30-25 0.8272 0.8217 0.8144 0.7926
20-20-15 0.8259 0.8201 0.8195 0.8075
40-30-20-15 0.8363 0.8274 0.8182 0.8020
50-50-30 0.8260 0.8199 0.8193 0.8001
60-50-40-30-20 0.8226 0.8179 0.8079 0.7972

of a low quality and high quality wines does not actu-
ally pass through the cluster of medium quality wines.
Since there are only two significant PICs in Table 6,
we can see that the third and fourth factoring planes
in Figure 11 contain barely any information.

1.7 Influence of the Encoder Net Depths

We investigate the influence of different configurations
of the encoders F and G Nets on the estimation of
the PICs. Specifically, we adopt the experiment set-
ting in Section 4.1.1, and vary neural network config-
urations including depth and number of neurons. In
Table 3, we summarize the estimation of the principal
inertia components and different configurations of the
encoders F and G Nets. As we can see deeper encoders
are prone to overfit the PICs, while shorter and wider
encoders are likely to give more accurate estimations
of the PICs.

Algorithm 1 Recovering Fn(xn) and Gn(yn) from

F̃n(xn) and G̃n(yn), the output of the FG-Nets.

Input: F̃n(xn) and G̃n(yn)
Output: Principal functions Fn(xn) and Gn(yn)

1: F̃n(xn)← F̃n(xn)− E
[
F̃n(xn)

]
,

G̃n(yn)← G̃n(yn)− E
[
G̃n(yn)

]
. (Remove mean)

2: Uf , Sf ,Vf ← SVD of 1
n F̃n(xn)F̃n(xn)ᵀ,

Ug, Sg,Vg ← SVD of 1
nG̃n(yn)G̃n(yn)ᵀ

3: C
−1/2
f ← UfS

−1/2
f Vᵀ

f ,

C
−1/2
g ← UgS

−1/2
g Vᵀ

g . (Find inverse)

4: L = 1
n (C

−1/2
f F̃n(xn))(C

−1/2
g G̃n(xn))ᵀ

5: U, S,V← SVD of L . (Find singular vectors)

6: A = UᵀC
−1/2
f , B = VᵀC

−1/2
g

7: return AF̃n(xn), BG̃n(yn)

2 Algorithms

Algorithm 1 summarizes how to convert the outputs
F̃n(xn) and G̃n(yn) of the CA-NN to the principal
functions by the whitening processing.
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Table 4: The PICs of training and test sets for noisy MNIST.

PICs 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Training 0.989 0.987 0.987 0.985 0.982 0.981 0.979 0.978 0.976
Test 0.957 0.945 0.944 0.927 0.925 0.924 0.921 0.917 0.903

Figure 4: Factoring planes of noisy MNIST on training set.

Figure 5: Factoring planes of noisy MNIST on test set.
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Table 5: The PICs of training and test sets for CIFAR-10.

PICs 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Training 0.996 0.996 0.996 0.995 0.995 0.994 0.994 0.994 0.993
Test 0.837 0.800 0.752 0.746 0.739 0.722 0.584 0.562 0.487

Figure 6: Factoring planes of CIFAR-10 on training set.

Figure 7: Factoring planes of CIFAR-10 on test set.
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Figure 8: The second factoring plane of CA on Kaggle What’s cooking dataset (Colored dots: recipe, dark blue:
ingredient).
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Figure 9: The third factoring plane of CA on Kaggle What’s cooking dataset (Colored dots: recipe, dark blue:
ingredient).
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Table 6: The PICs of training and test sets for UCI Wine Quality Data.

PICs 1st 2nd 3rd 4th 5th 6th

Training 9.9815e− 01 9.9353e− 01 5.6861e− 02 2.6282e− 04 2.0870e− 06 1.9238e− 27
Test 9.9984e− 01 6.1934e− 01 8.8158e− 02 2.8603e− 04 7.7783e− 08 1.4357e− 15
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Figure 10: The first (left) and second (right) factoring plane of CA on UCI wine quality dataset.
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Figure 11: The third (left) and fourth (right) factoring plane of CA on UCI wine quality dataset.
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3 Additional Experiment -
Multi-Modal Gaussian

As a final set of experiments on synthetic data, we con-
sider mixtures of Gaussian (or multi-modal Gaussian)
random variables. More precisely, for µi ∈ R2, i =
0, 1, we let (X,Y ) = 1(B = 0)N (µ0,Σ) + 1(B =
1)N (µ1,Σ), where B ∼ Ber(p), and N (µi,Σ) are 2-
dimensional multivariate Gaussian random variables
with mean µi and covariance matrix Σ independent
of B. In this experiment, we demonstrate the power
of the PICs as a fine representation of the relation-
ship between X and Y . In particular, letting Σ have
diagonal elements 1 and off-diagonal elements .7, and
letting µi = (−1)i[5, 5]T , we obtain two modes, one
at [−5,−5] and the other at [5, 5]. First, note that a
general measure of dependence such as Mutual infor-
mation, would be unable to capture the existence of
two modes. In fact, one can verify that the mean-zero
jointly Gaussian pair (X̃, Ỹ ) which has correlation .93

satisfy I(X;Y ) = I(X̃, Ỹ ) ≈ 1.03 nats. Despite this,
the relationship between X and Y is different from
the relationship between X̃ and Ỹ , as exhibited by
the principal functions Fig. 12. Specifically, note that
the first principal function distinguishes between the
two modes. The second and third principal functions
capture the two dimensional space of piece wise linear-
function, where each mode follows a separate linear
function. When it comes to the value of the PICs,
we see that the top PIC is very close to 1, while the
top PIC of (X̃, Ỹ ) is given by the correlation, i.e. .93.
However, when it comes to estimating linear functions,
one can perform better inference over (X̃, Ỹ ), since the
PIC for this family of function is of about .7 in the
multi-modal gaussian.

4 Proofs

4.1 Proposition 2

If we write (3) in the main text into matrix form and
following the definitions in Section 3.2 in the main text,
we have

FΛGᵀ = D−1X PX,Y D−1Y − 1|X |1
ᵀ
|Y| (4)

= D−1X (PX,Y − pXpᵀ
Y )D−1Y (5)

= D
−1/2
X QD

−1/2
Y (6)

= D
−1/2
X UΣVᵀD

−1/2
Y (7)

= LΣRᵀ, (8)

where [F]i,j = fj(i), [G]i,j = gj(i) and Λ =
diag(λ0, · · · , λd). Eq. (4) shows that in discrete case,
the principal functions F and G are equivalent to the
orthogonal factors L and R in the CA, and the fac-
toring scores Σ are the same as the PICs Λ. The re-

constitution formula in (3) actually connects the PICs
and correspondence analysis, and enables us to gener-
alize correspondence analysis to continuous variables
(Hirschfeld, 1935; Gebelein, 1941).

4.2 Proposition 3

Since the objective (6) in the main text can be ex-
pressed as

E[‖Af̃(X)− g̃(Y )‖22] = tr
(
AE[̃f(X)f̃(X)ᵀ]Aᵀ

)
−2tr

(
AE[̃f(X)g̃(Y )ᵀ]

)
+
(
E[‖g̃(Y )‖22]

)
, (9)

we have

E[‖Af̃(X)− g̃(Y )‖22] = d− 2tr (ACfg) + E[‖g̃(Y )‖22],
(10)

where the last equation comes from the fact that

tr
(
AE[̃f(X)f̃(X)ᵀ]Aᵀ

)
= tr (Id) = d. Since Cf is

positive-definite, C
− 1

2

f exists, and so does A = ÃC
− 1

2

f ,
and (9) can be alternatively expressed as

min
A∈Rd×d ,̃f ,g̃

− 2tr(ÃB) + E[‖g̃(Y )‖22]

subject to ÃÃᵀ = Id,

(11)

where B = C
− 1

2

f Cfg. The term tr(ÃB) can be up-
per bounded by the Von Neumann’s trace inequality
(Mirsky, 1975),

tr(ÃB) ≤
d∑
i=1

σÃ,iσB,i, (12)

where σÃ,i’s and σB,i’s are the singular values for Ã
and B respectively. Moreover, the upper bounded can
be achieved by solving the orthogonal Procrustes prob-
lem (Gower and Dijksterhuis, 2004), and the optimizer

is Ã∗ = VUᵀ, where V and U are given by the SVD
of B = UΣBVᵀ. Therefore,

tr(Ã∗B) = tr(VUᵀUΣBVᵀ) =

d∑
i=1

σB,i (13)

which is the d-th Ky-Fan norm of B. The desired
result then follows by simple substitution.
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